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A RANDOM WALK WITH NEARLY UNIFORM
N-STEP MOTION!

By LAWRENCE E. MYERS
University of California at Berkeley

Let N be a strictly positive integer. Motivated by a certain discrete
evasion game, we search for a {0, 1}-valued discrete time stochastic process
whose conditional-on-the-past distributions of the sum of the next N terms
are as close to uniform as possible. A process is found for which none of
the sums ever occurs with conditional probability more than 2e/(N + 1).
The process is characterized by invariance under interchange of 0 and 1,
and its waiting times between successive transitions, which are indepen-
dently, identically, and uniformly distributed over {1, 2, ---, N + 1}.

1. Introduction. Let N be a strictly positive integer, and let 8 = {3,};_, be a
{0, 1}-valued discrete time process. Suppose that at time k the finite binary
sequence s = s, - - - 5, has been realized, i.e. 8, =5, -+, 8, = 5,. Let us in-
quire as to the conditional probability P[ 3, 8,,, = r|f, - -+ B, = s] that the
sum of the next N consecutive terms is r, where r ranges over the N + 1 pos-
sible sums 0, 1, - - ., N. Can we find a 8 for which all these conditional distribu-
tions are uniform?

The quantity of interest to us is then v(N), the smallest probability p for
which there exists a {0, 1}-valued discrete time process with the property that
conditional on the past at any time, none of the N 4 1 possible sums of the next
N successive terms ever occurs with probability more than p. To be precise,

V(N) = infy 5 SUPyctco se ok MAXog, ey P[ LY, Brys = 7| By -+ B = 5]

Here B is the collection of all {0, 1}-valued discrete time processes 8 = {B,}:-
Also if k =0 or P[B, --- B, = 5] = 0 we set

PR B =rlB - =351 =P[EL B =1]-
Our purpose is to investigate the asymptotic behavior of v(N).

v(N) = 1/(N 4 1) forall N > 1 since for any § € B there is some r = r(8) for
which P[3 X, 8, =r] = 1/(N 4 1). By considering the process {8,}:_, whose
terms are independently and identically distributed with P{8, = 1} = 1 for all
n = 1, we see that v(1) = § and, further, »(N) < 1/N!forall N > 1. The upper
bound is obtained by applying Stirling’s formula to the central (modal) term
of the binomial distribution with parameters N and p = ¢ = 1. We thus have

(1) 1N+ 1) < o(N) < 1/N* forall N=>1.
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NEARLY UNIFORM N-STEP MOTION 33

Our principal aim now is to improve (asymptotically) on this upper bound by
showing v(N) < 2e/(N 4 1) for all N > 1.

REMARKS. Consider the following game between two players:l

Player I observes Player II as the latter writes a sequence of 0’s and 1’s. At
some point, unknown to Player II, Player I gives the referee a prediction of the
sum of the next N numbers Player II writes (i.e. I’s prediction should be an
integer from {0, 1, 2, - .., N}).

If Player I’s prediction turns out to be correct, he wins one dollar from
Player II; otherwise, I wins nothing.

Players I and II are often referred to as the pursuer (predictor, bomber) and
evader (sequence chooser, battleship), respectively, and the game is called the
N-move lag bomber-battleship game.

David Blackwell [1] proved that the Nth game has value v(N), and that in
each case the evader possesses an optimal stationary strategy. Since the possible
mixed strategies for Player Il are exactly the members of B, it follows that each
v(N) is attained by some f§ e B, and the infimum in the definition of v(N) is in
fact a minimum.

We saw earlier that (1) = 4. Lester Dubins [2], by way of solving the two-
move lag game, proved v(2) = (3 — 5%)/2 and is attained by a Markov process.
Hence v»(N) # 1/(N 4+ 1) for N = 2.

Thomas Ferguson discusses the extension of this game to the same game with
a three-move information lag in [4]. He therein defines an m-dependent process
as one which at any time depends on the past only through the preceding m
states (so that a Markov process is 1-dependent). v(3) is not known. However,
Ferguson shows that v(3) is not attained by a Markov process by exhibiting a
two-dependent process which improves on the best Markov one.

