A NOTE ON SEPARABLE STOCHASTIC PROCESSES¹

BY PATRICK BILLINGSLEY

The University of Chicago

Some sets L of sample paths have the desirable property that if there exists a process with given finite-dimensional distributions and with paths in L (with probability 1), then every separable process with these finite-dimensional distributions has paths in L. A class of such sets is constructed.

Suppose L is a subset of the space R^T of all real functions on T = [0, 1]. Certain sets L have the following property, in which $X = [X(t): t \in T]$ and $X' = [X'(t): t \in T]$ are stochastic processes, on spaces (Ω, \mathcal{B}, P) and $(\Omega', \mathcal{B}', P')$, with sample paths $X(\cdot, \omega)$ and $X'(\cdot, \omega')$.

PROPERTY ρ . For all X and X', if X and X' have the same finite-dimensional distributions, if $[\omega: X(\bullet, \omega) \in L]$ lies in $\mathscr B$ and has P-measure 1, and if X' is separable, then $[\omega': X'(\bullet, \omega') \in L]$ lies in $\mathscr B'$ and has P'-measure 1.

This property of L can be restated: If there exists a process with given finite-dimensional distributions and with paths in L (with probability 1), then every separable process with these finite-dimensional distributions has paths in L. Or, loosely: If a process with given finite-dimensional distributions should have paths in L, it will have paths in L if it is separable.

In [1] it is shown that the set of continuous functions (page 66) and the set of functions with discontinuities of the first kind (page 136) have Property ρ . The purpose of this note is to extend the property to a broad class of path-sets.

If D is a countable, dense subset of T, let S_D be the set of functions x in R^T that are separable with respect to D; that is, $x \in S_D$ if and only if for each t in T there is a sequence $\{t_n\}$ in D such that $t_n \to t$ and $x(t_n) \to x(t)$. In this terminology, the process X' on $(\Omega', \mathcal{B}', P')$ is separable with respect to D if $(\Omega', \mathcal{B}', P')$ is complete and if the set $[\omega': X'(\bullet, \omega') \in S_D]$ lies in \mathcal{B}' and has P'-measure 1; X' is separable if it is separable with respect to some countable, dense D (see [2] page 86).

Let \mathscr{R}^T be the σ -field in R^T generated by the sets of the form $[x: x(t) \leq a]$. Let \mathscr{L} consist of those L in R^T such that, for each countable, dense D in T, there exists in R^T a set \bar{L}_D such that

(1)
$$\bar{L}_D \in \mathscr{R}^T$$
, $\bar{L}_D \supset L$, $\bar{L}_D - L \subset R^T - S_D$.

THEOREM. Each L in \mathcal{L} has Property ρ .

Proof. Consider the processes X and X' involved in the definition of Property

Key words and phrases. Separable stochastic processes, sample paths.

Received June 18, 1973; revised September 17, 1973.

¹ Supported by NSF GP 32037X.

AMS 1970 subject classifications. Primary 60G17; Secondary 60G05.

 ρ , and suppose X' is separable with respect to D. Since $[\omega': X'(\bullet, \omega') \in \bar{L}_D] - [\omega': X'(\bullet, \omega') \in L]$ is a subset of $[\omega': X'(\bullet, \omega') \in R^T - S_D]$, it lies in \mathscr{B}' and has P'-measure 0. Hence, by (1) and the fact that X and X' have the same finite-dimensional distributions,

$$\begin{split} P'[\omega' : X'(\:\raisebox{1pt}{\text{\bullet}}\:, \:\omega') \in L] &= P'[\omega' : X'(\:\raisebox{1pt}{\text{\bullet}}\:, \:\omega') \in \bar{L}_{\scriptscriptstyle D}] \\ &= P[\omega : X(\:\raisebox{1pt}{\text{\bullet}}\:, \:\omega) \in \bar{L}_{\scriptscriptstyle D}] \geqq P[\omega : X(\:\raisebox{1pt}{\text{\bullet}}\:, \:\omega) \in L] = 1 \;. \end{split}$$

Thus $[\omega': X'(\cdot, \omega') \in L]$ lies in \mathscr{B}' and has P'-measure 1, which complets the proof.

