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WEAK CONVERGENCE OF GENERALIZED U-STATISTICS!

By PrANAB KUMAR SEN
University of North Carolina, Chapel Hill

Wichura (1969) studied an invariance principle for partial sums of a
multi-dimensional array of independent random variables. It is shown that
a similar invariance principle holds for a broad class of generalized U-
statistics for which the different terms in the partial sums are not inde-
pendent. Weak convergence of generalized U-statistics for random sample
sizes is also studied. The case of (generalized) von Mises’ functional is
treated briefly.

1. Introduction. Let {X,,i>1}, j=1,.--.,¢, be ¢(= 2) independent se-
quence of independent random vectors (irv), where X, has a distribution
function (df) F,(x), x e R?, the p (= 1)-dimensional Euclidean space, for j =
1, ...,c. Letg(X;,i=1,...,m;j=1,...,c)be aBorel-measurable kernel
of degree m = (m,, -- ., m,), where we assume (without any loss of generality)
that g is symmetric in the m; (= 1) arguments (vectors) of the jth set, for j =

1, --,c. Letmy=m, 4 .- + m,F = (F, - .-, F,), and consider a functional
of F
(1'1) 0(F) = SR‘""O e S g(xn’ R} xcmc) H§=1 H:’;Jl dFj(xji)

defined on & = {F: |0(F)| < co}. O(F) is called an estimable parameter or a
regular functional of F over & .

For a set of samples of sizes n = (n,, ---, n,) withn, > m;, 1 <j<c, the
generalized U-statistic for 6(F) is defined by

(1.2) UM = [Tia ()7 26 9 X @ =i, - lmp 1 S J S0,

where the summation ) %, extends over all 1 <i; < --- < lim; < N 1<
J < c. For various properties of U(n), including its asymptotic normality, we
may refer to Fraser (1957) and Puri and Sen (1971), among others. For the
asymptotic normality, it is assumed that O(F) is stationary of order zero [i.e.,
(2.3) holds] and essentially

(1.3) lim, . n;/n=2;:0<4; <1, j=1,--,c,

where n = n, + ... + n,. Weak convergence of a stochastic process derived
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from the tail sequence of one-sample U-statistics to a Wiener process has been
studied by Loynes (1970), while Miller and Sen (1972) consider a Donsker-type
invariance principle for one-sample U-statistics. They show that a process
derived from {U([k4,], - - -, [kA,]), k < n} converges weakly to a one-dimensional
Wiener process. The more general and natural case of a c-dimensional time-
parameter where we use the entire set {U(k): m < k < n) (or the entire tail set
{U(k): k = n}) is considered here, and it is shown that weak convergence to
appropriate multi-dimensional Gaussian processes hold under no extra regularity
conditions; here a < b means that g, < b, for all 1 <i<ec. It may be noted
that for ¢ > 2, the ordering of n is not defined, and as a result, the treatment
of Loynes (1970) or of Miller and Sen (1972), resting on the reverse martingale
property of U-statistics, does not work out. Also, as is usually the case with
generalized U-statistics, U(n) in (1.2) involves a set of summands which are not
all stochastically independent. Thus, Theorem 2 (or its Corollary 1) of Wichura
(1969) does not lead us to the desired result. The task is accomplished here
by first extending Theorem 1 of Wichura (1969) to more general summands,
and then using a decomposition of U(n) which fits into this extension.

The preliminary notions and the basic theorems are considered in Section 2.
The proofs of the theorems are presented in Section 3. The case of generalized
von Mises’ (1947) functionals is treated in Section 4. In the last section, the
case of random sample sizes is also considered. The results are useful in the
developing area of sequential inference based on generalized U-statistics.

