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ON THE FUNCTIONAL FORM OF THE LAW OF THE ITERATED
LOGARITHM FOR THE PARTIAL MAXIMA OF INDEPENDENT
IDENTICALLY DISTRIBUTED RANDOM VARIABLES'

By MICHAEL J. WICHURA
University of Chicago

Let k be a positive integer, let X, X1, Xz, - -+ be i.i.d. random variables,
and let m,® be the kth largest of X3, -+, Xn. Let (Mu®)(f))o<t<o be the
random process defined by M,((f) = m{k};. M,*) takes values in the
space D of non-decreasing right-continuous functions on (0, ). Let D
be endowed with the usual topology of weak convergence. We show
that if X is uniformly distributed over [—1,0], then wp1 the sequence
(M%)/(logz n/n))az3 is relatively compact in D and its limit points coincide
with {xe D: x(t) < 0 for all ¢, and § x(f)dt = —1}. Also, we show that if
X is exponential with mean 1, then wpl the sequence ((Mn(*) —
log n)/logz n)»z3 is relatively compact in D and its limit points coincide with
{xeD: x(t) =0 for all ¢, and (x) < 1}; here 2x(x) = sup (X p<q x(tp) +
kx(tg)), with the supremum being taken over all finite systems of points
{tp}p=q Over which x is strictly increasing. Extensions of and corollaries to
these results are given.

1. Introduction. Let X,, n > 1, be i.i.d. random variables with consecutive
partial sums S,. Let H, be the random polygonal line with vertices at the points
(j/n, S,/(2nlog,n)}), 0 < j< n. Strassen (1964) profoundly generalized the
classical law of the iterated logarithm by showing that when the X,’s have mean
zero and unit variance, the sequence (H,) is wp 1 relatively compact in the
topology of uniform convergence, and has as its limit points the class of abso-
lutely continuous functions on [0, 1] which vanish at 0 and whose derivatives lie
in the unit ball of L,([0, 1]) under Lebesgue measure. Strassen first proved the
corresponding result for Brownian motion, and then used the well-known
Skorohod imbedding theorem to deduce the discrete-time version.

We are concerned here with similar results for the partial maxima of the X’s,
or more generally, with the kth order statistics m,®, n =k, of (2.1), k being a
fixed positive integer. These results are described in Sections 2 and 3. Analogues
of Skorohod’s imbedding theorem can be formulated using the two-dimensional
Poisson process (cf. Pickands (1971)) or the extremal processes of Dwass (1964).
However we have found it simplest to establish our results directly for uniformly
distributed variables (Sections 6, 7, and 8), and then to use (Section 4) a prob-
ability integral transformation to handle the non-uniform case. In Section 5 we
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give some general tools for establishing limit theorems of the type considered
here.

Our results extend most of the known “weak” forms of the iterated logarithm
laws for the partial maxima of i.i.d. random variables (cf. Kiefer (1972) and de
Haan and Hordijk (1972)). A different sort of generalization of the weak laws
has been given by Barndorff-Nielsen, (1961) and (1963); he derived the corre-
sponding ‘“‘strong” forms, giving criteria to distinguish between “upper class”
and “lower class” functions. Robbins and Siegmund (1972) rediscovered the
strong laws and used their martingale techniques to compute some boundary-
crossing probabilities for extremal processes. They also remarked that Motoo’s
(1959) argument could be adapted to give a simple proof of the strong laws. This
point has been elaborated on by Frankel (1972), and by Wichura (1973b), who
showed that a refinement of Motoo’s argument yields information on boundary-
crossing probabilities. We refer to Vervaat (1974) for an overview of recent
activity regarding limit results for sample maxima and record values.

We close this section by establishing some terminology, notation, and con-
ventions. If ¢ isa non-decreasing right-continuous function on (— oo, o0), the
inverse function, denoted ¢, is defined by

(1.1) ¢~(s) = inf {r: s < ¢(0)},
so that ¢~ is also right-continuous and non-decreasing. A similar definition holds
if ¢ is non-increasing. A function ¢ which is regularly varying at co with exponent
o, i.e. for which
(1.2) lim,_., p(et)/¢(t) = ¢
for all ¢ > 0, will be said to belong to the class &27_(p). For ¢ nonzero in a
right (resp. left) neighborhood of 0, ¢ € &7 (p) means that (1.2) holds with
lim,_,, replaced by lim, , (resp. lim,;,). Given a reference probability space
(Q, &7, P), we use the phrases with probability one (wp 1) and almost all in con-
nection with subsets of Q which contain a .%-set of P-probability one; if
(Q, %7, P) is complete (as it may, of course, be assumed to be), these usages
agree with the ordinary ones. For i > 2, the iterated logarithm log, t means
log (log,_, ); in writing such expresssions, we assume ¢ is large enough for them
to be defined.

1, denotes the indicator function of a set A. [u] denotes the greatest integer in
the number u. The abbreviations iff and i.o. have their ordinary meanings: if
and only if, and infinitely often.

2. The uniform case. Throughout this paper, we shall let k denote a fixed,
but arbitrary positive integer. Let X,, n > 1, be independent random variables,
each of which is uniformly distributed over the interval [—1, 0]. Forn = k, put

(2.1) m,® = kth largest of X, ..., X

"

There are two (weak) laws of the iterated logarithm for the sequence (m,®),
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namely

(2.2) lim inf, m,*/(log,n/n) = —1 wp 1

and

(2.3) lim sup, (—log |m,*®| — log (n))/log,n = 1/k wp 1

(cf. Kiefer (1972) pages 234-235). The first law may be rewritten in the form
(2.4) Pr {m,* < 6log,n/n i.0.} =1, if 6> —1
=0, if 0<—1

and is therefore a statement about how “small” the values of the m,*’s can be.
Similarly, the second may be rewritten in the form

(2.5) Pr{m, > —1j(nlogin) i.0}=1, if {<1/k
=0, if ¢>1/k

and is thus a statement about how ‘““large” the values of the m,*’s can be. We
note that (2.5) implies

(2.6) lim sup, m,*®/(log,nfn) =0 wpl,
while (2.4) implies
(2.7 lim inf, (—log |m,*®| — log (n))/log,n =0 wp1l.

In what follows, we shall give analogues of (2.2)—(2.6) and (2.3)—(2.7) for the
random processes M,* = (M, *(t)),, ..., defined (for n = 1) by

(2.8) M) = mb,  if kjn=t< oo
=mk"", if 0<t<k/n.

Let D denote the space of non-decreasing, right-continuous real-valued func-
tions on (0, co). The Lévy distance between x, and x, in D is taken to be

(2.9) d(x,, x,) = inf{e: x*(u — ) — ¢ < x,*(u) < x,*(u + ¢€) + ¢,
for —oo < u < oo}

(2.10) =sup{l,/2t: —o0 < u < oo},
where
x*¥Uu) = —co0, if u<0
= xi(O—}—) , if u=0
= x,(u/(1 — w), if 0<uxl
= oo, if 1<u

and where /, denotes the distance between the graphs of x,* and x,*, measured
along the line {(§, 7): § + » = u}. Under d, D is a separable metric space, in
which x, — x (i.e. d(x,, x) — 0) iff x,(f) — x(¢) for all continuity points ¢ of x.
The coordinate mapping 7,: x — x(f) is thus uppersemicontinuous for each t.
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A subset C C D is relatively compact iff it is uniformly bounded off of neigh-
borhoods of 0 and oo in the sense that

(2.11) SUP,ec SUPssesys [X(1)] < o0
for each 0 € (0, co).
We are now going to describe two compact subsets of D. Put D_ = {xe D:

x(1) £ 0, for all ¢}, and let x: D_ — [— o0, 0] be defined by
(2.12) k(x) = {5 x(f)dt;

by Fatou’s lemma, « is uppersemicontinuous. Put

(2.13) K={xeD_:x(x) = —1}.

Notice that x € K implies x(f) = —1/¢ for each t. This and the uppersemiconti-
nuity of x imply that K is relatively compact and closed in D_, and thus is
compact in D.

