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SUBADDITIVE ERGODIC THEORY!

By J. F. C. KINGMAN

University of Oxford
It is now ten years since Hammersley and Welsh discovered (or
invented) subadditive stochastic processes. Since then the theory has
developed and deepened, new fields of application have been explored, and

further challenging problems have arisen. This paper is a progress report
on the last decade.

1. Theory.

1.1. Subadditive processes. An interesting class of stochastic processes was
isolated by Hammersley and Welsh in their wide-ranging survey [4] of the prob-
lems of percolation theory. They observed that certain of these problems could
be formulated in terms of families of random variables x,, (s < f), where the
indices s and ¢ run over the set T of nonnegative integers, which satisfy three
conditions:

S,. Whenever s < t < u,

(1.1.1) X < Xy F Xy -
S,’. The distribution of x,, depends only on ¢ — .
S,. The expectation

(1.1.2) g9, = E(x,,)
exists, and satisfies
(1.1.3) g, = —At

for some constant 4 and all ¢+ > 1.
From S, E(x,,) = g,_,, and taking expectations in (1.1.1) shows that g,_, <
9y + 9u_,> SO that

Imin < O + 0., (myn=1y.
The familiar theory of subadditive functions [5] then implies that
(1.1.4) lim,_, g/t =71,
where
(1.1.5) 7 = inf,., g,/t

is finite because of (1.1.3).
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Although Hammersley and Welsh were able to deduce some consequences
from S,, S,’ and S,, these were fragmentary and incomplete, partly because the
stationarity requirement S,’ is not strong enough to bring into play the powerful
tools of ergodic theory. A more complete theory is possible if S,’ is strength-
ened to

S,. The joint distributions of the process (x,,,,,;) are the same as those of

(%)
This is strictly stronger than S,’, in the sense that it is possible to construct
processes satisfying S,” but not S,. But these examples are highly artificial, and
it seems that, for all the applications so far envisaged, there is no advantage in
using the weaker condition S,’.

A family x = (x,,; 5, t € T, s < t) of random variables x,, satisfying S,, S, and
S, is called a subadditive process, and the constant y associated with it will be
denoted where necessary by r(x).

If the random variables of a subadditive process x are all degenerate, then S,
shows that x,, = x,,_, = ¢,_,, so that (1.1.4) implies that

lim,_,, X/t = 7.
On the other hand, suppose that (1.1.1) is strengthened to
(1'1‘6) Xyy = Xyt + Xty

(in which case x is called an additive process). Then the process (y,; t = 1)
defined by

(117) Ye = X1t

is stationary, and

(1.1.8) Xop = D=1 Ve -

Hence Birkhoff’s ergodic theorem shows that the limit
(1.1.9) lim,_,, x,,/t

exists with probability one.

These two special cases led Hammersley and Welsh to conjecture that the
limit (1.1.9) might exist for all subadditive processes x, an assertion which would
generalise simultaneously the limit theorem for subadditive functions and the
Birkhoff ergodic theorem. Such a result was proved in [8], and will be described
in Sub-section 1.2. In Sub-sections 1.3-1.4 various ramifications and reformu-
lations are discussed, and in Sub-sections 2.1-2.4 some typical applications of
the theory are described. The paper ends with a list of unsolved problems
which stand as a challenge to future research.

1.2. The ergodic theorem. The fundamental theorem proved in [8] is a com-
plete generalization to subadditive processes of Birkhoff’s theorem, when the
latter is formulated in terms of the additive process (1.1.8).
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THEOREM 1. If X is a subadditive process, then the finite limit

(1.2.1) & = lim,_, x,,/t
exists with probability one and in mean, and
(1.2.2) E¢) =7.

In general, the random variable & may be non-degenerate. If _# denotes the
g-field of events defined in terms of x and invariant under the shift x — x’,
where

(1.2.3)

x;t = Xei1,041 >
then & is an _“-measurable random variable, with the explicit representation
(1.2.4) & = lim,_, t7'E(x,, | 7).
Thus, if 7 is trivial (as may in many particular cases be proved by a zero-one
law), we have & = y almost surely, so that £ may be replaced by the constant
7 in (1.2.1).