2. The definition of the process and some of its elementary properties. The
following notation will be used throughout. x and y and subscripted s’s and ’s
will be generic members of {0, 1}. SEQ will denote the set of all finite sequences
of 0’s and 1’s, including the null sequence { ». s=s---s,andt=1¢---1,
will be generic members of SEQ. st is that member of SEQ given by s, - - - s,
t,---t,. Fors=ys -..5,¢eSEQ, |s| = m is the length of 5, with [ } = 0.

Forxe {0, 1}, (Ox) denotes the null sequence, and for i > 1, (ix) is that mem-
ber of SEQ of length i given by xx - - x, so that, for example, sy(ix) = s, - - -
s,yxx - -+ x € SEQ. Expressions such as s¢ », { s, and s{ )t are to be inter-
preted as s, s, st respectively.

For any nonnull s =5, -+ 5, € SEQ and 8 = {B,}7_,€ B, let B(s) = P[f, =
Sy B = Sn], and let S(B) = {s€ SEQ: s # ( ) and B(s) > 0}.

Let N = 1 be fixed for the remainder of our discussion. To define the process
{a,}z_, of interest to us, we first define a function a:SEQ — ({0, 1}) from
SEQ into the space Z2({0, 1}) of {0, 1}-valued random variables.
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Forx,ye{0,1}, x # y,1 <k < N + 1, se SEQ, let a(sy(kx)) = y with prob-
ability 1/(N + 2 — k), a(sy(kx)) = x with probability (N 4- 1 — k)/(N + 2 — k).
For any nonnull tx ¢ SEQ which is not of the above form sy(kx), let a(tx) = y
with probability 1; £x may equal x here. Set the predecessor a, = 1 with prob-
ability 4, a, = 0 with probability {, and let a({ ») = a(a,).

{a,}7-. is then defined inductively by a; = a({ ») and «, = a(a, - - - a,_,) for
n = 2. We will often refer to {a,}7_, as a, though some abuse of notation is
involved in this.

DEFINITION. The process 8 = {$,} € B is invariant under interchange of 0 and 1
provided B(s) = B(s’) for each s € SEQ, where s’ is the sequence obtained from
s by interchanging 0 and 1.

ProrosiTiON 1. {a,}_, isan (N + 1)-dependent process which is invariant under
interchange of 0 and 1. At any time, the process depends on the past only back to
the latest change of state.

Proor. Clear from the definitions.
For the sake of convenience, set, for se S(a) and 4 C {0, 1}*,

O[d|s] = Plap,, -+ aped]ey - a, =351, QK H|s]=1,
and for 0 < r < n < N, define A(r, n) to be the set of all finite binary sequences
of length n having exactly r 1’s. Also, let S = S(a). Then we obviously have
v(N) < sup,.s maxy,cy Q[A(r, N)|s].

ProposITION 2. Let s e SEQ and let x and y be distinct members of {0, 1}. Then
the following assertions hold:
(i) If1 £k < N+ 1, then (kx) € S and y(kx) € S.

(i1) If s(kx)e S or sy(kx)e S, thenk < N 4 1.

(iii) The process {a,}7_, changes states at least once in each consecutive N 4- 2
units of time.

(iv) Sc{tkx): 1 k< N+ 1 and xe{0,1}} U {sp(kx): se€ SEQ, 1 £k <
N+ 1; x,ye{0, 1}, x # y}.

Proor. Parts (iii) and (iv) follow from (ii). Part (ii) follows, by contraposi-
tion, from the fact that a is (N + 1)-dependent and Pla(s([N + 1]x)) = x] = 0,
whatever be se SEQ.

Part (i) remains. We can assume without loss of generality (by the invariance
of a) that x = 0 and y = 1. Then

a((kx)) = a((k0))
= Pla, - -+ a, = (k0)] = Pl[a, =1 and a, --- a, = (k0)]
N N—-1 N+1—-(k—-1)
N+1 N N+2— (k-1
N+2—k

— 1= >0 forall 1 <k<N+1,
X N > SkKk=N+

1
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The proof that y(kx) e S for 1 < k < N + 1 is similar.
CoROLLARY. ¥(N) = MaX,c,cy s MaXog, oy O[A(r, N)[0(k1)].