Next, put D, = {xeD: x(t) =2 0, for all ¢}, and let 4,: D, — [0, co] be
defined by

(2.14) Au(x) = SUP (L peq (1) + kx(1,))

where the supremum is taken over all finite systems {z )} _  of points in (0, co)
satisfying

(2.15) << <t and x(t) < x(f) < -0 < x(t,) .
Put
(2.16) L,={xeD,: 2,(x) < 1}.

Each x e L, is a step function which is bounded between 0 and 1/k and has only
finitely many jumps, but not all such step functions are in L,. For example,
xeL, and x(0+) = 1/(k + 1) imply that x is constant. Also, xe L, and
x(04) = 1/(k + 2) imply that x has at most one jump, which moreover, must
have size < 1/(k(k 4 2)); there is no constraint on the point at which the jump
may occur. The value of 2,(x) is unchanged if in (2.16) we require that each ¢,
be a continuity point of x; it follows that 1, is lowersemicontinuous. Thus L,
is closed in D, and being uniformly bounded, is compact in D.

Let the processes ,H,® = (,H,*(1))yc1<. and *H,* = (*H, ®(1))ycyc00r 1 = 3,
be defined by

(2.17) «H, (1) = M, (1)/(log, n[n)
(2.18) *H,'"(1) = (—log |M, (1) — log (n))/log, n

(cf. (2.8)). Here are our main results; the first extends (2.2) and (2.6), the second,
(2.3) and (2.7):

THEOREM 1A. Wp 1, the sequence (,H,'®) is relatively compact in D, and the set
of its limit points coincides with K.
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THEOREM 1B. Wp 1, the sequence (*H,®) is relatively compact in D, and the set
of its limit points coincides with L,.

Theorem 1A will be proved in Section 6, Theorem 1B in Section 7. Our
results yield limit theorems for various functionals of ,H,* and *H,*. Many
of these are based on the following simple lemma, which is analogous to the
so-called mapping theorem in weak-convergence (cf. Billingsley (1968) page 34);
see also Wichura (1973a)—condition (2.17) there was stated incorrectly, and
should be changed to read like (2.19) below.

LEMMA 2.1. Let S and S’ be metric spaces. Let C be a compact subset of S, and
suppose that (H,) is a sequence of S-valued random variables which wp 1 is relatively
compact and has C for its set of limit points. Let T,, n > 1, and T be mappings
from S to S'. Suppose that for almost all sample points w, one has

(2.19) T, (H, (o)) — T(x)

whenever x € C, n; 1 oo, and H, (o) — x. Then wp 1 the sequence (T,(H,)) is rela-
tively compact in S’ and has C' = T(C) as its set of limit points. Moreover, the
following statement is true for almost all sample points w: for each subsequence (n;)
for which T, (H, (v)) converges to a point ¢' in C', the distance in S from H, () to
the set {ce C: T(c) = c'} tends to zero.

The somewhat complicated continuity condition involving (2.19) holds if, e.g.,
T,(x,) — T(x) whenever x, — x € C. Here are some consequences of Theorem 1,
each of which follows from Lemma 2.1 or a simple modification of it.

I. Lety,, n>1, and v be signed measures on the Borel sets of (0, o), and
suppose that each of these measures gives finite mass to sets bounded away from
co. Set

(2.20) v(f) = v ((0, ) and () = »((0, 1))

for 0 < r < co. We will say that the v,’s are M,-convergent with limit v (cf.
Skorohod (1956) Section 2.2.10) if
(2.21) lim, inf, ., v,(¢f) = inf ., ., v(?) and

lim,, SUp, <<, V,(f) = SUP, << V(F)
for all continuity points a < b of v. For nonnegative measures, (2.21) holds iff
v,(f) — v(7) for all continuity points r of v, that is, iff v, converges to v weakly.
In general (2.21) holds if v, * (resp. v,”) converges weakly to v* (resp. v7); this
is a consequence of the fact that, for left-continuous functions on (0, o) having
right limits everywhere, &, —,, § and 5, —,, nimply &, + 7, —,, § + nif § and
7 have no common points of discontinuity. On the other hand, the weak con-
vergence of the positive and negative parts of the v,’s is not necessary for (2.21),
as can be seen by setting v,(f) = n~'sin (nt), t > 0.

COROLLARY 2.1. Suppose that the measures v, are M,-convergent to v in the sense
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of (2.21). Suppose further that

(2.22) lim, ,lim sup, §§ 1/t|v,|(dt) = O and
lim,,,, lim sup, {5 log, t/t|v,|(df) = 0,

where |v,| = v,* + v, denotes the total variation of v,. Then

(2.23)  wp 1 the sequence (§ .H,™ dv,) is relatively compact with
[, Il as limit points;
here

(2.24) r=inf{o,()/t: 0t < oo} and I =sup{v*()/t: 0 <t < oo}
with (cf. (2.20))
V() = min (—v(1), —v(t+)) and v¥(f) = max (—v(t), —v(t+))

for0 <t < .

There is some additional information available about the shape of the function
«H,® when §  H * dy, is near y or I". Suppose, e.g., that y < 0. Put B =
{te (0, o0): v, (r)/t > y}and let V', be the set of x in K such that § x(¢) dt = —1
and such that {, dx(r) = 0. Then wp 1, for large n, § ,H,* dv, is near y only
if (H,* is near the set V, (cf. the end of Lemma 2.1). This is also true when
7 = 0, provided the requirement that { x(¢) dr = —1 is dropped from the defi-
nition of V,. Dual statements hold concerning I'.

For example wheny = v,, n > 1, is a unit mass at the point u € (0, o) one has

(2.25) r=—1/u and r=0

(compare (2.2) and (2.6)); the set V', above consists of the single function x, =
—1I, ,,/u. Wheny, places mass 1/n at the points j/n, 1 < j < n, the first half of
condition (2.22) fails; moreover, so does the conclusion (2.23), for in this case
§ H,*®dv, = 3., m;*®[log,n is known (when k = 1) to be almost surely as-
ymptotic to —k log n/log, n (cf. Grenander (1965)). It would be of interest to
know if (2.23) were true with , H,*(r) replaced by, say, ,H,* (1) — k/([nt] + 1).

II. As a consequence of (2.25), we have
(2.26) m,*®[(log, n/n) < ¢

infinitely often wp 1 for each ¢ in (—1, 0) (this is, of course, also implied by
(2.2)). This result can be sharpened, as follows. Let f, , be the random variable
which records the proportion of integers n between k and p such that (2.26)
holds. Put
e(c) = exp(—(le][" = 1)),  flog=1—¢(),

and let x, be the function in D given by

x,(t) = cfe(c), if 0<tr<e(),
(2.27) =c/t, if e(c)Zr<l,

=0, if 151r<o0.
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COROLLARY 2.2. Wp 1 one has
(2.28) 0 = liminf f,, and limsup, f, . = f(¢) ;
moreover, for large p, f, . close to f(c) implies that ,H *® is near x,.
III. For g€ (0, o), let
= min {n: m,® > —a}, if m® > —o

=0 , if mk"" é —a

Z

g

be the first passage time through level —o, and define Z, = (Z,(5))oc,<e0 DY
Z(5) = z./(t log, ™) .

The random processes Z, take values in —D = {—x: xe D}, and their almost
sure behavior as ¢ | 0 is given by

CoRrOLLARY 2.3. Wp 1, the net (Z,) is relatively compactin —D ast | 0, and its
limit points coincide with —K.

IV. The mode of convergence on D which we have been using, i.e., pointwise
convergence at continuity points, leaves something to be desired, in that it does
not clearly specify the behavior of a convergent sequence over neighborhoods
of 0 and of co. However, by making use of the interrelations among the , H,’s,
one can deduce that they are relatively compact under a stronger mode of con-
vergence, which does not suffer from the above-mentioned defect.

Let A be the class of bounded functions on (0, co) which are right continuous
and have left-limits everywhere. The graph, I',, of a function y in A is the subset
of (0, c0) x (0, co) consisting of all pairs (z, 8) such that 3 belongs to the closed
interval whose endpoints are y(t—) and y(r). A parameterization of I', is a one-
to-one continuous mapping

5 (2(5), 7(5))
of (0, o) onto I', such that 7 is non-decreasing. Following Skorohod (1956) we
take the M,-distance between y, and y, in A to be

p(y1> y2) = inf (sup {(|z5(s) — 74(s)] + [7:(s) — m(s)]): 0 < 5 < o0})
where the infimum is taken over all parameterizations (z,, ,) of y, and (z,, »,) of
¥ The corresponding metric topology on A is called the M,-topology.