The proofs of these results can be found in [8], as can that of a ‘“maximal
ergodic theorem’:

(1.2.5) E(xy | Xy = 0 forsome t=>1)=0.

Unfortunately, the asymmetry of (1.1.1) means that the maximal ergodic theo-
rem does not at once imply (as it does in the addigive case) the more important
Theorem 1. The proof of that theorem depends rather on a decomposition

(1'2'6) xst = yst + Zst ’

in which y is an additive process with E(y,,) = 7, and z is a nonnegative sub-
additive process with y(z) = 0.
It is useful to note that the condition S, can for some purposes be weakened to:

S/,  E(x{) < .
Note that by (1.1.1) this implies that
(1.2.7) E(x}) < o

for all s < t. Weakening S, to S,’ admits two new possibilities, first by that g,
is finite for all ¢ but that ‘

(1.2.8) g/t > — (t — )
and secondly that

(1.2.9) g, = —o0

for some (and then for all sufficiently large) 7.

THEOREM 2. If X satisfies S,, S, and S’ but not S,, then the limit (1.2.1) exists
with probability one in —oo < & < oo, and

(1.2.10) E¢) = —oo .
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Proor. It is trivial to check that x™ is a subadditive process, where
X = max (x,, —N(t — 5))
and N is any positive integer. Hence Theorem 1 shows that the finite limit
EM = lim,_,, x{M/t
exists for all N, with probability one. Since
xiV [t = max (x,/t, —N),
this means that the limit (1.2.1) exists, and that

&M = max (§, —N).
Hence
E(§) < E(§") = r(x™)

inf,,, E(xg”)

< E(xg)
for any N, t. Letting N — oo,

E(§) < 17E(xy) = g,/t,
and letting t — oo,

which completes the proof.

1.3. Other formulations. Theorem 1 can, of course, be formulated in the
language of ergodic theory in an obvious way. Thus, without loss of generality
(cf. [1]), we may suppose that the probability space (Q, &, P) on which the
subadditive process x is defined is sufficiently rich to admit a measure-preserving
transformation 6 : Q — Q such that

(1.3.1) xa+l,t+1(w) = X, (0w)

for all weQ, s,teT, s <t. Then S, is automatically satisfied, and S, and S,
can be expressed by the assumption:

S#. The functions f, = x,,: Q@ — R belong to L,(Q) and satisfy

(132) fm+n(w) é fm(w) + fn(omw)
for all m,n = 1 and all w € Q, and
(1.3.3) § f,dP = —an

for some constant 4 and all n > 1.
Then according to Theorem 1, S* implies that
(1.3.4) §(w) = lim,_, f(0)/n

exists for almost all @, and that

(1.3.5) fo | L2 _ gw)|aP -0 (n— o).
n
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Now let X be the set of all functions
o {(s,t);s,1t=0,1,2,..-;5< 1t} >R
which satisfy
(1.3.6) o(s, u) = (s, 1) + (1, 1)

whenever s < t < u, and make X a measurable space by means of the smallest
o-field with respect to which the coordinate maps ¢ — ¢(s, f) are measurable.
Then, if Q, 57, P, 0, f, satisfy S”, there is a measurable function f: Q@ — Z
defined by

(1.3.7) [f(@)](s, 1) = x,(@) = f,_(0w),
and f induces a probability measure
(1.3.8) II = pf?
on X.
If 6: X — X is the shift
(1.3.9) (eo)(s, 1) = (s + 1, ¢t 4 1).

then II is invariant under ¢. Moreover, for some constant A4,
(1.3.10) —An £ §; ¢(0, mIl(de) < oo

for all n. Hence the theory of subadditve processes can be regarded as the theory
of probability measures on X, invariant under ¢, which satisfy (1.3.10). Theo-
rem 1 (whose proof in [8] depends on taking just this point of view) implies that
any such measure II is concentrated on the subset

(1.3.11) 2, = {p € Z; lim,_,,, n7%(0, n) exists} .

n—oo

1.4. Continuous-parameter processes. There is no reason why the parameter
set 7 should always consist of the nonnegative integers. If T is any subset of
the real line which is closed under addition, we can define a subadditive process
on T to be a family x = (x,; s, 1€ T, s < t) of random variables x,, satisfying:

S,. The inequality (1.1.1) holds whenever s, t,ueT, s < t < u.