2. Statement of the main results. Foreveryd;: 0 <d, <m;,,1 <j<c,let
(21) gdl...dc(xﬁ, i=1, ..., d]_’ 1 é] < C)
= E{g(le, ey, xjd" dej"'l’ e, X

J

1)< o),
so that gy.., = 6(F)and g, ., ( ) =g¢( ). Let then
(2.2) Capra,(F) = EGG.0(Xjio 1 ST d;, 1 S <€) — 0%F),
so that {,.. (F) = 0. We assume that

(i) 6(F) is stationary of order O, i.e.,
(2.3) o} = mjzc‘,jl,,,,,].c(F) >0 forevery 1<j<e¢,
(where d,, = 1 or 0 according as @ = b or not), and

(ii) g is square integrable, i.e.,
(2.4) le""’"c(F) < co i.e., gel?.
Later on, we shall see that (2.3) may be replaced by max, ., ¢, > 0, and the
necessary modificationsare trivial. We know that forn; > m;, 1 < j < ¢, under
(1.3), (2.3) and (2.4).
(25)  rm) = VUMm) = 154G Zike -+ - Do [ {030 ... (F)

= Dm0 4 O(n), n=mb o o,
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Let now E, = [0, 1]° be the c-dimensional unit cube in R°, t = (#,, - -+, t,) € E,,
and let [nt] = ([n,4,], - - -, [n,1,]) where [s] denotes the largest integer < s. Then,
for every n (= m), we define a process W(n) = {W(t; n): t ¢ E,] by letting

(2.9) W(t, m) = ¢([nt]; n)[U([nt]) — O(F)],

V[nt] = m, and O, otherwise,
where for k = (k,, ---, k), k; >0,j=1, -, ¢,

(2.7) Gk, n) = n7H (X5, 0;2) (D51 0,4,k

so that ¢(k, n) is n~* times a harmonic mean of k,, ..., k,. Consider now ¢
independent copies of a standard Brownian motion on [0, 1] and denote these
by W, ={Wy(1):0<t< 1}, j=1, ..., c. Finally, the space D, = D{[0, 1]}
of all real functions on E, with no discontinuities of the second kind and
associated (extended) Skorokhod Ji-topology are defined as in Neuhaus (1971).
Then, we have the following.

THEOREM 2.1. Under (1.3), (2.3) and (2.4), W(n) converges in law in the
extended Skorokhod J,-topology on D, to a Gaussian function W = {W(t): te E },
where

(2.8)  W(t) = (X521 0,4 D51 0,477 ) Dsar 04,71, Wi(e)], £ > 0,
= 0, with probability 1,if t; =0 forsome j:1<j<c.

We define a process W*(n) = {W*(t; n); t e E,} as follows. Considering the
tail set {U(k): k = n}, let

(2.9) W*(t; n) = r=Y(n)[U([n/t]) — 6(F)], tek,,
where [n/t] = ([n,/1], - - -, [n,/t,]). Let then

(2.10) W= (W oo W) s wy = 0,4, (D50 A) 7 lsj=se;
(2.11) w(t) = (Wy(t), ---, W()), teE,,
where the W (1) are defined earlier, and let

(2.12) W* = {W*(t): te E}; W*(t) = wW(t), tek, .

THEOREM 2.2. Under (1.3), (2.3) and (2.4), as n — oo,
(2.13) W*(m) —_ W*, in the Skorokhod J;-topology on D.,.

Theorems 2.1 and 2.2 provide multi-sample extensions of the weak con-
vergence results of Miller and Sen (1972) and Loynes (1970), respectively.
Related results on von Mises’ (1947) functionals are considered in Section 4.

3. Proofs of the theorems. For simplicity of the proofs, we explicitly con-
sider the case of ¢ = 2; an essentially same but more laborious proof holds for
general ¢ (= 2). First, we consider certain basic lemmas needed in the subse-
quent steps of the proof.
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Let 2,9 be the o-field generated by {X,, --., X, } for n>1, 1 Zj=Z ¢
%, m denote the product g-field Z,) x Z» for n; = 1, n, = 1. Further, let

S = S(Xyp, -+, Xygy Xygy -+, Xyr), fori, i > 1, be a sequence of random vari-
ables such that

3.1) E(S;;| <2,) = S,; a.e. (almost everywhere)
foreveryi > " > 1 and j > 1, and for every j=j =1,n 21
3.2) ESy | 27) =S ae.,

"1 19
where S, = (S,;, - -+, ;) for k > 1, j > 1. Finally, assume that for every
i>1,j>1,

(3'3) E(Sij) =0, “?j = E(ng) < oo.
LemMA 3.1. Under (3.1), (3.2) and (3.3), for every n, > 1, n, > 1,

b

(3.4) E[(max, g, g, max,g;g,, [S;)"] < 160,

ng M

Since Doob’s ((1953) page 317) inequality holds for nonnegative submartin-
gales, the proof of the lemma follows precisely on the same line as in the proof
of Theorem 1 of Wichura (1969), and hence, the details are omitted. The
extension of (3.4) for a general ¢ (= 2) is immediate; we need to replace 16 by
4cand o, , by E[S Xy, -+, Xy oo oy Xy oo, X))

Consider now a two-sample U-statistic U,.., and denote by ri(n, n) =
Var (U,,,); note that by (2.5), r¥(n,, n,) is non-increasing in each of n, and n,.