Now let w be a continuous mapping from (0, oo) to (0, o) such that

(2.29) w(t) =o(t) as [0 and w(?) = O(t/log,t) as t1 oco.
Put

D, ={xeD:wxel}
and for x,, x, in D, set

d,(x}, X;) = p(wx;, wx,) .

The random functions ,H, take values in D, because of (2.2)—(2.6). Also,
K c D, since x(t) = —1/t for all ¢ and all x in K.
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CoOROLLARY 2.4. Wp 1, the sequence (,H,) is relatively compact in D,, under the
metric d,,, and its limit points coincide with the set K.

The proofs of the above corollaries are given in Section 8. We close this
section with a result which is intermediate between Theorem 1A and 1B. From
(2.4) and (2.5), it follows that the almost sure lim inf, and lim sup, of

(—log |m, ™| — log (n))/log, n

are —1 and oo respectively; this was brought to my attention by Wim Vervaat.
To formulate a functional analogue of this result we introduce the space D* of
non-decreasing right-continuous functions x: (0, co) — (— o0, co]. Convergence
of x, to x in D* is taken to be convergence at continuity points of x. A subset
C of D* is relatively compact iff it is uniformly bounded from below off of
neighborhoods of 0 and oo (cf. (2.11)). The techniques used to prove Theorems
1A and 1B also yield

THEOREM 1C. Put *H,® = (—log |M,*| — log (n))/log, n. Then wp 1 the se-
quence (*H,'*) is relatively compact in D*, and its limit points coincide with

(2.30) J={xeD*: x(t) = —1 for 0 < t< oo}.

In view of the rather uninteresting nature of the derived set J, we shall not
pursue this result in the sequel.

3. Extension to the non-uniform case. Suppose now that the random variables
X,, n =1, arei.i.d. as in Section 2, but not necessarily uniformly distributed
on [—1,0]. We are going to deduce analogues of the strong limit theorems of
Section 2 by means of a probability integral transformation. To see what is
involved, set &4 = 1 — F, where F is the common distribution function of the
X,’s, and put & = — 57 notice that ¥~(u) = & ~(—u), where % ~ and &~
denote respectively the inverse of % and of & (cf. (1.1)). Also, set %2 =
—log (%) and notice Z2~(u) = & ~(e~*)and & ~(f) = Z#~(log (1/1)). Let U,
n > 1, be i.i.d. random variables, each uniformly distributed on [—1, 0]. The
sequence (X,) can and will be represented by (¥~(U,)). By monotoneity, the kth-

largest of X, - .-, X, is then ¥~(kth-largest of U,, - --, U,), whence (cf. (2.8))
3.1 M,* = M, ®(X) = Z~(M,*U)),

where we let &~ act on functions in D by letting it act on each coordinate.
Using the same kind of convection for 2#~, we find from (3.1) that

(3.2) M,® = Z2~(log (n) — log,n — log |, H,*(U)|)

(3.3) M,® = Z2~(log (n) + (log, n)*H,*(U)) .

In order to get strong limit theorems for functions of the form (M,* — b,)/a,,
we are led, via the mapping Lemma 2.1 and the “pointwise” nature of the con-

vergences in Theorems 1A and 1B, to consider distributions F such that, for
suitably chosen numbers a, and §,,

(3.4) lim,_, (Z2(t 4 §(1)) — B)/a, = $)
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exists at all continuity points & of some non-decreasing, nonconstant function
I: (—o0, 00) = (— o0, co); we take f(f) = 1 in conjunction with (3.2) and f(r) =
log (¢) in conjunction with (3.3).

The characterization of functions .22~ satisfying (3.4) can be given conven-
iently in terms of the asymptotic theory for non-decreasing functions worked
out by L. de Haan (see, e.g. de Haan (1970)) and others. We shall quote a few
results from this theory, and refer the reader to Vervaat (1974) for a more detailed
exposition. It turns out that the only possible limits / in (3.4) are, up to changes
of scale and location on the target space of /, the functions '

(i) &) =—e, a>0;
(3.5) (i) I(§) =e*, a>0; and
(iii)y 4§ =¢.
In case (i), one has “Z~(c0) = sup{t: F(f) < oo} = t, < oo and
(3:6) (Pt + Ef(1) — P (00)[(F(00) — (1) —> —e

for all real £&. In what follows we shall assume in this case that 7, = 0; this can
always be achieved by a change of location. In case (ii), t, = co and

(3.7) B(t 4 Ef(1)] (1) — et
for all real £. Finally, in case (iii), one has
(3-8) (Z(1 + E(0) — @O~ + f(1) — (1) — &

for all real §&. We shall write .22~ e A(f) to mean (3.8) holds; similarly
%~ eI'*(f) means (3.7) holds, and 2~ € I'~*(f) means (3.6) holds, along with
our convention that t, = 0. The classes I'~%(f) and I'“(f) are connected via the
relation ¢ e I'~*(f) iff ¢ e ['*(f), when ¢(#)¢(r) = —1 for all large +. The nor-
malizing constants used in (3.6), (3.7) and (3.8) are unique up to an equivalence;
indeed, given that (3.4) holds, one has (Z2~(t + (1)) — b,)/a, — I() for all & iff

(3.9) aja,—~1 and (b, — p)ja,— 0.

For purposes of comparison with our strong limit theorems, it will be instruc-
tive to recall the corresponding weak limit properties, at least for the sequence
of partial maxima (m,™") (cf. (2.1)). In this connection the distribution function
F of the X,’s is said to belong to the.domain of attraction of a nondegenerate
distribution function Q, written F e 7(Q), if there exist numbers a, > 0 and
b,, n = 1, such that

(3.10) Pr, {(m," — b,)/a, < t} = F(a,t + b,)" — Q(¢)
at all continuity points 7 of Q. Only the following types of distribution functions
have domains of attraction:
(3.11) (o t > exp(—|t%), if tr<0
—1, if +t<O0;
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(3.12) b, t—0, if t<O0
—exp(—1t79), if t=0;
(3.13) A:t—exp(—e™), for —c0 <t< .

In (3.11) and (3.12), a is an arbitrary positive number.

One has F e Z(¢,) iff ¢, is finite, say 0 for convenience, and &2~ e I'"V%(1) (1
denoting the function f(r) = 1 for all ), or equivalently, & ~ e #7 (1/a), or
F e BV (a). In this case, (3.10) holds with

(3.14) b, =0 and a, = —AF~(logn) = —F ~(1/n).

Similarly, one has Fe 2(¢,) iff 1, = co and 2~ eI'V%(1) or equivalently,
F e BV (—1]a), or F € BV (—a). In this case, (3.10) holds with

(3.15) b,=0 and a, = #~(logn) = & ~(1/n).
Finally, one has F e Z(A) iff 2~ € A(1); in this case (3.10) holds with
(3.16) b, = #~(logn) = F ~(1/n) and

a, = #~(log(n) + 1) — ZZ~(logn) .
Various necessary and sufficient conditions for F e &Z(A) have been given, e.g.,
by de Haan (1970) and Marcus and Pinsky (1969); these conditions are rather
complicated. A simple sufficient condition, due to von Mises and slightly ex-
tended by Gnedenko, is that F be twice differentiable in a left neighborhood of
t,, and that

(3.17) lim,,, (1/i)(1) = 0;
here (and in what follows) ’ denotes differentiation and
iit— F()F(t) = Z'(1)
is the so-called intensity function. Condition (3.17) implies (3.10) with
(3.18) b, = F ~(1/n) and a, = (#~)(logn) = 1/i(d,) .

In discussing our strong limit theorems for the processes M,*’, we shall treat
the cases of 2~eI'~%(f), I'*(f), and A(f) for f =1 and for f = log. One
could, of course, give analogous results for ¢(M,*), where ¢ is some non-
decreasing function, e.g., by assuming ¢(2~) € A(f). Weshallnotdo this, except
for one case motivated by Theorem 1B, namely with o(f) = log (¢) (or —log |#[)
and f = log.