S,. For all r €7, the joint distributions of x> = (x,,,,,,) are the same as
those of x.

S,. For all positive t € T, the expectation (1.1.2) exists and satisfies (1.1.3).

Exactly as before, the finite limit

(1~4-1) 7T = limt—»OO,teT gt/t = infteT,t>0 gt/t

will exist.

Apart from T = {0, 1, 2, - ..}, the most interesting case is that in which T
consists of all nonnegative real numbers, and we therefore assume in this section
that T = [0, co0). In this case x is called a continuous-parameter subadditive process.
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If (1.1.1) is replaced by the corresponding equality (1.1.6), so that x is a
continuous-parameter additive process, we have

X

8

¢ = Xor — X

Then the process (x,; ¢ > 0) is, by S,, a process with stationary increments.
Reversing this argument, we can construct large classes of additive processes.

For example, if (y,; ¢ = 0) is any stationary process with finite expectation, it
is immediate that

(1.4.2) X = Ve = s
defines a process satisfying S, (with equality), S, and S,. This example would
seem to rule out the possibility of any general theorems about the local behavior
of continuous-parameter subadditive processes, and interest therefore centres on
the behavior of x,, for large values of t.

It would be nice if Theorem 1 could be generalized to continuous-parameter
subadditive processes, to yield the assertion that

(1.4.3) § = lim,_, X/t

exists for all such processes. Such an assertion would obviously require an
assumption of separability, but might perhaps be expected to be true without
any further conditions. If true, it would have as a special case (when x is addi-
tive) the corollary that, for any separable process (y,; t = 0) with stationary
increments and finite expectations, the finite limit lim,_, y,/t exists with prob-
ability one. Such a theorem does not (as far as I know) appear in the literature,
for the excellent reason that the conclusion is false, and in a very strong sense.

THEOREM 3. Let I'(r) (t > 0) be any positive increasing function. Then there
exists a process (y,; t = 0) with stationary increments and finite expectations, whose
sample functions have derivatives of all orders, such that

(1.4.4) P{ly,| £ I'(r) for all sufficiently large t} = 0.
Proor. Choose a C= function ¢ on R which vanishes outside the interval
(1, 3) and satisfies 0 < ¢(x) < ¢(3) = 1. Let 5, v, vy, vy, - - - be independent

random variables, 7 having a uniform distribution on (0, 1), and the v, having

the same distribution, which attaches mass [n(n + 1)]~* to the integer next above

I'(n 4+ §) forn=1,2,.... Define

(1.4.5) Y, = v, ¢d[v.(t — n)] (nst<n+1;n=0,1,2,...),
Yo=Y,

Then (y,) is clearly stationary, and therefore has stationary increments, and its
sample functions are of class C~. Moreover,

E(ly.]) = E(y) = o E(Y,) ds
= E §}vo¢(v,5) ds
=E (5o ¢(u)du = §§p(u)du < oo .



SUBADDITIVE ERGODIC THEORY 889

However,
P{|y,| < I'(¢r) for all sufficiently large r} .
SP{y(n+ v, — )| < T(n+ $v,™ — n) for all sufficiently large n}

< P{, < I'(n + %) for all sufficiently large n}

=0
by the second Borel-Cantelli lemma, since the v, are independent and
oo oo o 1
TPy, >T(n+ HY = 2o, r=n;(—r——l_-1—) =

Hence (1.4.4) is established, and the proof is complete.
To state a condition under which Theorem 1 can be generalized, define the
oscillation of the subadditive process x on an interval / C T as

(1.4.6) Q= SUP,<rater [Xal -
It is easy to see that, if
(1.4.7) E(Q)) < o0

is true for any non-degenerate interval /, it is true for every bounded interval.

THEOREM 4. If X is a separable continuous-parameter subadditive process satisfying
(1.4.7), then the limit (1.4.3) exists with probability one and in mean, and E(§) = 7.

