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A NOTE ON THE SUPERCRITICAL BRANCHING PROCESSES
WITH RANDOM ENVIRONMENTS!

By NorRMAN KAPLAN
University of California, Berkeley

Some further results in the theory of Galton Watson processes are
extended to the more general set up of a branching process with random
environments. The random distribution function of the limit random
variable in the supercritical case (Athreya and Karlin, Ann. Math. Statist.,
40 (1969) 743-763) is investigated, and a zero-one law is established. It is
shown that this random distribution function is w.p. 1. either absolutely
continuous on (0, co) with only a jump at the origin or w.p. 1. it is singular.
A set of conditions is given under which the former case holds.

Let {Z,({)},5, be a branching process with random environments (B.P.R.E.).
The process can be described as follows. Assume, given a stationary ergodic
sequence, {{,}.s, Of “environmental” random variables. For a.e. realization of
this process there is associated a sequence {¢¢,(9}uzo of probability generating
functions, (pgf). When conditioned on the {{,},., process, the {Z,} behave as a
temporally nonhomogeneous branching process where the number of offspring
produced by an individual in the nth generation is governed by @, (5). Let F@©
denote the g-field generated by the {{,},.,. It follows that,

(1.1) Efstti| Zyy Z,, -+, Z,, FQ) = [p (9> w.p. 1.

For a more detailed discussion of a B.P.R.E., the reader should consult the
papers of Athreya and Karlin [2], [3]. The notation of those papers will be
adhered to as much as possible.

Put

9(©) = Pllim, . Z, = 0] Z, = 1, F(0)} .
Using (1.1), it is not difficult to show that w.p. 1.

9(8) = lim, o 9 (0, - - ¢¢,(0))) -
It is proven in (1) that if E{—log (1 — ¢, (0))} < oo, then
(1.2) Eflog ot (1)} >0 iff P{C:g(Q) <1} =1.
Henceforth, we assume that E{—log (1 — ¢ (0))} < co and E{log e, (1} > 0.
This corresponds to the supercritical case for the standard Galton Watson process.
Define the random variables

Wa(€) = Z,(D)/P.(0)
P = TIi=5 ¢t,(1) .on
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Using martingale arguments, Athreya and Karlin showed that the following state-
ments hold w.p. 1. for a supercritical B.P.R.E. satisfying E{py (1)} < oo,
d) lim,_, W& = W)
(i) E(W|Z,=1,FQ)} =1 )
(i) PW =0[Z,=1,FQ)} =q@C)
(iv) Let ¢(t, () = E{e*" | Z, = 1, F({)}. Then

(1.3) 91, ©) = o (9ot (1), TO)
(T is the standard shift operator associated with the {C,},., process).
The purpose of this note is to examine the conditional distribution of the random
variable W({) given Z, = 1 and F({). We denote this random distribution function
by G(t, §). )
Our first result shows that w.p. 1., G(¢, {) is a pure distribution function.
THEOREM 1. Assume:

(a) there exists a constant R > 1 such that

P{C': gogo(l) <R=1
and

(b) P{L: ¢ (s) = s™© for some integer m(C) depending on &} =0.
Then either:.
(i) P{C: G(t, ) is absolutely continuous on (0, co) with a jump at the origin of

size q0)} = 1, or
(i) P{C: G(¢, Q) is singular} = 1.

It has been pointed out by the referee that the set
A4 = {C: G(1, ) is absolutely continuous on (0, o)}
is invariant under T and hence has probability 0 or 1. The same is true of the set
B ={{: G(1,{) issingular}.
These results are of a weaker nature than Theorem 1 since they do not rule out
the possibility that G(z, {) could be a mixed distribution with positive probability.

Proor oF THEOREM 1. Using arguments in Doob [4], it is not hard to establish
that all sets in question are measurable, and therefore no further discussion of
this technical problem will be given. The idea of the proof is to show that if (ii)
does not hold, then §=,, |(d/df)¢(y, {)| dy <-oo w.p. 1. This together with Lemma
3 of [1] implies (i). The details of the argument will be carried out in a series
of lemmas.

LemMA 1. P{C: G(1, §) is not degenerate} = 1.

Proor. Let D = {{: G(1, {) is degenerate}. It is a consequence of (1.3) that
T-D c D. Since T is measure preserving and ergodic, P(D) = 0 or 1. Assume
P(D) = 1. Then necessarily, ¢(it, {) = et w.p. 1. and substituting in (1.3) we
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obtain
e™t = g (exp[—t/pr (1)]) -

However, Jensen’s inequality implies et L SDco(eXP[—t/ﬁoéo( 1)]) unless goco(s) = s
for some j which is ruled out by our assumptions. []

LemMa 2. P{C: |91, )| < 1, |1] # 0} = 1.
Proor. Define
7(8) =sup {p: |¢(1, )] < 1,0 < || < 7} .

By Lemma 1, P(: 5({) > 0} = 1. If follows from (1.3) that () = ¢} (1)7(TC)
w.p. 1. Iterating this relationship yields,

7(8) > P.On(T"T) . w.p. 1.
Since the process is supercritical, 7({) = co w.p. 1. [J
LemMA 3. If (ii) does not hold, then
P(C: Timy, ., |91, &) — q(©)] = 0} = 1.