In stating the following results, we have adopted the convention of writing, e.g.,

x,— C
to mean that sequence (x,) is relatively compact and has the set C for its limit
points.

I. &#~eTl'~*(1) or &2~ eT'*(1). Suppose first that <2~ e I'-*(1), or equiva-
lently, t, = 0 and % ~ € A7 (a). Here we have
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THEOREM 2A,. If &2~ el'~*(1), then wp 1
(3.19)  MW)(—5~(log,njn)) — —|K|* = {xe D_: § |x(n)"* dr < 1}
in D.

Theorem 1A is actually a special case of Theorem 2A,. With appropriate
changes, the corollaries of Theorem 1A go over to the present setting. For ex-
ample, after replacing log, n/n in (2.26) by — % ~(log, n/n), (2.28) becomes

limsup, f,. = 1 — exp(—(l¢|™¥* = 1)) wpl
for ce[—1,0]. If & ~ varies “sufficiently regularly,” then
— . ~((1/n) log, n) ~ a,(log, n)*

where a, is given by (3.14). This is the situation, e.g., if for some positive C
and finite S8

(3.20) F(r) ~ Cle]=(log (1/]#]))?
as t 1 0, or equivalently,
F(u) ~ —Cu(a log (1/u))==*

as u | 0. In most situations of interest, one has (3.20) with 8 = 0; this is the
case, e.g., when — X, is distributed as Beta (1/a, ) (with ¢ arbitrary) or Gamma
(1/a, ) (with the scale parameter ¢ being arbitrary).

Similar results hold when 22~ e I'*(1), or equivalently, ¢, = co and & ~ ¢
F 7 (—a), as is the case when X, has a Pareto distribution with- parameter 1/a,
or (for @« = 1) a Cauchy distribution. Recall that the space D* was defined prior
to (2.30).

THEOREM 2A,. If o2~ e'*(1), then wp 1
(3.21) M, ®| 5 ~(log,njn) — |K|=* = {x e D, *: { x(/)"V=dt < 1}
in D*.

In particular the almost sure limit points of m,* /.5 ~(log, n/n) coincide with
[1, oo], and for c € [1, o] one has

lim Sup, p=* 5 gy /- r(m,®) 5 (10g, njm)) = 1 — exp(— (e — 1)
wp 1.
II. “2~eA(l). Here we have
THEOREM 2A;. If &2~ e A(l), then wp 1

(3.22) (M, — F~(log, nn))/(~ ~(e~*log, n/n) — & ~(log, n/n))
— —log |K| = {xeD*: §e*®dt < 1}

in D*,
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Under the Gnedenko-von Mises condition (3.17), this simplifies via (3.9) to
(3.23)  (M® — ~(log,n/n)/(1/i(.5~(log, nfn))) — —log |K] .

Under the slightly stronger condition that

(3.24) lim, ;,, (log, “2(1))*(1/i)(t) = ¢
for some ¢ € (— o0, o), (3.23) in turn gives rise to
(3.25) (M, % — b,)/a, 4+ logsn — ¢/2 — —log |K]|

where a, and b, are given by (3.18).

Condition (3.24) is easily seen to be satisfied with ¢ = 0 when F is normal,
lognormal, Gamma, or Weibull. Examples of distribution functions for which
(3.24) holds with ¢ # 0 are obtained by taking

‘_7';([) — t—(logst)z/c

for ¢ > 0, and & (1) = 57 ,(—1/t) for ¢ < O; in the latter case, r, = 0. Some
discrete distributions satisfy the hypothesis of Theorem 2A,. For example, if X,
takes on only nonnegative integral values and Pr {X, = j} = y exp(—c¢j*) for
positive 7, ¢, and B, then &2~ e A(1) iff 8 < 1; notice that 8 = 1 corresponds
to the geometric distribution.

Applying (3.25) when F is the standard normal distribution function, we find,
after setting

a, = 1/(2log (n))? and B, = (2log(n) — log,n — log 4r)t
and using (3.9), that the almost sure limit points of
(m, " — B,)|a, + logyn
coincide with [0, co], and that the proportion of integers n < p for which
m, < (¢ — logy n)/(2log (n))t + (2 log (n) — log, n — log 4x)?
has an almost sure lim sup of 1 — exp(—(e° — 1)), for 0 < ¢ < oo.

II. 22~ e I'-%(log) or 2~ e I'*(log). Suppose first that .22~ € I'-*(log); recall
our convention that 7, = 0 in this case. We have

THEOREM 2B,. If 22~ eI'~*(log), then wp 1
(3.26) M, ® (-5 ~(1/n)) > —exp(—al,)
in D.

It is known (cf. de Haan (1972)) that a necessary and sufficient condition for
=2~ e I'*(log) is that (for r < 0)

(3,27) j’(t) — C(t)—logg(c(t))/a
where { € Z#7(1). Sufficient conditions are
(3.28) lim,,, (log Z2(1))/(ti(t)) = —a
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and the slightly stronger
(3.29) lim,,, (log Z2())(1/i)'(t) = —a

(compare with (3.24)). .

Similar results hold when <2~ e I'*(log); everything above carries over with
the minus signs deleted, and all appearances of 0 replaced by co. In particular,
the analogue of Theorem 2B, is

THEOREM 2B,. If Z#~ e T'*(log), then wp 1
(3.30) M, ® | ~(1/n) — exp(aL,)
in D.

IV. &2~ e A(log). It is known (cf. de Haan (1972)) that <2~ e A(log) iff
#~(t) = V(t/log t) for some Ve A(l), or equivalently, iff the mapping u —
F2~(ulog (u)) is in A(1).

THEOREM 2B,. If <2~ e A(log), then wp 1
(3.31) (M, ® — F=(1m)/(Z~(1/(nlog n)) — F=(1/n)) > L,
in D.

Under a condition a little stronger than the Gnedenko-von Mises condition
(3.17), namely

(3.32) lim, ., (log Z2(1))(1/iY (1) = O
(compare also (3.24) and (3.29)), we get
(3-33) (M, — b,)/(a, log, n) — L,

where a, and b, are given by (3.18). Condition (3.32) is satisfied by the normal,
lognormal, Gamma, and Weibull distributions.

Theorem 2B, and its corollary (3.33) extend to the functional setting some
results due to Pickands (1967), de Haan and Hordijk (1972), and Resnick and
Tomkins (1973). When &2~ e A(1) n A(log), (3.22) and (3.31) specify the “bot-
tom” and “top” behavior of the M,*’s in the spirit of Theorems 1A and 1B.

An interesting class of discrete distributions to which Theorem 2B, is applicable
are the negative binomial distributions, under which one has

(3.34) Pr{X, =j} = (=1)(7)p*(1 — p)?, j=012, ...
for some parameters @ > 0 and 0 < p < 1. Utilizing (3.9), we find that when
(3.34) holds, then wp 1

(3.35) (M,* — glogn)/(clog,n) —(a— 1)+ L,,

with ¢ defined to be 1/log (1/(1 — p)). On the other hand, the Poisson distribution
with mean g lies just outside the domain of applicability of Theorem 2B, be-
cause in this case Z2(j) — F2(j — 1) = log (j) — log (#) + O(1/j) as j — oo, 5O
that 22~ ¢ A(log).



LOGLOG LAWS FOR PARTIAL MAXIMA 215

V. A logarithmic case.

THEOREM 3. If either

(3.36a) t, =0 and —log |&#~| e A(log) , ’ or
(3.36b) tp = 00 and log 22~ € A(log) ,
then wp 1

(3.37)  log(M,*]|Z~(1/n))[log (& ~(1/(nlog (n))/.Z ~(1/n)) — L,
in D.

Actually under (3.36b), the left-hand side of (3.37) may be undefined at time
points ¢ in a neighborhood of 0; however, since m,* — co wp 1, this neighbor-
hood shrinks to 0, and we may and do ignore it.

Condition (3.36a) is satisfied if & ~e 27 (a) (equivalently, if & ¢
A7 (1]a)), and in this case (3.37) implies

(3.38) —log (|M,®|/|.=~(1/n)])/(« log n) — L,
wp 1. Similarly (3.36b) holds if &~ e A7 (—a), and in this case
(3.39) log (M,*)*/.Z~(1/n))/(« log,n) — L,

wp 1. Combining (3.19) and (3.38) we get bottom and top analogues of Theorem
1A and 1B for the case of &~ € 27 (a); similarly for (3.21) and (3.39) in the
case that &~ € 27 (—a).