Proor. Without loss of generality take / = [0, 1], and consider the discrete-
parameter subadditive process

X = (x,585t=0,1,2,...,5<1).
Then y(x®) = lim,_,., n7'E(x,,) = 7, and Theorem 1 shows that the limit
(1.4.8) ¢ = lim, ., n7'x,

(as n increases through the integers) exists with probability one and in mean,
and that E(§) = y. For any ¢, let n be the integer part of ¢, and note that

Xoni1 — Xenp1 = Xop S Xop + Xpp s
so that
xo,n+1 - Q[n,n+l] é Xog < XOn + Q[n,n+1] .

Then (1.4.3) will follow from (1.4.8) if we can show that
(1 49) limn—'w n—lg[n,n+l] =0

with probability one and in mean.
Using S, and separability, the distribution of Q, .., is the same as that of
Q,, so that
E(n—IQ[n,n+1]) = E(”—IQI) -0
and (1.4.9) holds in mean. For any ¢ > 0,
T P(Qp iy > en) = 2m  P(Q, > en)
< cEQ,) < o,



890 J. F. C. KINGMAN

and the Borel-Cantelli lemma proves (1.4.9) with probability one. Hence the
proof is complete.

Comparing the proof with the counterexample of Theorem 3, we see that the
process (1.4.5), divided by ¢, is an instance of the phenomenon discovered in
[7]; a process with continuous sample functions whose discrete skeletons all con-
verge to zero with probability one, but which does not itself converge to zero.

The continuous-parameter ergodic theorem is usually stated (for instance in
[1]) for additive processes of the form

(1.4.10) X, = Vtu(r)de,
where u is a measurable stationary process with finite expectation. For such a
process (1.4.7) is immediate, since

Q, =¥, |u(x)| dz,

so that the ergodic theorem for such processes is a corollary of Theorem 4.
Notice however that (1.4.7) does not necessarily imply continuity of x,, in s or
t (since Q, is not required to be small) and the theorem applies to many dis-
continuous subadditive and additive processes.

2. Applications.

2.1. Percolation problems. The situation which led Hammersley and Welsh
to formulate the notion of a subadditive process was of the following type. Let
% be a connected graph, and suppose that with each edge e = (v, v’) of the
graph there is associated a positive random variable u, = u(v, v'), with finite
mean, the u, for distinct edges e being independent. If v and v’ are any two ver-
tices, and p = (v, = ¥, V), ¥y, - -+, ¥, = V') is a path in & from v to v, define
(211) Up = l:=l u(vr—l’ ’U,.) ’
and denote by U(v, v') the infimum of U, over all paths p from v to v'. The
properties of the random variable U(v, v") are of great importance in various
problems of percolation theory (for details of which we refer to [4]), and their
calculation is usually of great difficulty.

The graphs of interest usually have a certain regularity of structure, at least
to the extent of possessing interesting isomorphisms. By an isomorphism, we
mean a function ¢ from the set of vertices of 2" onto itself, such that ¢(e) =
(¢(v), ¢(v")) is an edge of =’ if and only if e = (v, v') is. If ¢ has this property,
and if v, is any vertex, define a sequence (v,) of vertices recursively by

(2.1.2) v, = 0(V,_,) n=12,...).
Then the random variables
(2.1.3) x,, = U(v,, v,) (5,0 =0,1,2, .- ;5 ¥1)

clearly satisfy (1.1.1). If the random variables are such that u,,, has the same

distribution as u,, then
(Xor1,e41) = (U(e(v,), o(v,)))



SUBADDITIVE ERGODIC THEORY 891

has the same distributions as (x,,), so that S, and S, are both satisfied. Moreover,
S, holds, since for any path p from v, to v,

0 § E(x()n) é E(Up) g 22611 E(”e) < (SO

Hence the theory of Sub-section 1.1 is directly applicable, and we can con-
clude that the limit
(2.1.4) ¢ =lim,_, n*U(v,, v,)
exists with probability one and in mean. The fact that E(§) = y is of rather
little use, since there seems in general to be no way of calculating the constant
7 exactly. However, as was pointed out in a special case in [8], it is often pos-
sible to replace £ by y in (2.1.4) by invoking a zero-one law. For example, if ¢
is such that, for every edge e, and any finite set * of edges of 2 the sequence
(e,) defined by

6’0 =€, en = 9”(%-1)

remains ultimately outside /7, then the invariant o-field .7 will be trivial, so
that P(E fony /) = 1.

