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ON CONSTRUCTIVE CONVERGENCE OF MEASURES
ON THE REAL LINE!

By Y. K. CHAN
University of Washington

N

This is a discussion how Lévy’s Continuity Theorem can be proved
without idealistic compactness arguments, and how it can then be used to
give constructive proofs to some limit theorems.

Modern probability theory, as opposed to the classical works including those
of Lévy and Wiener, contain theorems which are devoid of numerical content,
despite their elegance and power. This perhaps reflects the prevalent situation
in mathematics in general. But one certainly expects a discipline so application
oriented to be more computational.

As elucidated by Brouwer and more recently Bishop, the source of non-
constructivity lies in the unrestricted use of the principle of the excluded middle
in order to avoid honest (and sometimes hard) constructions.

It has often been argued that platonic theorems, non-constructive as they are,
are first steps to obtain constructive versions. The fact is that they are steps in
the wrong direction. Never has a purely idealistic proof contributed anything
towards the construction.

When a constructivist looks at theorems already in existence, the most inter-
esting ones are perhaps those whose computational intents are so vague that
finding the proper constructive interpretation alone poses challenging questions.
Nonetheless, it is perphaps illustrative to look at some examples where the nu-
merical interpretation is clear cut, and compare a classical (i.e., idealistic) proof
to a constructive one. One such example concerns the convergence of measures
on the real line.

Suppose one wants to prove that a sequence of probability measures p, on R
converges vaguely to a limit p, i.e., p,(9) — p(g) for all bounded continuous
function g on R. One way is to prove that (A) every subsequence of p, contains
a convergent subsequence, and that (B) the limits for all the convergent sub-
sequences must be the same. Suppose we have such a proof. Take a specific
bounded continuous function g and a positive real number . Armed with the
proof, one sets out to find an integer n, such that |u,(9) — p,.(9)| < ¢ for all
m, n = n,. But no matter how closely the proof is examined it does not provide
this integer. So this proof, that the limit exists, does not mean a prescription
for the construction of the desired integer ny(¢, g). It means something else. (It
is unclear what that something is.) It is not hard to see why this proof is
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non-constructive. Indeed, statement (A) is proved by showing that it is equiva-
lent to the statement (C) that every bounded sequence of real numbers has a
convergent subsequence. But a constructive proof of (C) would yield a finite
routine to prove or disprove all statements of a certain type, Fermat’s last
theorem included (see [1]).

A second way to prove vague convergence p, — s is to prove that the charac-
teristic function (Fourier transform) f, of x, converges to some f and then use
Lévy’s Continuity Theorem to conclude that 2, must converge to some p which
has characteristic function f. The question, then, is whether there is a construc-
tive proof for Lévy’s theorem. If one examines the proofs given for Lévy’s
theorem in the standard textbooks, one finds that they are of the first kind
described above! ([2] and the references there.) Fortunately, on the other hand,
Lévy’s original proof in terms of a metric (now known as Lévy’s metric) on
distribution functions ([5] page 199) is constructive. A reformulation of Lévy’s
theorem is given below.

LEMMA. Let f, and f,, the characteristic functions of p, and p, respectively, have
the common modulus of continuity y. Let g be a continuous function on R satisfying
l9| < 1, and having modulus of continuity 8. Then for every ¢ > 0, there exist posi-
tive numbers 0 and 0, depending on ¢, f3, y and otherwise independent of p,, p,, f1, fo
and ¢, such that

|1a(9) — ()] < e
provided
i =fil <9 on [—0,0].

(For a continuous function g on R, a modulus of continuity 8 means an
operation which assigns to every ¢ > 0 and @ > 0 a real $(¢, @) > 0 such that
lg(x) — 9(y)| < ¢if |[y| £ a, |x| £ aand |x — y| < B. If the continuity is uni-
form, B is independent of a. Thus, since characteristic functions are uniformly
continuous, y is understood to be dependent only on ¢.) The lemma contains
the essence of Lévy’s theorem. To be precise, let p, be a sequence of probability
measures on R whose characteristic functions f, converges uniformly on compact
intervals to the function f. Let r be the rate of convergence, (i.e., an operation
assigning to every given ¢ > 0 and @ > 0 a positive integer r(e, a) such that
|[fw — ful < ¢ On[—a, a] whenever m, n = r). Let y denote a common modulus
of continuity for the functions f,. (The functions f, must be equicontinuous.
They certainly are equicontinuous on [—1, 1]. Thus if 4 is small enough, one
can make § (1 — cos kx) dp,(x) = |Re(f,(0) — f,(k))| arbitrarily small uniformly
over n. Equicontinuity then follows from

/() = fult + B = [§ (e — e 0%) dp,(x)]

< § 1 — e[ dp,(x)

§ (1 — cos hx) dp,(x) + § |sin Ax| dp,(x)

§ (1 — cos hx)dp,(x) + ¢ + ¢ § (1 — cos hx) dp,(x) .
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The last inequality can be proved for all ¢ > 0 by elementary means.) Let g be
a continuous function R satisfying |g| < 1 and having modulus of continuity 3.
Then the lemma can be used: for every ¢ > 0

1m(9) — £1a(9)] <'e
whenever m, n = r(d(s, B, 7), 0(s, B, 7)). In particular s, converges vaguely to
some probability measure ¢ on R. This is Lévy’s theorem.