The validity of (3.37) is by no means restricted to the regularly varying case.
For example, (3.36b) holds for

(3.40) (1) = e-tosvTn
for any positive y and d; the regularly varying case has y = 1.

4. Proofs for Section 3. Throughout this section, we shall write . for .Z2~.

(a) The method of proof of Theorems 2 and 3. The main theorems in Section
3 are proved by combining Theorems 1A and 1B, the mapping Lemma 2.1, the
representations (3.2) and (3.3), and the following

LemMA 4.1. Suppose (3.4) holds, i.e., that as t — co

(4.1) (A + E10) = B)fa,— )
for all continuity points & of I. Then x, — x in D implies that
(4.2) (At + xf(1) — B)fa.— U(x)

in D, with the understanding that the right-hand side of (4.2) is defined .by letting |
operate on each coordinate of x.

Proor. We have seen (cf. (3.5)) that / must be continuous. As the functions
& and [ are non-decreasing, the convergence in (4.1) must be uniform for ¢ in
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compact sets. This implies

(A + S S(0) — B — U(E)
whenever &, — & in (—oo, o0), and as convergence in D is simply pointwise
convergence at continuity points, (4.2) follows. []

(b) Proof of corollaries (3.23) and (3.25) to Theorem 2A,. Suppose first that
the Gnedenko-von Mises condition (3.17) holds. Using

(4.3) ) = 12(AW) = 1i(AD)
it is easily seen that (3.17) implies

lim,_,, (log &) () = 0.
The mean value theorem (MVT) then implies that as ¢ — oo

Nt + 0) ~ (1)

uniformly for bounded ¢ values, and another application of the MVT gives
(4.4) A+ — ) ~ £770)
for all real §&. Thus &7 € A(1), and, in view of (4.4) and (3.9), (3.22) implies
(4.5) (M — A(log () — log, n))/("(log (n) — log, n)) — —log|K] .

Together with (4.3), this gives (3.23).
Next suppose (3.24) holds, or equivalently,

(4.6) lim, ., (log, t)*(log &")'(1) = c.
The MVT gives
4.7 St — flog, t) ~ (1)

uniformly for bounded ¢ values, and this, a second-order Taylor expansion, and
(4.6) imply

(a8 LU= 125353_ L 4 togyr - £

_ (log, 1)>~"'(t — 0, 1log,t) ¢ 0
2(1) 2 '
Combining (4.7) and (4.8) with (4.5), and using (3.9), we arrive at
(M, — (log n))/~"(log n) + log,n — ¢/2 — —log |K|,
which is the same as (3.25).
(c) A remark concerning conditions (3.28) and (3.29). That (3.28) implies
& e I'"*(log) is a consequence of the MVT. That (3.29) implies (3. 28) is essen-

tially proved in de Haan and Hordijk (1972), page 1193.
(d) A remark concerning (3.33). Condition (3.32) is equivalent to

lim,_,, (log t)(log &) (1) = 0
and thus (3.33) follows from (3.31) by virtue of (3.9) and the MVT.
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(e) Proof of (3.35). Itis enough to show that under (3.24)
Au) = a(u + (a — 1 + o(1)) log (u))
as u — oo, or that
SA(j) = jlo — (a — 1 + o(1)) log (j)
as j — oo through the integers, or that
(4.9) () — A(J — 1) = 1Jo — (a = 1 + o(1))]j
as j — co. But
F(j) — A(] — 1) = —log (1 — 1))
ri = [il(Zizi f))

fo=PriX, =l =a(a+ 1) (@+ (= Dl = p)l
fori=0,1,2,.... Thus

where

with

Ir; =14 Xa-iSmis
Smi; = (1T (1 + (@ = D/ + D))g™

where

withg =1 — p.
To carry the argument further, we suppose that @ > 1 (the case of a < 1 is
treated in a similar manner, and will be omitted). Then

Smiy = (q(1 + (@ = /)™
Moreover, if ¢ is any positive number slightly less than 1, some simple estimates
(such as (1 + x) = e’ for positive x near 0) show that

Smis Z (9(1 + 0%a — D))"
provided j is sufficiently large and m < jt. After summing on m, letting j — oo,
and letting ¢ approach 1, we arrive at (4.9).

(f) A remark on (3.39). From Karamata’s representation theorem (Feller
(1971) page 282), it follows that .5~ being of regular variation of exponent —a
at 0 implies

F((1n)(1log m))[. 7~ (1/n) = (1/log m)==+e®
as n — co. Hence (3.39) follows from (3.37) and (3.9).

5. How to identify limit points. The following lemma is a useful aid for
identifying the limit points of a random sequence.

LeEmMMA 5.1. Let (Q, &, P) be a probability space. Let S be a separable metric
space and let H,, n = 1, be mappings from Q to S.

(a) Let C be a subset of S. Suppose there exists a sequence (n;) tending to oo
such that

5.1 {the sequence (H,),., has a limit point in C}; C {the sequence
(H,,;)jz1 has a limit point in C} wp1 and such that each x
in C has a neighborhood N, such that
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(5.2) P{H,.e N, forinfinitely many j} =0.
Then
(5.3) P{the sequence (H,) has no limit pointsin C} = 1 .

(b) Let B be a subset of S, B, a dense subset of B. Suppose that for each x in B,
there is a neighborhood base (N,);., at x such that

(5.4) P{H, e N; for infinitely many n} = 1
for each j. Then
(5.5) Plevery point of B is a limit point of (H,)} = 1.
ProOF. (a) As C is itself separable, there exist countably many points x,,
i = 1, in C with neighborhoods N, satisfying (5.2), such that

C C Uisicoo interior (N,).
But then

{(H,;) hasa limit point in C} C Uigi<e {H,;e N, for infinitely many j},

so (5.3) holds by (5.1).
(b) Let {x: i = 1} be countable dense subset of B,. Letting d be a distance
function for S, one has

N {liminf, d(H,, x) = 0} = N4, {lim inf, d(H,, x;) = 0} .
The set on the right has probability one by (5.4). [J

Typically, one would use some form of the first and second Borel-Cantelli
lemmas to verify (5.2) and (5.4) respectively. When S is the space D (or D_) of
Section 2, one can use the lemma below to check condition (5.1).

LEMMA 5.2. Let (H,) be a sequence of random functions in D. Suppose there
exist constants a,, ,,, b and c,, , such that

(5.63) H’n(t) = a'm,nHm(bm,ﬂt) + cm,n

m,n?

for all m, n, and t, and such that

(5.6b) ap,— 1, b,.—1, and Cpn—0

whenever m and n tend to co in such a way that njm — 1. Then (5.1) holds for any
sequence (n,) satisfying
(5.7 n; — oo and nifn;_,—1.

Roughly speaking condition (5.6) says that the H,’s change slowly with n.

We have stated the condition in form convenient for our purposes; it should be
clear through that it can be modified in many ways.

6. Proof of Theorem 1A. In this section we will simply write H, for ,H,*
(defined by (2.17)). H, takesall its values in D_, so we may and will replace D by
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D_ throughout. For convenience, the proof will be divided into several lemmas.

The first of these concerns the topology of D_. Suppose xe D_. Let .47(x)
denote the class of subsets of D_ of the form
(6.1) Nit;G) = N(t,, ---, t;;Gy, --+,G)

={reD_:y(t,)eCG, 1 =p=gq},
where

(a) 4, < --- < t,is a finite system of continuity points of x,

(b) the G,’s are open subintervals of (—oco, 0] which increase with p, in the
sense that for each p, either G, = G,,, or sup (G,) < inf (G,,,), and

(C) x(tp) € Gp’ 1 é P é q-

LEMMA 6.1. There exist sets N,, = N(t™, G™) in .4"(x) for m = 1, such that
(6.2) {N,: m =1} isa neighborhood base at x
(6.3) Kp = 25, (,™ — tim) sup (G,™) — £(x) as m-— oo .

We recall that «(x) is defined by (2.11); by convention 7™ = 0.