2.2. Products of random matrices. A problem attacked by a number of authors

in different contexts is the following. Let Y;, Y,, . - . be random (k x k) matrices,
and define
(2.2.1) X, =YY, .. Y,.

What can be said about the product X, for large values of n? A profound con-
tribution was made by Furstenberg and Kesten [2] who proved among other
results (a slight variant of) the following theorem. As will be seen from the
proof given here, the result is a simple corollary of Theorem 1.

THEOREM 5. Suppose that the elements of the matrices Y, are strictly positive,

n

and that their logarithms have finite expectations. Suppose also that the sequence
(Y,) is stationary. Then the finite limit

(2.2.2) A= lim,  n'log[X,],,
exists with probability one and in mean, and does not depend on i or Jj.
(The notation [.],; stands for the (i, j)th' element of a matrix.)

Proor. If
Zsr = [Y

841

Yx+2 te Yr]n
then, for s < r < u,
Zow = Zfﬂ [Ys-m )’s—}—? e Yt]ly[yt—}—l Yz+2 o Yu]jl

v

72

tu ’

so that
x, = —logz,

satisfies S, of Sub-section 1.1. Since (Y,) is stationary, S, holds, and by assump-
tion x,, has finite expectation g,_,.
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For any matrix 4, write
[[4]| = max; 33; |[A],]
for the £,-norm. Then

Eflog ||Y,||} = E{max, log 33, [Y,];,}

< E{max, ; log k[Y,];;}
< E{X,; (log [Y1];,)*} + log k < o0,
and hence
-9, = E{log ZOn} = E{log HYI Y2 ot Yn[[}
= 2r- Eflog |1y},
so that

infg,/n = —Eflog ||Y]]} > —o0,

and S, is satisfied.
Theorem 1 may therefore be applied to x to show that the limit (2.2.2) exists
when i = j = 1. To deal with the other values of (i, j), note first that

[Xn]ij = [YI]ilzl,n—l[Yn]Ij ,
so that with probability one
lim inf,

n—oo

n~'log [X,];; = liminf, __ n~'log[Y ], + 4
+ liminf,__ n"*log[Y,],; -
The finiteness of E{log [Y,],,} shows (as in the proof of Theorem 4) that the final
term is zero, so that
(2.2.3) P{liminfn=log[X,],; =4} =1.
Similarly, the inequality
Zo s =2 [Yilul X L[ Yasalin >

where X,) = Y, Y, ... Y,,,, shows that

P{limsupn~log[X,'],; <4} =1,
and stationarity allows us to deduce that
P{limsupntlog[X,],; <4} =1.

Comparing this with (2.2.3) shows that (2.2.2) holds with probability one. The
proof of convergence in mean is exactly similar, and the theorem is therefore
proved.

It is not difficult to extend the analysis to cover various cases in which some
of the elements of the matrices Y, may vanish, or (using Theorem 2) where
some of the expectations of logarithms are infinite.

If the matrices Y, are of infinite order, the argument carries through except
that the manipulations of norms may not be available to show that y > —oo.
But in many problems this can be proved in other ways. For example, if the
Y, are infinite stochastic matrices, z,, < 1, so that y = 0.
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2.3. Random products in Banach algebras. At the core of the argument of the
last section is the supermultiplicative property of the diagonal elements of posi-
tive matrices:

(2.3.1) [AB], = [AL[Bl. -

A dual analysis can be based on inequalities expressing subadditivity of matrix
norms:

(2.3.2) 14B]| = []4]] - [1B]] -

Such an analysis carries through in much more general contexts, as the next
theorem illustrates.

THEOREM 6. Let (Y,) be a stationary sequence taking values in a (real or complex)
Banach algebra &5, and suppose that

(2.3.3) E{(log [|Y;[[)*} < oo -
Then
(2.3.4) ¢§ =lim,_ ,ntlog||Y,Y, ... Y|

exists in —oo < & < oo with probability one, and

(2.3.5) E() = lim,_ n'E{log [|Y, Y, - -- Y,|[} -

n—00

Proor. If
Xy = log ”Ys+1 Ys+2 ttt Yt” >

then (2.3.2) implies that x = (x,,) satisfies S;, S,and S;. The result then follows
from Theorems 1 and 2.