LEMMA 3.2. Forevery N, =z n, =m; (> 1),j=1,2,

E[(max, <,sx, max,, < sv, 7 (M )| Uiy — Upy, — Uy, + Uy,
16r=(ny, m)[r¥(ny, ny) — ri(ny, Ny) — r(Ny, mg) + ri(N,, N,)]
16, uniformly in  N(= n,) and Ny(=n,).

(3.5)

IA 1A

Proor. Foreveryr>1, s> 1, we let

(3.6) AN = U, U

1—7+1Ng—s+1 Ny—rNg—s+1 — UN1—7'+1N2—3 + UN1—7N2—8 ’

so that for every  <i <N, —n, 1 <j< N, — n,,

— 3 j (N{Ng) __
(3.7) Sii = Yoy i Y = U, —itivg—iv1 — Uy _ipan
1 2 1 2

. - UN1N2—j+1 + UN1N2 *
Let, now &, be the g-field generated by the unordered collection (X5 - -
X;,}and by X, .\, X5 --+,j=1,2, and & un, be the product g-field Gy x
&2 for ny = my, n, = m,. It follows by standard arguments that E( Ui | € i) =
U, a.e. for every k < k' and ¢ < ¢’. Consequently, it follows by some rou-
tine steps that forevery 1 <i < N, — n,, 1 < j =< N, — n,,

(3.8) E(S,;|Z8) =S, ae., r<i,
(3.9) ES§), | C % i) = S§l, ae., iz,

Nyi—ng Ni—m
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where &} =&, 1<k<N —n, 1 <g=<N,—ny, and S, = (S, - - -,
S,,), for k =1, j = 1. Further, by (3.7), E(S;;) =0 for all i> 1, j> 1.
Finally, % is 1 in k and 4. Consequently, the same proof as in Lemma 3.1

holds, and (3.5) follows by noting that by (3.7),
(3.10) E(S% = ri(ny, ny) — ri(n;, Ny) — r’}(Ny, ny + r*(N,, Ny)

< r{n, n for every N, >n, N, = n,,
= 15 Ny y 1= Ny Ng == Ny

1_”1N2_"2)

as r’(i,j)is | iniandj. []
We further note that {U,,,, ©"y,; m = k = N,} has the reverse martingale
property, so that by reversing the index set, we obtain that

(3.11)  E[(max, oy, 77, N)|Upy, — Unyw)|)’]
< 4r7¥(n,, Ny)[r¥(n,, N,) — r’(N,, Np))] < 4,
uniformly in N, = n,, N, = n,. Similarly,
(3.12) E[(max,, <, <v, r(Ny, ”2)|UN1q - UN1N21)2]
< 4r3(Ny, ny)[r(Ny, ny) — r’(Ny, Ny)] < 4,
uniformly in N, = n,, N, = n,. Finally,
(3.13) El[Uy,y, — O(F)] = ri(Ny, Ny) < r(m, )

uniformly in N, > n,, N, = n,. Hence, by Lemma 3.2, (3.11), (3.12), (3.13),

the c,-inequality and the Chebychev inequality, we obtain that for every ¢ > 0,
there exists a positive K, (< co), such that for every N, = n;, N, = n,,

(3.14) P{max, <, <y MaX, < <y, |Upy — O(F)] > r(ny, n)K .} < e,
and hence,
(3.15) P{supya U, — O(F)| > r(mK} < e.