ProoF. Let s, 5,, 5;, - - - be an enumeration of a countable dense subset of the
points of continuity of x in (0, co). For each m, let t™ = (y,/™, ..., ,™) be
the points s, ---, s, arranged in increasing order. Choose intervals G,™
(1 £ p £ m)such that N,, = N(t™, G™) e .#7(x), and such that each G,™ has
length less than 1/m. Elementary convergence considerations show that (6.2)
holds.

To show (6.3), let x,, € D_ be the function which takes the value sup (G,™)
over the interval [#{™), t,*™) (= (0, ,/), if p = 1) and the value O over [7,™, o0).
Then x,, = x, and so
(6.4) K, = K(X,) = £(x)
for each m. On the other hand, x,, — x; indeed, for any j and any ¢ > 0, we
can find i and / such that s, < s; < s, and x(s;) — x(s;) < e, which implies
lim sup,, |x.(s;) — x(s;)| < e. The uppersemicontinuity of £ then implies x(x) =
lim sup,, #(x,); together with (6.4), this gives (6.3). []

LEMMA 6.2. Let N(t, G) be a set of the form (6.1). Put g, = sup (G,). Then
(6.5) Pr {H, € N(t, G)} = 1/(log n)+°®) Z1spsq tp=tp=110sl
asn— oo. ‘

Proor. For any finite collections (4;);.,and (B;);., of events such that 4; C B,
for each je J, one has

Pr(Mjes (B; — 45)) = Lo (=D V" PP(Nier B) 0 (Nyes-14i)) >

where the sum is taken over all subsets 7 of J. In view of the form of the set
N(t, G), it therefore suffices to show that

(6.6) Pr{H,(1,) <9, 1 <p=q}=exp(—(l+01) X, (t, = 1,-1)I0,|l0g: ) -
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Moreover, because the sample paths of H, lie in D_, we need only consider the
case in which

(6.7) $<gp< - <9,<0.
For each Borel set B of (0, o) x (— oo, 0], set
Ua(B) = Tigice I5((i[n, X;[/(log, njn))) ,
where I, is the indicator function of B, and X,, X,, - -. are the i.i.d. uniform
random variables of Section 2. When Bis a “block,” that is, the product of two

finite intervals, an easy calculation based on the binomial probability formula
shows that for each integer a > 0, one has

(6-3) Pr {¢,(B) = a} ~ (|B|*(log, n)*/a!)e~'?1o8z"

as n — oo; here |B| denotes the area of B. Moreover, for any finite collection
(B;);e, -of disjoint blocks, the multinomial probability formula may be used to
show

(6.9) Pr{p.(B;) = a;, jeJ} ~ Il ey Pr {1 (B;)) = a;}

for every choice of a;, je J.
Because of (6.7), the event {H,(1,) < g,, 1 < p < g} can be rewritten as

{10, 1,] x (9,,0) <k — 151 < p < g}
and this in turn can be expressed as a finite disjoint union of events of the form
{1u(B;) = a;, je J}

where for (B,),., we take the collection (1, ,, 1,] X (9, 9punl; P =P < ¢,
1 < p < g (with g,,, = 0). These blocks have a combined area of

Zp (tp - tp—l)lgp|
and so (6.6) follows from (6.8) and (6.9). []
LEmMA 6.3. Wp 1, (H,) has no limit pointsin C = {xe D_: k(x) < —1}.

Proor. We shall make use of part (a) of Lemma 5.1, with n; = [ei/los7].
Since (ignoring the greatest integer function)

(6.10) H,(1) = ((log, m[m)/(10g, n/n))H,,((n[m)?) .

Lemma 5.2 implies that (5.1) holds. Next, let xeC. By lemma 6.1, x has a
neighborhood N(t, G) of the form (6.1) such that ¥, (1, — ¢, ,)|sup (G,)| > 1.
Setting N, = N(t, G), we find that (5.2) holds, because Lemma 6.2 implies

(6.11) 2iPr{H, eN} < oco. , O
Lemma 6.4. Wp 1, (H,) is relatively compact in D_.

Proor. In view of (2.11), it suffices to show that for each ¢ e (0, co) one has
H,(f) < —2/t i.o. with probability zero. This can be proved by an argument
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similar to that used in Lemma 6.3; note that Lemma 6.2 implies
Pr{H, (1) < g} = 1/(log n)*+ential 0

LEMMA 6.5. Let N(t, G) be a subset of D_ of the form (6.1) with G, = (f,, 9,),
and suppose that

(6‘12) r= lepéq (tp - tp—l)lgpl <l.
This if 0 < e is sufficiently small and n; = [exp(j***)], one has
(6.13) Pr{H, . eN(t, G) io}=1.

Proor. We shall show that (6.13) holds whenever ¢ < y=* — 1. Choose and
fix such an ¢. For each j, one has

(6.14) {H, e N(t,G)} D 4, n B;,

where
Ay = {max (X, -, Xp,,_ 1) < filogynjin;}
and

B; = Migps, {kth largest of X, ., 100 -5 Xy, € (logy ny/n))G}
Since n;_,/n; — 0, the B,’s are (for large j) mutually independent events with
P(B;) = 1/(log n,) 1 = 1 joecnurar
as j— oo (cf. theargument of Lemma 6.2); the second Borel-Cantelli lemma gives
(6.15) Pr (limsup; B,) = 1.
On the other hand,
Pr(4;) =1 — (1 4 (fin;_in;7 logy ny)[n;_p)mi-tal
~ Lol flnjan; ™ log, n; < (1 4 )t |fi] log (j)/exp((1 + €)(j — 1))

so the first Borel-Cantelli lemma implies Pr (limsup; 4,°) = 0, or what is the
same,

(6.16) Pr(liminf, 4,) = 1.
Together (6.14), (6.15), and (6.16) give (6.13). ]
LeEMMA 6.6. Wp 1, every point of K is a limit point of (H,).

ProoF. The set of x in D_ such that x(r) < 0 for all r and such that § x(¢) dt >
—1lisdensein K. By Lemma 6.1, each such x hasa neighborhood base consisting
of sets of the form N(t, G) satisfying the condition (6.12) of Lemma 6.5. In view
of this and Lemma 6.4, the assertion follows from part (b) of Lemma 5.1. [J

Together, Lemmas 6.3, 6.4, and 6.6 yield Theorem 1A.

7. Proof of Theorem 1B. Theorem 1B is in effect a statement about the kth
largest order statistics arising from a sequence of i.i.d. exponential random vari-
ables, and so in this section we will change the notation accordingly. Thus we
suppose that X, n > 1, are independent random variables, each exponentially
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distributed with mean 1, and we put

H,(1) = (M, (1) — log m)/log, n
(cf. (2.8)). Our task is to show that the sequence (H,) is relatively compact in
D and has L, for its limit points. As in the previous section, we will divide
the proof into several lemmas.

The sets N(t, G) defined by (6.1) continue to play a fundamental role. How-
ever, since we are now working in D rather than D_, the definitions made
at the beginning of Section 6 need to be modified by replacing D_ by D and
(—o0, 0] by (— o0, o) throughout. We assume henceforth that the reader has
made these changes.

Lemma 7.1. Let N(¢,, - - -, t; Gy -+, G,) be a neighborhood in D of the form
(6.1), with the G, = (9, h,)’s satisfying
0<yg, and h, < oo

Let &# = {1} U {p: 2 < p < qand G,_, + G}, and let p be the largest element of
. Then as n — o,

(7.1) Pr {Hn e N(t’ G)} — 1/(10g n)(l+o(l))(2p69;p<q 9p+kgp) .

Proor. For each Borel set B of (0, c0) x (0, co) set

Ua(B) = Tigicw Is((i/n, (X; — log n)/log, n)) .
Suppose B is a set of the form
(7.2) (5, 1] x G
where G is an interval with ¢ = inf (G) > Oand £ = sup (G) < c. Making use
of the binomial probability formula, one gets
Prip,(B) = a} = (1 + o(1))((r — 9)/(log m)*)*/a!