If the Y, were all equal to a nonrandom element y of <7, then ef would be
the spectral radius of y. Thus ef could be regarded as a stochastic spectral radius
for the sequence (Y,). In particular, if the Y, are independent, and if = denotes
their common probability distribution, then e is a constant p(x) depending only
on . Hence we have a way of defining a “‘spectral radius” p(r) for a probability
measure  on %.

If < is the algebra of (k x k) matrices, endowed with any matrix norm, then
Theorem 6 reduces to another result of Furstenberg and Kesten [2]. In particu-
lar, if the elements of Y, are positive,'the limit £ can be identified with the limit
2 of Theorem 5. This identification depends critically, however, on the finite
order of the matrices. For example, if <7 is the algebra of infinite matrices
with finite £,-norm, then it will be true that 2 < &, but strict inequality can
occur (cf. [6]).

2.4. Random permutations. A quite different application of subadditive ergodic
theory has been made by Hammersley [3] to a problem of Ulam. Let &/, be the
group of permutations of {1, 2, ---, n}, and define /(x) for = € .5, to be the
length of the longest ascending sequence in x; the largest integer k for which
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there exist integers i, i,, - - -, i, with

1§i1<i2<"'<ik§”’ ﬂ(il)<7c(i2)<"'<”(ik)'

It is required to discuss the distribution of /() when 7 is drawn at random from
a uniform distribution on &, and to do this especially when » is large.
Hammersley attacks this problem by a most ingenious device. He first con-
structs a Poisson process II of unit rate in the plane, and defines /,, for 0 < s < ¢
to be the length of the longest ascending path with vertices in II lying in the
square R,, with vertices (s, s), (s, 1), (¢, $), (¢, ). More explicitly, /,, is the largest
integer k for which there exist points (x,, y;) (i = 1, 2, -- -, k) of II with

S<x1<x2<"'<xk§t, s<y1<y2<“'<yk§t'
Then it is immediate that
lsuglxt"}—ltu (S<f<ll),

so that —1 = (—1,,) satisfies (1.1.1). It is in fact easy to check that —1 is a
continuous-parameter subadditive process, that it satisfies (1.4.7), and that its
invariant o-field .~ is trivial (since the shift of II along the diagonal is ergodic).
Hence Theorem 4 implies the existence of an absolute constant ¢ such that

(2.4.1) lim, ... I/t = c,

with probability one.
Now let z(n) be the smallest value of ¢ for which the square R, contains n
points of II. By the strong law for the Poisson process,

lim,_ n/t(n)? =1

n—00

with probability one, so that (2.4.1) implies that
(2.4.2) lim,_,n 4, ., =c

with probability one.

In terms of II, we can define a random element =, of .5, as follows. Let the n
points of ITin R, ., be written as (x,, y;), where 0 < x; < x, < - -+ < x, < 7(n).
Then =, is to be the unique 7 € .5, such that

Ve < Ve < 00 < Vaim -
It is clear that
lOr(n) = I(Hn) >
and hence (2.4.2) shows that
(2.4.3) lim,_, n~¥(z,) = ¢
with probability one.
The properties of the Poisson process imply that, for each n, the distribution

of n, is uniform over .. Since convergence with probability one implies
convergence in probability, and since this latter property is an attribute of the
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marginal distributions of the x, alone, it follows that (2.4.3) holds in probability
whenever a sequence (z,) with 7, € &, has the property that each =, is uniformly
distributed. ‘

THEOREM 7 (Hammersley). Let =, be a random permutation uniformly distrib-
uted over 5/,. Then, as n— oo, n~t(x,) converges in probability to the absolute
constant c.

The obvious question is: what is the value of ¢? Hammersley in [3] shows
that ¢ must satisfy {7 < ¢ < e, and his arguments may be refined to give the
following bounds. (Dr. Hammersley tells me that he now has a quite different
technique which lends support to the hypothesis that ¢ = 2.)

THEOREM 8. The constant c in (2.4.3) satisfies

(2.4.4) @t <c<p,
where 8 = 0% 4 0%, and 6 is the unique positive root of
20
log (1 0) = ——.
gl +9) ="
Thus
(2.4.5) 1.59 < c<249.