We now consider a typical decomposition for U(n). Let us write Ug(n) =
6(F) and for k = 0,
(3.16) U(m) = Ziizo Do (=D 2@)@) Vae,m)s 0=k =m,
where for 0 < d, < m, and 0 < d, < m,, we have

(3.17) Uga, () = T15-1 (G) 7' D6 Yaq(Xiesp 1 Si=dp 1 =)= 2),

where the summation Y%, extends overall 1 < a;; < -+ < ay, =m,j=1,
2. Then, by (1.2), (3.16), (3.17) and a few routine steps, we obtain that
(3-18) Un) = X7, 2k GG U m)

where each U, *(n) (0 < k < m) is a generalized U-statistic. A few readjust-
ments lead us to

(3.19) Um) = 0(F) + Ui(ny) + Uy(ny) + 274 23k @En@E)Ug*(n)
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where

(3.20) U(n) = G Sk, (Imo(Xrips - - Xliml) — 0(F)],

(3.21) Uy(n,) = (;22)_1 ity [g0m2(X2i1’ SRR X2im2) — 0(F)]

and the summation 2y extendsoverall 1 <i < -+ < I, S nj j=1,2.

We first consider the proof of Theorem 2.2 which is relatively simpler. We
write [by (3.19)]

(3.22) . U*(n) = [U(n) — 6(F)] — Uy(n,) — Uy(n,)
= LIk 2L G)E) U (),
where Ug*(n) is a generalized U-statistic for which
[P = E[U*(m)]* = r¥(n) — E[Uy(n)]’ — E[Uy(n,)]’

(3:23) = G)TG)T ZiL Dk G)EICa) G i) oy, (F)

= n,7'n, " mPm2C(F) 4 O(n~%).
Thus, from (2.5) and (3.23), we note that under (1.3),
(3.24) r¥(n)/r(n) = O(n~?%),

and hence, using (3.15) for {U,*(k), k > n) and (3.24), we conclude that for
every ¢ > 0 and 5 > 0, there exists an n[ = ny(e, 5)], such that for n > Ny,

(3.25) Pisupyzq [Us*(K)| > 7 - r(m)} < <.

Therefore, under (1.3), (2.3) and (2.4), as n — oo,

(3.26) SUPy o, ()| U(K) — O(F) — U,(k)) — Uyk,)| —,0.

Let us now define for each j (= 1, 2),

(3.27) W*(t, ny) = o, 'n2U([n;/1]), O0<t<1, and 0 for +=0,
(3.28) win) = r'(m)o;n;~t.

Then, from (2.9), (3.26), (3.27) and (3.28), we obtain that

(3.29) SUPe | WH(t; ) — 235 wi(m)W *(1;, n;)| —, 0 as n—co.
Now, by (1.3), (2.5), (2.10) and (3.28),, we obtain that

(3.30) lim,_,w;mn) =w, for j=1,2.

Also, W *(n;) = {W*(t;n,), 0 < t < 1}, j = 1, 2, are stochastically independent,
and by the results of Loynes (1970), as n — oo,

(3.31) Wikng) =, Wi = (Wi(): 0< < 1), =12

in the Skorokhod Ji-topology on D[0, 1], where W, and W, are independent
copies of a standard Brownian motion. (2.13) follows from (3.27) through

(3.31). [0
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To prove Theorem 2.1, we note on using (3.23) and some standard inequali-
ties among the {{y(F): 0 < d < m} that r*(n) < C(F)(n,n,)"%, ¥ n > m, where
C(F) < oo (whenever (2.4) holds) and it does not depend on n. First, we show
that under (1.3), (2.3) and (2.4) as n — oo,

(3.32) max, iz, (K, 1)|Us*(k)[ =, 0.
For this, we partition the set A(n) = {k: m < k < n} into three disjoint subsets:
A(n) = (ke Am): min,_;_, k; < e, nt}, Ayn) = {keAm): ent < min,_;, k;, <
[n*]}, and Ay(n) = {k € A(n): min,_;, k; > [n}]}, where ¢ (> 0) is an arbitrarily
small number. The proof of (3.32) rests on the fact that [max, ¢(k, n) - min, r(k)]
for ke 4,(n), i =1, 2, 3, all converge to zero, as n — co. The proof follows
by using Lemma 3.2 and a few routine steps with are omitted for intended
brevity.
On D[O0, 1], we now consider independent processes W(n;) = (W1, n,):
0=r<1},j=1,2, wherefor0 < r< 1,
(3.33) Wit m) = (njo,n AU, s my < [ny] < g,
:O,tg(mj—l)/nj; j=1,2
Also, let for every t > 0.
wi(t, m) = $([nt]; n){o;n;*/[n; 1,1}
(3-34) = n"H (5o 0,4 (K51 0544 [n; ;1) 7o m 2 [n; 15])
= (D32 0,45 0,44 [n 1) 7 (At [ns DL + o(1)]
Then, for every n;t; > 1, 1 < j < 2, wy(t, n) is positive and is bounded from
above by (Xi, 0,4} (n;/nd;)t = (Di 0,401 + o(1)], j=1,2. Also, for
every t > 0,
(3.35) lim, ., w(t, n)
= (DI 0 AN (5o 0540 ,7) o 474, j=1,2.
Finally, it follows from Miller and Sen (1972) that W(n,) and Wy(n,) are
stochastically independent, each converging in law to a standard Brownian
motion. Consequently, for every ¢ > 0 and » > 0, there exist a ¢ > 0 and an
ny, such that for n > n,,