Prip(B) > a} < Flpsa (n(t — 5) + 1)*(1/(n(log ny?))*/b! = o(Pr {12,(B) = a})
for each integer « > 0. Thus for any set A of nonnegative integers,
(1.3) Pr {¢,(B) € A} ~ ((t — 5)/(log n)?)*/a!
where a is the smallest element of 4. An analogous argument using the multi-
nomial probability formula shows that

(7.4) Pr{p.(B;)e A, jeJ} ~ Iles Pr{p.(B;) € 4}
for any finite collection (B;),., of disjoint sets of the form (7.2), and any sets
A; of nonnegative integers.

We shall now give the proof of (7.1) in the case that p > 2. On the one hand, the
event {H, € N(t, G)} contains the event U, n V, n W, where, with T, = (1,_,, ,],
Up = {pTy x G)) = 1, pr,(Ty x [hy, 9,]) = 0, (T, x G,) = k' — 1,

Ty x [h,, 00)) = 0}
Va = Myzzpes {al(T, x G,) = 1 and p,(T, x [, c0)) = 0}
W= Mozspes {#a(T, X (9,5 0)) = 0} .
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On the other hand, {H, € N(t, G)} is contained in the event

(n1§p<p,p69 {ﬂ"((o, tp] X Gp) Z 1}) n {/j"((o, tp] X (gp’ Oo)) Z k} *

Combining these observations with (7.3) and (7.4), we get (7.1). When p = 1,
the argument goes through with U, replaced by

{pn(Tl X GI) = k’ #'a(Tl X [hl’ OO)) = 0} ‘ D

Lemma 7.2. Wp 1 (H,) has no limit points in C = {xe D : A,(x) > 1}.

ProoF. The proof is similar to that of Lemma 6.3. Equation (6.10) has a
counterpart in
(7.5) H,(t) = (log, m[log, n)H,,((n[m)t) + (log (m/n))/log, n ,
and we can get a counterpart to (6.11) in the following manner. Suppose x e C.
Referring to the definition of 2, (cf. (2.14)), choose continuity points 7,, 1 <
P =< g, of x such that

t1<t2< <tq’
0 < x(t) < x(ty) < -+- < x(1,),
x(t) + -0 4 x(t,) + kx(t) > 1.
Choose intervals G, = (g,, #,), 1 < p < ¢, such that
0<o<h<- - <9, <h, and Yip<a ¥y + kg, > 1.
Then with n; = [ei/'°87], one has
2 Pr{H, eNt, -, 1;G, ---,G)} < o0

by virtue of Lemma 7.1. []

LemMma 7.3. Wp 1, (H,) is relatively compact in D, and all its limit points are
contained in D .

Proof. In view of (2.11), we have to show that wp 1
(7.6) 0 < lim inf, H,(1)
7.7 lim sup, H,(1) < oo
for each 7 in (0, 00). An argument similar to (but easier than) that of Lemma

7.2 gives (7.7). In view of (7.5), with m set equal to [nt], it suffices to show
(7.6) for t = 1, and thus to show that wp 1

(7.8) 0 = lim inf, H,(1).

But (7.8) is equivalent to (2.7), which we know holds because (2.2) (which
implies it) is a consequence of Corollary 2.1 to Theorem 1A. []

LeEMMA 7.4. Let
(7'9) N(t’ G) = N(tlr Ly, 1, Ly - ey t2q—l’ tzq; Gl’ Gl’ Gz’ Gza Y Gq’ Gq)
be a neighborhood in D of the form (6.1), with the G, = (9,5 h,)’s satisfying
(7.10)  0<o<Mh<- - <g,<h <o and ¥,.9,+ks, <1.



224 MICHAEL J. WICHURA

Then if € > 0 is sufficiently small and n; = [exp(j***)], j = 1, one has
Pr{H,. e N(t,G) i.o}=1.
Proor. The proof is entirely analogous to that of Lemma 6.5. []
LeEmMA 7.5. Wp 1, each point of L, is a limit point of (H,).

Proor. The proof is similar to that of Lemma 6.6. The set of x in D such that
x(0+) > Oand 4,(x) < I is dense in L,. Each such x is a step function having
only finitely many jumps, and so has a neighborhood base of sets of the form
(7.9) satisfying condition (7.10). [J

8. Proofs of the corollaries to Theorem 1A. Throughout this section, we
will write H, for ,H, *.

(a) Proof of Corollary 2.1. For convenience we will divide the proof into
several lemmas. Throughout this subsection we will write w(r) for ¢, when ¢ is
near 0, and for t/log, t, when ¢ is near oo.

Lemma 8.1. The M,-convergence of v, to v and (2.22) imply
(8.1) lim, , §¢ 1/w(?)|v|(df) = O and lim,,,, §5 1/w(5)|v|(dt) = 0,
where |v| is the total variation of v.

Proor. Ifa =t < 1, < --- < t, = b are continuity points of the function v
defined by (2.20), then (2.21) implies
2esi |0(1) — v(t_y)| = limy, 37,5 |v,(8) — v,(8-0)] -
It follows that the total variation of v over [a, b] does not exceed lim inf,
of the total variation of v, over [a, b]. But this means that |v|((a, b]) <
liminf, |v,|((a, b]). After approximating 1/w from below by step functions and
invoking (2.22), one gets (8.1). []

LemMA 8.2. Suppose v,, n = 1, and v satisfy (2.21) and (2.22). Suppose also
that x, — x in D_, and that
(8.2) lim, , lim sup, sup,., w(f)|x,(f)] < oo and

lim,,, lim sup, sup,,, w(f)|x,(f)| < oo .
Then

(8.3) §vidé =§x,dv < liminf, § x, dv, < limsup, § x,dv, < § x*dv
= s ¥ d&' )

where
(8.4) v, () = min (—v(f), —v(t+)) and v*(t) = max (—v(r), —v(t+)),

xx(1) = x(1) , if v{1h)=0
(8.5) = x(t—), if v{t}) >0 and

Xy =x(t=), if »({1) <0

= x(1), if v({th) =0,
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and & is the nonnegative measure on the Borel sets of (0, co) such that
(8.6) x(t) = —£&((1, o))
forall te (0, o).
Proor. Put C = {r€ (0, oo): ¢ is a continuity point of vand of x}. Leta < b
be points in C. Let p, be the measure on the Borel sets of (0, co) defined by

t.(B) = v,(B N (a, b)), n = 1; similarly, define p by u(B) = v(B n (a, b]). A
straightforward calculation shows that

8.7 the p,’s are  M,-convergent with limit 4 .
Now write

(8.8) §x,dv, = Spa X, v, + § x,dy, + §4.0) X, dv,
(8.9) §x*¥dy = (g qx*dv4 §x*dp + §40 X*dv.

By (2.22), (8.1), and (8.2), the first and third terms on the right-hand side of (8.8)
and (8.9) can be made arbitrarily small by choosing (as one may) a sufficiently
small and b sufficiently large in C. So to establish

(8.10) limsup, § x,dv, < § x*dv
it suffices to show
(8.11) limsup, § x, dy, < § x*dp .

For this, let £, be the nonnegative measure on the Borel sets of (0, co) for
which £,((f, o)) = —x,(7) for all r. By Fubini’s theorem

S Xn d/,l” = S u, dEu

where u,(t) = —,((0, 7)). If Tisa system of pointsa =1, < t, < -+ <t, = b
in C, then by (8.7) and the weak convergence of x, to x, we have

limsup, §u,df, < §u,*d§,

where
u*(t) =0, if 0<t=<a
= Suptp_lérétp u(f) ’ if tp—l < t é tp ’ 1 é P é ‘]
= u(db), Cif t, <t oo

with u(f) = —p((0, 1)). Letting T grow dense in [a, b], we get

limsup, § x, dy, < § u* dé,
where .
w*(1) = max (u(r), u(t+)) = u(t) + 0,(u(t+) — u(t))
with
0,=0, if u(t) = u(t+)
=1, if w() <u@+).
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Thus
§ ux(né(dr) = §u(né(dr) + 2. 0.(u(t+) — u(t))(x(r) — x(t—))
= Yxdp + Z,0.x(1—) — x(t))p({1})
= {x*dp

(cf. (8.5)), and so (8.11) holds.