Proor. Choose a sequence (x,, y,) of points of II as follows: (x,, y,) is the
point of II with the smallest value of x + y subject to x > 0, y > 0, and for
r=2, (x,, y,) is the point of Il with the smallest value of x 4 y subject to
X> X, 4,y >y, Then

Oy <x< - ee, 0<y1<y2<,
so that, if #(n) = max (x,, y,),
=n.

lOt(n) =

Now the differences x, — x,_; are independent and identically distributed, with

mean
o o xe"t= 0 dx dy = (z/8)} .

Hence by the strong law,
lim,_. x,/n = (z/8)},

and likewise
lim, ., y,/n = (z/8)*,

so that
lim,_,, t(n)/n = (z/8)},

with probability one. Therefore
¢ =lim,__ I, /t(n) = lim,__ n/t(n) = (8/7)t > 1.59.

To prove the reverse inequality, let k be any positive integer, let 7 be drawn
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from a uniform distribution on &, and let v be the number of sequences
<< -or < Znwithz(i) < 7(iy) < --- < n(i,). Then
E(v) = Zi1<i2<~--<ik Plr(i) < w(y) < -+ < 7(iy)}
= (@)K~

However, if I/(r) > k, there is an ascending sequence of length /(x), and each
subsequence of length k is ascending, so that

P) g (l(klr)) R
In particular, since (;) is non-decreasing,
(2.4.7) P{l(z) = r} < (K (DI (r=k).
Now let n — co, k — co, r — oo in such a way that

k ~ ant r ~ fnt
where 0 < a < 8 < oo.
Then Stirling’s formula shows easily that
P{l(z) = pnt} -0

as n— oo if

(2.4.8) 20 + (B — a)log(f — a) —aloga — Blog < 0.

Hence ¢ < g if a can be chosen to satisfy (2.4.8). It is easy to check that the
infimum of the values of 8 with this property is the number 3 defined in the
statement of the theorem, and the proof is complete.

If the random permutations x, happen to be defined on the same probability
space, the question arises whether Theorem 7 can be strengthened to yield con-
vergence with probability one. Equation (2.4.3) shows that this can be done
when the 7, are constructed from the Poisson process II, but this is by no means
the only way in which they might arise,

To take one example, let z, (n = 1, 2, 3, - - .) be independent random variables
with a common continuous distribution (whose form does not affect the prob-
lem). Let 7, be the unique permutation = € &, such that

(249) Zr1) < Z7z(2) < ce < Zam)

Then =, is obviously uniformly distributed over &, so that n~}/(x,) — c in prob-
ability; it is not known whether convergence takes place with probability one.

The obvious ways of defining the x, on a common probability space all have
the property that L(n) = I(r,) is non-decreasing, and when this is true one way
of arguing might be as follows. Let « be any positive constant, and let r = r(n)
be the largest integer with »* < n. Then

L(r) = L(m) = L((r + 1)),
where L is defined for nonintegral arguments by linear interpolation, so that

lim sup L(r<)r-#* < lim sup L(n)n=* < lim sup L((r 4+ 1)<)(r + 1)~#,



SUBADDITIVE ERGODIC THEORY 897

and the same with “lim sup” replaced by “lim inf.” Since

(r 4 1) ¥ ~ rie
this shows that

(2.4.10) P(lim, ., L(nn~t = ¢} = 1

n—00

will follow from

P{lim,_, L(r)r ¥ =c} =1.

7—00

Hence, by the Borel-Cantelli lemma, (2.4.10) will follow if we can prove that
> PUL(r) — ort| > ert*} < oo .

In particular, if

(2.4.11) P{|L(n) — cnt| > ent} < An~?

for positive constants 4, ¢ (perhaps depending on ¢), then almost sure conver-
gence will follow (taking £ > 4).

Exactly similar arguments yield one-sided inequalities. For example, the
explicit bounds which follow from (2.4.7) by Stirling’s formula show that, so
long as the sequence (z,) is defined so that {(#,) < /(x,,,), then

(2.4.12) P{lim sup, _,., nHz,) < B <249 =1.
3. Problems.