A sketch of an elementary proof of the lemma is as follows. First, the prob-
ability measure p, puts almost all its mass in some finite interval [—a, a]. On
this finite interval, the integral of g with respect to p; is close to that with respect
to the convolution y, x ¢, (Where ¢, is the normal density (2xr)~te~*/*"), provided
that r is small enough. So it suffices to prove that the integrals of g on this
interval with respect to p, x ¢, and g, * ¢, differ by very little. This is easy
because g, * ¢, has a density conveniently expressed in terms of f; ([4] page 507).
So all that is necessary is to make sure that f; and f, differ very little where they
should. Following these steps, one can find d(e, 8, y) and 6(s, 8, 7).

Lévy’s theorem is easily generalized to the case when p, are nonnegative
measures on R (not necessarily with equal total mass). Suppose f, — f on com-
pact intervals. Classically one would first determine whether f(0) = 0 or f(0) > 0.
In the first case, the total mass f,(0) = p,(R) converges to 0 and so p, trivially
converges to the 0 measure. In the second case, one would consider f,/f.(0)
which are the characteristic functions for probability measures. Now since the
dichotomy f{0) = 0 or f(0) > 0 does not hold constructively, one has to use a
little care. But the argument is essentially the same. Let ¢ > 0 and let g be a
continuous function with |g| < 1. One does have the ‘“dichotomy”: either
f(0) < ¢/2 or f(0) > 0 ([1] page 24). In the first case there exists n, such that
the total masses f,(0) < ¢/2 if n = n,, which implies that |,(9) — r.(9)] < ¢ if
n, m = n,. In the second case Lévy’s theorem is applicable to f, /f,(0) and yields
an integer n, such that |z, (9) — p.(9)| < ¢if n, m = n,. Combining, we see that
t.(g) converges; i.e., p, converges vaguely.

Now consider two examples where Lévy’s theorem is used. The first is the
simplest version of the Central Limit Theorem. Let X, be a sequence of inde-
pendent identically distributed random variables which have first moment equal
to 0 and a finite second moment ¢? > 0. Then the Central Limit Theorem asserts
that the properly normalized partial sum (X; + --- + X,)/nts has probability
measure converging vaguely to the normal distribution. (The probability meas-
ure yu, associated with a random variable X is defined by p,(9) = E(g9(X)) for
all bounded continuous function g.) One should of course be careful to inter-
prete the hypothesis constructively. “X has second moment” means “X? is
integrable” and not “E(X?) = oo implies a contradiction.” One needs not go
into details of constructive measure theory here. It suffices to say that the
integrability of X* implies the existence of an operation r(¢) such that

E(X% X*> ) < ¢
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similarly for the first moment. Under this circumstance, one can prove that
0.2
fiy=1— 7t2 + o(t%) .

It should be emphasized that as r — 0 the expression o(t%)/f* converges to zero
in the constructive sense—the rate of convergence for o(r*)/t* comes from the
operation r.

In view of the independence of X, the normalized partial sum (X, 4 - - - 4 X,)/n
has characteristic function

t n tZ t2 n
M) =11 =20+ oGt

which converges on compact intervals to e=*%, the characteristic function for the
normal probability measure. Lévy’s theorem now applies to yield the Central
Limit Theorem. Thus, given a bounded continuous function g and a positive
¢ > 0, one can tell how large n must be in order for E(g((X, + - -+ + X,)/na))
to differ from (27)~* § g(x)e~*** dx by less than ¢—one starts with the operation
r and eventually produces an integer n, so that every n > n, is large enough.
This proof is of course well known. The point is that n, can be computed now
that Lévy’s theorem is constructive.

The second example concerns an infinitely divisible distribution, i.e., a prob-
ability measure z2 on R with the property that for every ¢ > 0 the characteristic
function f can be written in the form

f: Hffj
when f,, - .-, f, are characteristic functions with |I — f;] < e on [—e™', ¢7'].
The characteristic functions for infinitely divisible distribution are characterized
by the Lévy-Khintchine formula

1 1 — ity 4 §oa (e — 1 = )L Ly
M) og fit) = ity + 5. (e ) e

when 7 is some real number and G is a finite, nonnegative measure on R. Given
f(¢), consider the analytic proof for the existence of G and y in ([3] page 134).
First, for every ¢ > 0, a real number 7 and a measure G, on R whose total mass
is uniformly bounded in ¢ are constructed satisfying

. w (i it 1+ 2

2)  log f(t) = ity + §=. <e —1- ﬁ) LEL A6 () + o, (1)

where o, ,(1) — 0 uniformly on compact r-intervals as ¢ — 0. Up to this point
the proof is constructive. Then the compactness argument (A) described at the
beginning of this paper is invoked to select a subsequence of G, which converges
to some G. It follows from (2) that the corresponding subsequence of y, converges
to some 7 and the Lévy-Khintchine formula is satisfied by G and y. This
measure G is later shown to be unique. As observed earlier, such a proof is not
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constructive. For example, the proof does not indicate a routine for finding the
integral of a given bounded continuous function g with respect to the measure G.
But the use of Helly’s Theorem (A) is really not essential. Modifying the unique-
ness proof given in ([3] page 134) and using Lévy’s theorem, one can obtain a
constructive proof, as follows. Subtract from (2) its average on [t — 1, ¢t + 1]:

(3)  log f) — 4 5itlog fis) ds = §=a et (1+ 04 LE LG 2y + o1 1)

= (=, e dH () + o, (1) .

From this we see that the characteristic function of H, converges (uniformly on
compact r-intervals) as ¢ — 0. So Lévy’s continuity theorem can be applied to
yield the desired limit H for H, and the corresponding limit G for G.. In par-
ticular, if one desires the integral G(g), one can compute a small enough ¢, and
G (g) will be a good approximate to G(g).
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