This completes the proof of (8.10). An application of Fubini’s theorem shows
that § x* dv = { v* d¢, and thus that the right half of (8.3) holds. The left half
of (8.3) follows by a similar argument. []

LEmMMA 8.3. Wp 1, one has
(8.12) lim, , lim sup, sup,, w()|H,(f)] < o
(8.13) lim;,, lim sup,, sup,., w(r)|H,(r)) = 0.
ProoF. We consider first the situation as §  co. Here

W H,(1) = 1, .miz,/((log , nt)/n1) ,

L, . = log, nt/((log, t)(log, n)) .

Calculus shows that sup,,,/, , = I, ;, from which (8.13) follows because

where

(8.14) lim sup; |m;*|/(log, j/j) < co wp1

(cf. Lemma 6.4).
For ¢ near 0, we have w(t)H (1) = tm¥)_, 1..;,/(1og, n/n), so

Sup,<, w()|H,(1)| < k*/log, n + (l0g, nd/log, n) SUp,.;, <<, (Imiky|/((log, nt)[nt))
where k* = max (k, 3). Combining this with (8.14), one gets (8.12). []
REMARK. For future use, we note that the argument just used shows that
(8.15) lim, ,lim sup, sup,, ()| H, ()] = 0
whenever ¢() = o(1) as ¢ | 0.
LEMMA 8.4. Under the hypotheses of Corollary 2.1, (2.23) holds.
Proor. It follows easily from Theorem 1A, and Lemmas 8.2 and 8.3, that wp 1
limsup, § H, dv, < sup {{ v*dé,: xe K},

where &, is the measure corresponding to x under (8.6). But for each x in K,
one has (cf. (2.24))

§o*ds, = § ()06, (d) < T § t6(dr) = T|§ x()dt] < T,
the next to the last step being a consequence of Fubini’s theorem. Thus
limsup, § H,dv, < T
wp 1, and a similar argument shows

liminf, § H,dv, > 7.



LOGLOG LAWS FOR PARTIAL MAXIMA 227

Moreover, since K is convex and since the functions —/, /¢t are in K for each
t, Theorem 1A and Lemmas 8.2 and 8.3 imply that wp 1 every convex linear
combination of the numbers —v(r)/¢, ¢ being a continuity point of v, is a limit
point of the sequence (§ H,dv,). Consequently, the limit points must include

[r, T, wpl. [
(b) Proof of Corollary 2.2. For —1 < ¢ < 0, define T°: D — [0, 1] by
T(x) = §4—w(tX(1) di = prft: x(1) < ¢f1)
where p denotes Lebesgue measure on [0, 1]. By Fatou’s lemma, 7° is upper-
semicontinuous on D,

LemMMA 8.5. One has
(8.16) SUP, ¢ T(x) = f() = 1 — exp(—(|e[™* — 1))
Moreover, x € K realizes the supremum in (8.16) iff x = x,, defined by (2.27).

Proor. Since T° is uppersemicontinuous and K is compact, we can find an
x € K such that

(8.17) T°(x) = sup,cx T°(y) .

Since #(x) = § x(f) dt = —1, there must be some ¢ ¢ (0, 1) for which x(¢) > ¢/t.
From this and (8.17) it follows that

(8.18) x(t) = ¢/t forall re(0,1)
(8.19) x(t)=0 for te[l, c0).

Put & = {t < 1: x(t) = c/t}. & is nonempty by (8.17); let s be its infimum.
We must have s > 0, for otherwise we could find s; € &, j = 1, with 5;,, < 5,/2,

which would imply #(x) < 3}, ¢/2 = —oo. The right continuity of x implies
that s € &’; combining this with (8.17) gives
(8.20) x(r) = ¢/s
forO<r<s.
Now suppose that
(8.21) x(v) > ¢fv

for some ve(s,1). Putu =sup{re&:s<t<v}. Thenu < vand x(u—) =
¢/u. Moreover, (8.17) and (8.20) imply that x(x) = x(v); in particular, x(x) > c/u
and so s < u. Let Asbe a very small positive number and define y € D as follows:

y(r) = ¢/(s + As), for 0< < s+ As

= x(7), for s+ As<t<u
=clu, for u<t<u+ Au
= x(7), for +Au<rt< 0;

here Au is chosen so that

(8.22) K(x) = K(y) -
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Clearly y € K. Condition (8.22) implies that s(|c|/s*)As is essentially no bigger
than (|c|/u)Au, and thus that T°(y) = T¢(x) — As + Au > T°(x). Thus (8.17)
implies the impossibility of (8.21):

We now know (cf. (8.18)) that x(v) = c¢/v for ve(s, 1). Combining this
with (8.19) and (8.20) gives x(x) = ¢(1 — logs); (8.17) then implies s =
exp(—(le|~* — 1)).

Now define 7,°: D — [0, 1] by
To(x) = (P — k + 1) Zisusy lewa((n[p)X(n[p)) -
Although condition (2.19) does not hold, the following modification of it does:
LEMMA 8.6. Let x, — x in D, and suppose that —1<b<c<0. Then
(8.23) T*(x) < lim inf, T,°(x,) < limsup, 7,°(x,) < T°(x) .
Proor. Define y, (p = 1) as follows:
yo() = x,(1fp)  if 0<z<1/p
=x,(nfp) if npsc<(n+Dp, 1=n=p
= x,(7), if 1s7t<o0.
Then y, — x in D. Moreover,
T,(x,) = T'(y,) + O(1/p)
for all p; this and the uppersemicontinuity of 7¢ imply the right half of (8.23).
To get the left half of (8.23) choose a 3 € (b, ¢) and define S*: D — [0, 1] by
S#(z) = pft: z(t) < B/t}. For large p, we have
§y,) — O(1/p) = T)¥(x,) -
Since S* is lowersemicontinuous and S?(x) = T*(x), the left half of (8.23) holds. []
Note that for k < n < p, m,*/(log,n/n) < ¢ iff &£ (n/p) < c/(n/p), where
FE, = (F(1))h<i<w is defined by
(1) = (log, p)H (1) (log, pr)
(cf. (2.17)). Thusf,, = T,%(5%,). Theorem 1A implies that wp 1 (527,) is rela-

tively compact in D and has K as its set of limit points. Corollary 2.2 follows
easily from this, Lemma 8.5, Lemma 8.6, ahd the continuity of the mapping

¢ — f(c).

(c) Proof of Corollary 2.3. We can write

Hn(t) = Y(nt)/an b
where
Y(u) = m& - etun and a, = log,n/n

Y takes values in & = {xe D_: x(r) 1 0 as 1 } co}. Consider the mapping &~
which sends x € &7 into .~ x e —D_, defined by

(Fx)(s) = inf{t: x(t) = —s}
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(0 < s < oo). This mapping is continuous with respect to the topology of weak
convergence (cf. Breiman (1968) page 294), and

(H)(s) = inf{t: Y(nt) = —sa,} = n7(>7 Y)(sa,) = n7'z,,, = Z(5),

where t = a, (note that n ~ r~'log, t*as n — o). By Theorem 1A and Lemma
2.1, it follows that wp 1 the net (Z,) is relatively compact as ¢ | 0 with limit
points & (K) = —K.

(d) Proof of Corollary 2.4. Suppose y,, n = 1, and y are points in A, with
y(04+) = 0 = y(co—). A sufficient (and necessary) condition for y, to converge
to y in the M,-topology is the following (cf. Skorohod (1956), Section 2.4):

(i) lim, y,(f) = y(t), for a set of t-values dense in (0, oo),
(ii) lim,,, lim sup, sup,g, |y.(7)| = 0 = lim, ., lim sup, sup,., [y.(?)!, and
(iil) lim,,,sup{f(y; s, )i e <s<t<wu=lje,u—s=0}=0 fora set
of c-values dense at 0; here 6(y,; s, f, u) is the distance from y,(f) to the line seg-
ment having y,(s) and y,(#) as endpoints.

Because the function w of (2.29) is continuous, (i) and (iii) automatically hold
when y, and y are respectively of the form wx, and wx, with x, — x in D. Also,
for each x in K, one has (wx)(0+) = 0 = (wx)(co—). Combining these obser-
vations with (8.13)and (8.15), we get Corollary 2.4 as a consequence of Theorem
1A and Lemma 2.1 (with 7, and T taken to be the identity map from D,,, under
the topology of weak convergence, to D, under the d,-topology).
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