(3.36) P{sup,.,<; |Wi(t; n))| > ¢} < 47, j=12,
(3.37) SUpy<i<1 | Wi(t; )| = 0,(1), j=1,2.
Thus, (2.8) follows from (2.6), (2.7), (3.22) and (3.32) through (3.37). []

4. Weak convergence of von Mises’ functionals. We define the empirical
dfs by

4.1) Fix,n))=n"30¢(x—X;), xeR,n;=1, for j=1,..-,c,

where c¢(#) = 1 or 0 according as all the p components of u are nonnegative or
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at least one negative; we let F(., n) = (Fy(+, n)), --- F(+, n,)). Then, the von
Mises (1947) functional corresponding to (1.1) is

(4.2)  O(F(,m) = §gomo - -+ § 9% -+ -5 Xom,) [T520 1721 dF (x5 1) -

Here, we define a process W(n) = {W(t; n); t ¢ E,} as in (2.6), where we re-
place {U(k); k € A(n)} by {#(F(-, k)); k € A(n)}. Similarly, on replacing {U(k);
k > n} by {6(F(-,k); k = n} in (2.9), we define W+(n) = [W*(t; n); te E,}.
Finally we strengthen (2.4) to

X

Cxemg

(4'3) C*(F) = maxléjéc maxléajlé'uéajmjémj E{gz(Xlau’ ‘ )} < oo .

THEOREM 4.1. Under (1.3), (2.3) and (4.3), as n — co, W(n) and W*(n) con-
verge in law in the extended Skorokhod J,-topology on D, to W and W*, respectively,
which are defined in (2.8) and (2.12).

PRrROOF. Again, we consider the case of ¢ = 2, and for 0 < d < m, define
(4.4) Va*(n) = §prdo -+ § gq(Xas =+ Xugs Xaiy =205 Xgg))
X T3ea TLE dIF (x50 1) — Fi(x;)]
where d, = d, + d,. Then, we may write
(4.5) O(F(-, m)) = 2150 (2)(@2) Va(m)

= 0(F) + Vi(m) + Vy(n) + 25y DG Ve*(m)
where

(46) Vl(nl) = SRP"H tt S gmlo(xv Tt xml) H;n=11 dFl(xi’ nl) - 0(F) ;
4.7) Vy(ny) = §pomg « - § gOmz(xl’ A xm2) 1172, dFy(x;, ny) — O(F) .

Now, proceeding as in the proof of Lemma 2.6 of Miller and Sen (1972), we
have for every k = m;,

(4.8) E[Vik) — Uy k)] < C(F)k—*, for j=1,2,
where, under (4.3), C(F) < oo, and Uj(n;), j = 1, 2, are defined in (3.20) and
(3.21). Since, ¢(k, n) < n~#6-'k; for j = 1, 2, by (4.8), for each j (=1, 2),
(4.9)  P(max, gz, $(k, m|Uyk;) — Vi(k;)| > ¢}
< T, m0KE[U (k) — Vi(k)Pe?
= C(F)n~'07%* 3134, k= = C(F)(de)™ - O(n~*log n) ,
so that for every ¢ > 0, the right-hand side of (4.9) converges to 0 as n — co.
Similarly, on noting that r’m), defined by (2.5) is bounded below by
min, _; (¢ */n;), we obtain that as n — oo, under (1.3), foreverye > 0,j =1, 2,
(4.10)  Plmax,e, rim)|Uy(k;) — Vik)| > ¢} ‘
= 77 (m) X, E{[U(k) — Vi(k)T}
= rm)C(F) - X, k7
= C(F)e’[0(n)] -0 as n—oo.
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Consequently, to prove the theorem, all we need to show is this under (1.3),
(2.3) and (4.3), for every d > 1,