Here follow some general observations and some applications.

- 1°. The class \mathcal{L} is closed under the formation of countable unions and intersections.
 - 2° . If $L \in \mathcal{R}^T$, then of course $L \in \mathcal{L}$.
 - 3°. A natural candidate for \bar{L}_D is

(2)
$$\alpha_D(L) = [x : x \text{ agrees on } D \text{ with some } y \text{ in } L].$$

This set will satisfy the requirements (1) if

(3)
$$\alpha_D(L) \in \mathcal{R}^T$$
, $\alpha_D(L) \cap S_D \subset L$.

To prove that $\alpha_D(L)$ lies in \mathscr{R}^T , one usually proves that it lies in the σ -field \mathscr{R}^D generated by the sets of the form $[x:x(t)\leq a]$ with t in D.

4°. From 3° it follows that

(4)
$$E(I, F) = \bigcap_{t \in I \cap T} [x : x(t) \in F]$$

lies in \mathcal{L} if I is open and F is closed.

5°. Let C be the class of continuous functions on T. If $x \in S_D$ and $y \in C$, and if x and y agree on D, then x = y. It follows by 3° that $\alpha_D(L)$ will satisfy (1) if

$$(5) L \subset C, \alpha_D(L) \in \mathscr{R}^T.$$

6°. Clearly

(6)
$$\alpha_{D}(C) = \bigcap_{\varepsilon} \bigcup_{\delta} \bigcap [x : |x(s) - x(t)| < \varepsilon],$$

where ε and δ range over the positive rationals (as in all that follows) and the inner intersection extends over the pairs, s, t in D with $|s-t| < \delta$. Since (6) lies in \mathcal{R}^D , $C \in \mathcal{L}$ follows from 5° . Alternatively, $C \in \mathcal{L}$ follows from 1° , 4° , and the representation

$$C = \bigcap_{\epsilon} igcup \bigcap_{i=1}^{k-1} E\left(\left(rac{i-1}{k}\,,rac{i+1}{k}
ight), [eta_i,eta_i+arepsilon]
ight)$$
 ,

in which E is defined by (4) and the union extends over the systems $(k; \beta_1, \dots, \beta_k)$, where k is an integer and the β_i are rational.

7°. Let J consist of those x in R^T with discontinuities of at most the first kind; $x \in J$ if and only if $x(t+) = \lim_{s \downarrow t} x(s)$ exists for $0 \le t < 1$, $x(t-) = \lim_{s \uparrow t} x(s)$ exists for $0 < t \le 1$, and x(t) lies between x(t+) and x(t-) for

0 < t < 1. Consider the general system $V = (k; \beta_1, \dots, \beta_k; r_1, \dots, r_k; s_1, \dots, s_k)$, where k is an integer, the β_i , r_i , and s_i are all rational, and

$$(7) r_1 < 0 < s_1 < r_2 < s_2 < \cdots < r_k < 1 < s_k.$$

Put

$$G_{V} = \bigcap_{i=1}^{k} E((r_{i}, s_{i}), [\beta_{i}, \beta_{i} + \varepsilon])$$

$$\cap \bigcap_{i=2}^{k} E((s_{i-1}, r_{i}), [\min{\{\beta_{i-1}, \beta_{i}\}}, \max{\{\beta_{i-1}, \beta_{i}\}} + \varepsilon]).$$

As pointed out in [1], page 135, $J = \bigcap_{\epsilon} \bigcup_{k} \bigcap_{\delta} \bigcup G_{V}$, where k ranges over the positive integers and the inner union extends over those systems V having a fixed value of k and satisfying

$$(8) r_i - s_{i-1} < \delta , i = 2, \dots, k.$$

It follows by 1° and 4° that $J \in \mathcal{L}$.