3.1. The constant y. Pride of place among the unsolved problems of subaddi-
tive ergodic theory must go to the calculation of the constant ; (which in the
presence of a zero-one law is the same as the limit £). In none of the applica-
tions described here is there an obvious mechanism for obtaining an exact
numerical value, and indeed this usually seems to be a problem of some depth.

Of course, it may well be possible (as in the argument of Sub-section 2.4) to
derive bounds for y. For example, (1.1.5) shows that

(3'1‘1) 7§gn/n

for any n, and for small values of n it may be possible explicitly to compute
this bound. In the other direction, it should be noted that, if x is a given sub-
additive process, and if we can construct an additive process with

(3.1.2) X Z Yt s
then
(3.1.3) 7(x) =z 7(y) = E(yg) -

The representation (1.2.6) shows that this lower bound is potentially sharp,
though it may not be possible explicitly to compute an additive process y attain-
ing equality in (3.1.3).

3.2. Rate of convergence. How fast does the convergence of x,/t to § take
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place? In the additive case it is of course possible to assert, under suitable
conditions, that

t—i(xm - ét) .
has an asymptotically normal distribution and is of order (log log #)! as t — co.
Presumably such conclusions hold also for subadditive processes which do not
deviate too far from additivity. No significant general results in this direction
are known, though there some first steps in [4].

3.3. Characterization problems. An interesting feature of Theorem 1 is that it
derives a result about the one-parameter process (x,) from assumptions about
the two-parameter process (x,). This suggests the question: given a process
(x;; ¢ = 1), under what conditions does there exist a subadditive process (x,,)
with x, = x,, for all #?

A similar question is: given a general process (x,,), under what conditions are
there subadditive processes x’ and x” with x,, = x], — x/;? Likewise, given a
one-parameter process (x,), when do there exist subadditive processes x’ and x”
such that x, = x{, — x{;?

3.4. Structure problems. If, for any i in an arbitrary index set /, we have an
additive process a’ (defined on a probability space independent of i), then
(3.4.1) Xy = SUP;e; @y,
defines a subadditive process so long as E(x,) < oo. Conversely, if x is a sub-
additive process, does it admit a representation (3.4.1) as a supremum of additive
processes? More concretely, if {a'} consists of all the additive processes with
a, < x, for all s < ¢, is (3.4.1) true? (Certainly, if %,, denotes the right hand
side of (3.4.1), X is a subadditive process with X < x, (%) = r(x).) Questions
like this are crucial to an understanding, for instance, of the non-uniqueness of
the decomposition (1.2.6) (cf. [8]).

When studying such problems from the point of view of ergodic theory, one
encounters questions like the following. With each point ¢ of the unit interval
is associated (in a reasonably measurable way) a subset E, of [0, 1]. When does
there exist a measure-preserving transformation T of [0, 1] with Tre E, for
almost all 17 An obvious necessary condition is that, for any Borel subset B of
[0, 1], the measure of |J {E,; t € B} should not be less than that of B. By analogy
with Hall’s theorem on distinct representatives, one might expect this condition
also to be sufficient; I am indebted to Professor W. Parry for pointing out that
life is more complicated than I had expected.

3.5. Independent subadditive processes. Hammersley and Welsh noted that
some significant subadditive processes have the property that, for 0 = ¢, <
<1, < -+ < t,, the random variables

(3.5.1) x (r=1,2,.-,n)

r—1'r

are independent. For example, in the problems of Sub-sections 2.2 and 2.3,
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this will be the case when the elements Y, are independent. An immediate
consequence is that _# is trivial, so that £ = y. But there ought surely to be
more weighty consequences of such a strong condition.

Let x be a nonnegative subadditive process for which the variables (3.5.1) are
independent. For any § > 0, s < 1t < u,

E{exp(—0x,,)} = E{exp(—0x,,) exp(—0x,,)}
= Elexp(—0x,,)}E{exp(—0x,,)} .
Moreover, E{exp(—#6x,,)} depends only on (¢ — s), whence it follows that
(3.5.2) W) = lim,_,, n~* log E{exp(—6x,,)}

exists. What properties has the function ¥, and to what extend does it enshrine
information about the process x?

These are only a few of the questions which one might ask about the theory
described in this paper. Other problems may be found in [4], and yet others
will occur to the reader.
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