(4.11) P{max, <y, ¢k, n)|Ug*(K) — Vi*(K)| > ¢} <7,
(4.12) P{max,, r(m)|Ug*(k) — Vo*(K)| > ¢} <7,
where both ¢ (> 0) and 7 (> 0) are arbitrarily small, and » is chosen adequately

large. Note that V¥(k) = Uj(k) for all k > m. Also, by extending the proof
of Lemma 2.6 of Miller and Sen (1972), we have for every d > 1 [under (4.3)],
(4.13) E{[U*(K) — V*K)]}} < C(F)k, Uk, 0{k,~* + k,7%),

for k = m. Consequently, if d, > 2, d, = 2, the proof for (4.11) and (4.12)
follow trivially by using (4.13), the Chebychev and the Bonferroni inequalities.
Thus, we need to consider the case where min,_;_, d; = 1, but d, 4 d, = 3.
We consider explicitly the case of d = (1, 2); the case of (2, 1) follows similarly,
while for any other d: 1 = min (d,, d;) < max (d, d,)(= 2), a similar but more
laborious proof holds.

By direct evaluation from (3.16) and (4.4), we have

(4.14) Vi(k) — Ug(k) = — Uz(k) + 4

AVE
for every k = m, where for m, > 2,

(4.15) Ug*(k) =

o 20820 Sat e § Gu(X0 Y1 )0)

X d[C(xl — X)) — Fi(x)]

X dle(y, — Xy,) — Fa(y)]d[e(ys — Xu,) — Fa(y)] -
Consequently, to prove (4.11) and (4.12) for d = (1, 2), it suffices to show that
as n — oo,
(4.16) max, gsa |US(K)| = O0y(1) max, i<, [UE*(K)| = O,(1) ;
(4.17) SUPyay |UB(K)| = 0,(1) , SUPyz, |U*(K)| = Oy(1) 5
note that ¢(k, n)/k, = O(n~%), Yk < n and r~*(n)k,”™ — 0 as n — oo, for every
k = n. Since Ujy(k) is a generalized U-statistic, the proof of (4.16) and (4.17)
for {Uj(k)} follows directly from (3.15) and the fact that as in Section 3,

E[U(Kk)]* < C(F)k, %k,™* for every k = m.

Now, we define the sequence of ¢-fields {€,,, kK = m,, ¢ = m,} as in Section 3
[following (3.7)]. Then it follows from (4.15) that for every K’ > kand ¢’ = ¢,
(4.18) E[U*(K, )| Zuy] = UK, @) ace.

Consequently, following the same method of approach as in the proof of Lemma
3.2, we obtain from Lemma 3.1 that for every N = n = m,

E[(max, g; ., max, ;. <y |Us* (ks ko)|)*]
(4.19) < 16E(E[U%*(n)]* — E[U%*(ny, Ny)|* — E[U*(Nyny)] + E[UE*(N)]}
16E[Uf*(n)]* < 16C(F)n,"'n,~2 .

IA I
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Thus, the proof of (4.16) and (4.17) for {U}*(k)} follows immediately from
(4.19) and the Chebychev inequality. []

5. Weak convergence for random indices. We now consider the case where
in (1.3) we allow (4;, ---, 4,)’ = 2 to be a stochastic vector with positive ele-
ments. More precisely, let {N, = (N,”, ---, N,*Y, n = 1} be a sequence of
vectors with positive integer valued random variables, such that

(5.1) nN, o A= (A - A as n— oo,

where 4;, j = 1, ..., c are positive random variables defined on the same pro-
bability space as of the original {X,,i>1},j=1, ---,c.

We define W(N,) as in (2.6) when N, > 1; otherwise, we let W(N,) = 0.
Similarly, we define W*(N,) as in (2.9) when N, = 1; otherwise, we let
W*(N,) = 0. Finally, we define W(N,) and W*(N,) as in Section 4, with n
being replaced by N,. Our basic problem is to study the weak convergence of
W(N,), W*(N,), W(N,) and W*(N,), when n — oo and (5.1) holds.