Proor. Clear from Proposition 1, (iv) of Proposition 2, and the fact that the
predecessor a, effectively incorporates a turn into each possible path.

PROPOSITION 3. Given that the last change of state under a occurred k time units
ago, then k < N + 1, and
(i) « remains in its present state for i more units of time with conditional proba-
bility
N+2—k—i
CN+2—k
0 for i>N+1—k, and

for i< N+1—k

(ii) with conditional probability 1 the process changes states at least once within
the next N + 2 — k units of time, and that first change occurs at each of the possible
N + 2 — k times with conditional probability 1/(N + 2 — k).

Proor. The assertion k < N + 1 is just part (iii) of Proposition 2. For the
rest, simple computations show that for 1 < kK < N + 1, and x and y distinct
members of {0, 1},

. . N+2—k—i .
k] =NH2=k—1 g i< N4k
() oLy = N2k PNt
= 0 for i>N+4+1—k, and
(ii) Q[(ix)yfy(kx)]:m_l.zj for i<N+41—k
= 0 for i>N+1—k.

REMARK. Should the evader wish to employ the process a as his strategy in
the N-move lag game, then it is clear from Proposition 3 that he needs only a
fair coin and a fair (N 4 1)-sided die to do so. He begins with a flip of the coin
and then makes repeated throws of the die. The coin determines whether he
begins with 0 or 1 and the die determines the waiting times between transitions.
To illustrate, suppose the coin lands heads and the die throws yield the sequence
k(1), k(2), - --. Then his first k(1) moves will be 1’s, his next k(2) moves will
be 0’s, and so on.

3. THEOREM. 1/(N ++ 1) < v(N) < 2e/(N + 1) forall N = 1.

Proor. The lower bound was established in 1. By the corollary to Proposi-
tion 2 it suffices to show that Q[A(r, N)|0(k1)] < 2¢/(N + 1) forall0 < r < N
and 1l < k< N+ 1.

Suppose first that r = N. Then by Proposition 3 Q[A(N, N)|0(k1)] =
Q[(N1) |0k < 1/(N + 1) for | < k< N + 1.
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For the case 0 < r < N, set W = min (N + 1 — k, r). Then

Q[A(r, N) | 0(k1)]
= T, Q[(i1)0|0(k1)]Q[A(r — i, N — (i + 1))|10] ,

1 Yo Q[A(r — iy, N — i — 1)10]

T Ny2_k
1 - .
=—— > W QAN —r —1,N—i— 1)|01],
N3 Do QAN — i—1)]o1]
by the invariance of «.
Nowsuppose
2e — 1

2 A(r, 1] < forall 0< < N.
) OA(r.m|01] = (0= forall 0<r<ns

Then at most one of the above summands is of the form Q[A(N —i — 1,
N—i—=1D|0I]=[N+1—(N—i— )N+ 1) = (i + 2)/(N + 1) (Proposi-
tion 3), and each of the others is bounded above by (2e — 1)/(N 4 1) by the
assumption (2). Hence

L W Q[ANN — r — 1, N — i — 1)|01]

N42—k
1 2¢e — 1 N-|-1—k—}—2:|
<— | (N+1—k
_N+2—k[( + )N+1+ N+ 1
1 2¢ — 1 N+2—k} 2e
— | (N+2—k = ,
<N-}-2—k[( + )N+1+ N+1 N +1

and the theorem is proved given the assumption (2).

We prove (2) through two lemmas by partitioning A(r, n) into events which
are simpler in the sense that any two members of one of them have approxi-
mately the same conditional probability given a past ending in 01; our break-
down of A(r, n) into disjoint subsets will be based on the fact that any nonnull
binary sequence is composed of alternating blocks of 0’s and 1’s. Roughly
speaking, Lemmas 1 and 2 deal with the cases where conditional on a past
ending in 01, the event A(r, n) is realized through an even (Lemma 1) or odd
(Lemma 2) number of changes of state.

Forj=0and 0 <r<n< Nlet A(j,r,n) = {([,1)(,,0) --- (I,;1) € A(r, n):
Xioli=mn, il =r, and [, >0 for ix=1}, and let A"(j,r, n) =
{(L1)(L0) -+ (L 1)(ly;1,0) € A(r, n) 2 35350, =n, 319 o1, =r, and [, > 0 for
i = 1}. Then since r < n, A'(0, r, n) is empty and

(3) A(r,n) = 2 A(Joron) + Xne A'(js 1) .