Proor. If (ii) does not hold, then G(#,{) has with positive probability
an absolutely continuous part and hence for ¢ sufficiently small a(f) =
lim sup,, .. |¢(?, C')[ < 1 — ¢ with positive probability. It follows then from the
Ergodic Theorem, that there exists w.p. 1. a sequence of integers n, — oo, de-
pending on the sample path, such that a(T™{) < 1 — . Thus, for each n,

lim supy, .. |95, §) — g(©)] < lim supyyor [0e (P (- + ¢, (0 T™E)) — (O)]
= [@ey(Pe, (- SOcnk_l(l —¢)) — 49(0)| -
It is proven in (1) that
im, oo @2, (02,(+ - 02, (1 =€) = 9(0) - 0
Define
Cu(t: ) = £ [oe(ee -+ £1)] nzl

8=¢ (P (D)t, T™E)
LEMMA 4. There exists a 0 > 0 such that
P(C: lim sup, ., [SUP,zyzz | Pu(0)’Cu(t, )] = 0} = 1

The proof of this lemma is not difficult, but tedious and will be eliminated.
Finally, we come to

LemMMA 5. P{C: =, |(d/dt)p(p, §)| dy < oo} = 1.

Proor. Let y = Eflog ¢; (1)}. By the Ergodic Theorem, there exists for 0 <
¢ < p, an integer N({) depending on the sample path such that w.p. 1.

(1.4) ere=a < P(f) < entnto n> NE).
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Observe
7| L 00, Oy = Ssrie + Sworva [ 90 0)]d
- r ) Y = Vyspygyd Wwi>Pn @@ | 7 Y, Y
=A%) + BQ).
A(0) < oo w.p. 1. It remains to show the same of B({).
Note that
i d -
B(l) = Xive SPk(E)élyléRPk(E) ar ¢y, C)ldy .
Also,

SPk(E)élvléRPk(E) ‘% Ny, C)l dy < Pk(é) Sisiisz % ‘/’(Pk(é)y’ C)‘ dy

2(R — 1 : :
< X WPz [PEYCs D)
The result now follows from Lemma 4 and (1.4). This completes the proof of
Theorem 1. []

REMARK. It is possible to show that if the {{,},, are i.i.d., then P{{: G(1, {)
is continuous on (0, co0)} = 1. Thus, if G(¢, {) is singular on (0, o0), the singu-
larities cannot be jumps.

We now turn our attention to finding conditions which imply (i) of Theorem
1. In general this seems to be a difficult problem. However, we are able to
obtain the following.

THEOREM 2. Assume the conditions of Theorem 1. In addition assume

(a) P{C: ¢, (0) > 9} = 1 for some 5 > 0, and
() If V() = E{W*| Z, = 1, F(£)}, then E{V({)} < oo.

Then (i) of Theorem 1 holds.

PrROOF. Our goal is to show that lim sup,_., [¢(7, {)] < 1 w.p. 1. We first
expand ¢(¢, C) in a three term Taylor series expansion,

90 =1+ it— 2 U@ + 1O L ¥
(UQ) = EpV*| 2, = 1, F(§)} and [r(§)| < 1). Thus,
19(1, O < [1 — (UE) — 1)t + U] + % V(&)

providing |¢| is sufficiently small. Since E(U({)) and E(V({)) are finite, it can be
shown using stationarity and the Borel Cantelli Lemma that

P{C: U(T"E) > P() i.0} =0
PC: W(T"E) > P)} i.0}=0.

and

Furthermore,

1> q(é)__ 7 . 1.
e e T v
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Hence, for n sufficiently large

9t 'O £ 1= T 4 P (O}

providing |1| < 1/P,({)*. It is not difficult to show that

0

<1y _ Pt <1
P,,,(C) —477 n(c) =

providing

/R 11— A
6P, — T 6P(0)}

The constant ¢ depends only on ¢ and not on {. Let

= &7 = and = ——v—_——— .
= 60 b = 5r, 0
It follows that

4 < e 0/PyD)

, T <1 — .
W T S 1 - 5o s

providing a, < |f| < B,.
Also observe that for ¢ sufficiently small,

an-H Pn+l(c.) é ‘Bn Pn(C) n g 1 .
It now follows that
SUPyy>a, |9(1 C)| < SUP,z [SUP, p, @) <it155, P, @) |9(F OI]
= SUPLa [0, (00, + ©epy (SUP, <iuisp, [9(1 TO))))]
= SUPua [0 (9, (- -+ e, (€N < T
The last inequality holds since
lim,_,,, 9DC0(§DC1(’ v SDCn—l(e—a/Pn(f)))) = Sb(lo’ C) <l 0
It remains to give sufficient condition for when E{V({)} < co. The following
are two such sets of conditions. The details of the proofs are omitted.
ConbpitioN I. Assume there exist constants 1 < C; < C, < oo such that
(a) P{C:: C, <o (1) <G} =1, and
(b) P{C: ¢f/(1) < Gy} =1, and
ConprtioN II. Assume the {C,},2, to ‘be i.i.d., E{(1/¢y (1))} < 1 and P{{:
¢r)(1) < G} = 1 for some C,. Finally we obtain
THEOREM 3. Assume the conditions of Theorem 1. In addition assume:
(@) P{C: 9. (0) > 7} =1 for some n > 0, and
(b) Either Condition 1 or Condition 11 holds.
Then (i) of Theorem 1 holds.
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