THEOREM S5.1. Under (2.3), (2.4) and (5.1), W(N,)) and W*(N,) converge in law
in the extended Skorokhod J,-topology on D, to W and W*, respectively, defined in
(2.8) and (2.12), while under (2.3), (4.3) and (5.1), W(N,) and W*(N,) weakly
converge to W and W* respectively.

Proor. We shall only consider the case of W(N,), as the other cases follow
similarly. By Theorem 2.1 and Lemma 3.2, we can verify the conditions of
Theorem 2 of Mogyorodi (1967) which insures that the finite dimensional dis-
tributions of {W(N,)} converge to those of W. To establish the tightness of
{W(N,)}, we define the supremum metric o(x, y) = sup,., |x(t) — y(t)|, and the
modulus of continuity (for 0 > 0) w,(x) = sup{|x(t) — x(s)|: t,se E,, [t — s| < d}.
Now, using our Lemma 3.2, (3.11) and (3.12) in place of Theorem 1 of Wichura
(1969) and thereby extending his (2a) to our statistics, we obtain by the same
technique as in his proof of Theorem 3 (on pages 686-687) that under (1.3),
(2.3) and (2.4), for every ¢ > 0, as n — oo,

(5.2) lim, |, lim sup, P{w,(W(n)) > ¢} = 0.
Consider now a sequence of generalized U-statistics

U(nt]) = 1155 G 7 25 9" Njyp 1 ST =m 1 = j < ¢)

(5.3) t, = n;"k,9, 1<j<c;
=0, if ¢, <n;7%,? forsome j(=1,---,¢,

where g*(x,;, - -+, xcmo) =g(xy, -0 xcmc) — 0(F), the summation } %% extends

over all k9 4+ 1Za,< - < A, < [n;t;], and lim,_ k"9 = co but

lim,_.,nt,? = 0,1 < j<c Then, on replacing U([nt]) — 6(F) in (2.6) by
U'([nt]), t e E,, we define a parallel process W’(n) = {W'(t;n): te E}.

LEMMA 5.2. Under (1.3), (2.3) and (2.4), o(W(n), W’(n)) — 0 almost surely as

n — co.
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Proor. Here also, weletc=2. For0<1<m<Kk,k—k,>m—1, we
define

54 Uk k,) = {H§-=1 <knm> <kj — knm)}—l

lj m; — lj
X Do 0¥ Xy p 1 SiZm, 1 <j<2),

where the summation 2(*,() extends over all 1 S ay < -+ < a;, =k, <
Xy < v =ay Sk, 1752 Thus Uy(k, k,) may be interpreted as a
generalized U-statistic based on four samples of sizes (k,?, k; — k,V, k,®, k, —
k,?). Consequently, as in our Lemma 3.2, (3.11), (3.12), (3.13), (3.14) and
(3.15), it can be shown that for every ¢ > 0, there exist a positive K, (< oo)
and an n(¢), such that for n > ny(e), under (1.3) and (2.4),

(5.5) P(MaXog i<y, SUPgsy, |Ui(K, k,)| > K.} < e
Also, by (1.2), (5.3) and (5.4), we obtain that for [nt] > k,,
(5.6) U([nt]) — 6(F)

= Zrma () (A () () o

i
where we let k; = [n;t], j = 1, 2, Consequently, by (5.5) and (5.6), as n — oo,
SUp, Maxy <<, {n7*[min (k,, k;)]|U(k) — U'(k)[}
(.7 = {sup, maxy <ys, MaXegicn [Ui(k, K)HO([(n (K, V)], [n(k, )]}
= 0, (™, )", (n7tk, @) = 0,(1) .
Thus, by (2.6), (2.7) (3.39) and (5.7), as n — oo,
(5.8) SUP, -1, <1 | W(t; m) — W/(t;n)| — 0, almost surely (a.s.)
On the other hand, for te E/™ = E, — {t: n7'k, < t < 1}, W'(t;n) = 0 [by
(5.3)], so that
SUpPye o [W(t;m) — W'(t; n)
= SUp,c g, |[W(t; M)
(5-9) = {maxggq, |UK) — O(F)[H{sup,e g, ¢({nt], n)}
= {SUPwsm |U(K) — O(F)HO([n~2k, T, [n~2k, )}
:0(1)-0(1):0(12, a.s., as n— oo .
The lemma follows from (5.8) and (5.9).