LEMMA 1. For0<r<n<N

e — 1

O[22z 4'(J, r,m)|01] = N1 .
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Proor. By Proposition 3, if ([,1)(1,0) - .- (I,;1) € A'(j, r, n)
Q[ 1)(1,0) - - - (I;1)]01]
= Q[(,L1)0]01]Q[([4, — 1]0)1|10] - - -
O[([Lj- — 110)1 [10]Q[([; — 1]1)[01]
= () el — 1o = ()
N + 1 i N+ 1
Hence Q[A'(j, 7, n)|01] < (I/(N + D))¥(A'(j, r, n)), Where #(A4'(j, r, n))
denotes the cardinality of A'(j, r, n).

Now, the number of distinct realizations of the event A'(j, r, n) is just ab,
where a is the number of different ways of placing r indistinguishable balls into
J + 1 boxes in such a way that every box, except possibly the first, contains at
least one ball (/; > 0 for all i > 1, but /; may equal 0). Similarly, b is the
number of ways of placing n — r balls into j boxes so that none of the boxes is
empty.

Hence a is the number of different (j ++ 1)-tuples of nonnegative integers

satisfying m, + ... 4 m, , = r — jand b is the number of j-tuples of nonnega-

tive integers satisfying m; 4+ ... 4+ m;, =n — r — j. We have ([3] page 38)
a=("HET) =0) and
b= ("3 = ("3 so that

2z Q[A(J, 1, m) | 01]

<230 )

IA

This proves Lemma 1.

LEMMA 2. ForO0<r<n<N

Q[ 20 A"(Jy 1 m) | 01] = N—}—l '

Proor. After the fashion of Lemma 1, se A”(j, r, n) implies Q[s|01] £
(1/(N + 1))*+1, so that Q[A"(j, r, n)|01] < (1/(N + 1))*** #(A4"(j, r, n)) and

D QA W10 £ T ("7 ‘)(;)(Nl+ SR
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The assumption (2) now follows immediately from (3) and the two lemmas,
and we are done.

The following are immediate consequences of the theorem, and the proofs
are omitted. .

CoROLLARY 1. {N - v(N)}%_, is a bounded sequence.
COROLLARY 2. lim,_, N*. v(N) = 0 for each a ¢ [0, 1).

4. Concluding remarks. It was mentioned in the remarks at the end of
Section 1 that each v(N) is actually attained by some process, but that v(3) is
not attained by any Markov process. One may ask, however, whether an order
of 1/N may be achieved if we restrict attention to some subset of B, such as the
Markov processes, or even the processes whose terms are independent.

It is easily seen that each v(N) may be attained with a process invariant under
interchange of 0 and 1. Blackwell [1] shows that we may also restrict attention
to stationary processes.

For each m > 0 let B,, be that subset of B consisting of all the m-dependent
processes. (B, then contains only processes whose terms are independent; B,
consists of Markov processes, etc.)

Also, for each N> 1and m > 0 let

Vu(N) = infgep SUPo<icon seio e MAXog oy PLIY: Bryy = 7B+ -+ B = 5]
m

Then v»(N) < v,,(N) for each m and N. The reader may have noted that the
process used in 1 to show v(N) < 1/Nt for N sufficiently, large also yields the
result

1/(2N)} < vy(N) < 1/Nt for N sufficiently large.

Does there exist a > 0 such that
4 v(N) < a/(N+1) forall N=1?

That is, can we attain order 1/N with Markov processes? The author conjec-
tures the answer to be in the negative. In fact, he suspects that foreach m > 0
there exists strictly positive 5(m) such that

b(m)/N* < v,(N) < 1/N* forall N=1.

If, for example, (4) is satisfied by some a > 0, then the process a used in 3.
to show {N .- v(N)}z_, is a bounded sequence is unnecessarily complicated in
that it is (N 4 1)-dependent. At this point we can only say that « is computa-
tionally convenient, and invite the reader to compute (the order of) v ().
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