LEmMMA 5.3. If A A, then for every ¢ > 0 and 7 > 0, there exists a ¢ (> 0),
sufficiently small, such that lim sup, P{lw,(W'(n)) > ¢| A} < 7.

Proor. By (5.2) and Lemma 5.2, for every ¢ > O,
lim, ,lim sup, P{w,(W'(n)) > ¢} < 7.
Also, by definition in (5.3), W’(n) depends only on the set {X;,, k,' < i < n,,

g

Jj=1,---,c}. Hence, using Rényi’s (1958) idea of mixing sequence of sets and
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proceeding as in Lemma 3 of Blum, Hanson and Rosenblatt (1963), the result
follows. []

We return now to the proof of Theorem 5.1. By virtue of (5.1), for every
0">0, P{|n”'N, — 2| > 3§’} >0 as n— co. As such, it can be shown by
standard steps [as in Mogyorodi (1967)] that for every ¢ > 0, there exist an
7 > 0 and an integer n,, such that P{oW(N,), W(N,)) > ¢} < » for n > n,.
Hence, to establish the tightness of {W(N,)}, it suffices to show that for every
¢>0,

(5.10) lim sup,, P{w,(W’'(N,)) > ¢} — 0 as 0]0.

We note that by (1.2), (2.6), (2.7), (5.2), (5.3), (5.6) and Lemma 5.2, for every
e > 0and » > 0, there exist a § > 0 and an ne, 7), such that for n > ny(e, 7),

(5-11) P{max ;. —a<on 0(W'(K), W(n)) > e} < 7.

Hence, on using the inequality that w,(W’(N,)) < 20(W'(N,), W'([nd])) +
w,(W([n4))), it suffices to show that

(5.12) lim sup,, P{w,(W'([nA])) > ¢} — 0 as ¢ |0,
(5.13) P{o(W'(N,), W'([nd])) > ¢} — 0 as n— oo .

Consider the events A(h) = {4: ay(y) + h;0' < 2; < ay(n) + (h; + )&, 1 <
J=c},h=0,a(y) > 0,and let a(h) = (a(y) + (h; + £)d’, 1 < j<¢),h > 0.
Then, we have

(5.14) Plo,(W'([n4])) > e} < P{min,_,., 2; < ay(7)}

+ Li=o P{AM)}Plo, (W'([n4])) > e| A(h)},
where we let P(B| A) = 0 when P(4) = 0. Since, when 4(h) holds, |2 — a(h)| <
¢’, it can be shown on using (5.11) and Lemma 5.3 that for every ¢ > 0 and
7 > 0, there exists a 9'(0 < 0" < a,(7)), and an ny(e, p), such that for n > ny(e, 7)
and all h = 0, P{w, (W'([n4])) > ¢| A(h)} < /2, Vh > 0. Hence (5.12) holds.
Finally, on writing

Plo(W'(N,), W'([na])) > ¢}
(5.15) = P(jn'N, — 2] > '} 4 P{min,_,;., 2; < ay(n)} + i P{A(h)}

Plo(W'(N,), W'([na])) > ¢, |n~'N, — 2| < 0’| A(h)},

the proof of (5.13) follows on parallel lines.

The theorem is useful in the context of sequential procedures based on
generalized U-statistics; we may refer to Williams and Sen (1973) for such an
application.

As an illustration of the uses of Theorems 2.1, 2.2, 4.1 and 5.1, we consider
a simple case where p = 1, ¢ = 2 and

(5.16) O(Fy, Fy) = (2., F\(x) dFy(x) = P{X,, < X5}

and we assume that both F, and F, are continuous everywhere. Then
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O(F(- n) = U(n) is the Wilcoxon rank statistic
1

17%2

(5.17) moYm X, X)) e v) = v

p—

, U

IA

=0, u>u.‘

Here m, = m, = 1, and the summands {c(X,, X;),1 <i<n,1 < j =< ny} are
not all independent, so that Wichura’s (1969) results do not hold. If the two
distributions F, and F, are mutually overlapping, then (2.3) holds, while (2.4)
holds for all F,, F,, as c(u,v) is bounded. If F, = F,, 0(F,, F,) =4, 0=
0, = {5, so that the results further simplify. Theorem 5.1 for the Wilcoxon
statistic is useful for the problem of sequential testing and estimating 6(F,, F,).
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