- 8°. For open I, $\mathscr L$ contains the set H(I) of x that are constant over I, as follows from 3°. Let J' be the set of x that are step functions in the sense that, for some $\{t_i\}$ with $0=t_0< t_1< \cdots < t_k=1$, x is constant over each (t_{i-1},t_i) . Then $J'\in \mathscr L$ because $J'=\bigcup_k\bigcap_i\bigcup_i H(r_i,s_i)$, the inner union extending over systems $(r_1,\cdots,r_k;s_1,\cdots,s_k)$ of rationals satisfying (7) and (8).
- 9°. Let C_k consist of the functions with k continuous derivatives and, for $x \in C_k$, let $D_k(x, t)$ be the kth derivative at t; here $C_0 = C$ and $D_0(x, t) = x(t)$. We shall prove inductively that $\alpha_D(C_k) \in \mathscr{R}^D$ and $D_k(\bullet, t)$ is measurable \mathscr{R}^D on C_k . This is true for k = 0 by 6°. The induction step follows from

$$\alpha_D(C_{k+1}) = \alpha_D(C_k)$$

$$\cap \bigcap_{\varepsilon} \bigcup_{\delta} \bigcap \left[x : \left| \frac{D_k(x,s) - D_k(x,t)}{s-t} - \frac{D_k(x,u) - D_k(x,v)}{u-v} \right| < \varepsilon \right],$$

where the final intersection extends over sets s, t, u, v ($s \neq t$, $u \neq v$) of points in D within δ of one another, together with the fact that, if $x \in C_{k+1}$, then $D_{k+1}(x, t) = \lim (D_k(x, s) - D_k(x, s'))/(s - s')$, where in the limit s and then s' approach t through values in D.

Thus all the C_k lie in \mathcal{L} , and so does $C_{\infty} = \bigcap_k C_k$. If A is the set of functions having power series expansions about 0, then

$$\alpha_D(A) = \alpha_D(C_{\infty}) \cap \bigcap_{t \in D} [x : x(t) = \sum_{k=0}^{\infty} D_k(x, 0) t^k / k!].$$

Therefore $A \in \mathcal{L}$. We can put other restrictions on the derivatives in a measurable way, and it follows that \mathcal{L} contains the class of completely monotonic functions, the class of analytic functions, the class of polynomials, etc.

10°. If $L \subset C$ and L is a Borel set in C, then $\alpha_D(L)$ lies in \mathscr{R}^D , so that $L \in \mathscr{L}$. To see this, observe first that, if L is the closed sphere in C with radius r and center $z \in C$, then $\alpha_D(L)$ is the set (6) intersected with $\bigcap_{t \in D} [x \colon |x(t) - z(t)| \le r]$, and hence $\alpha_D(L) \in \mathscr{R}^D$. Therefore, it is enough to show that $[L \colon L \subset C, \alpha_D(L) \in \mathscr{R}^D]$ is a σ -field in C. That this class is closed under the formation of countable unions is obvious; that it is closed under the formation of complements (in C)

follows from the fact that, if an x in R^T agrees on a dense D with a y in C, then that y is unique.

11°. For a set that does not have Property ρ , and hence does not lie in \mathcal{L} , consider the set of functions continuous from the right. With θ uniformly distributed over (0, 1), let $X(t) = I_{[0,\theta)}(t)$ and $X'(t) = I_{[0,\theta]}(t)$; then X and X' have the same finite-dimensional distributions and are separable, but X has right-continuous paths whereas X' does not. Another set that does not have Property ρ is $R^T - C$. It might be interesting to have an example of a set that has Property ρ but lies outside \mathcal{L} .

Most of the arguments above hold if T = [0, 1] is replaced by an arbitrary subset of the line.

REFERENCES

- [1] BILLINGSLEY, PATRICK (1968). Convergence of Probability Measures. Wiley, New York.
- [2] Neveu, Jacques (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.

DEPARTMENT OF STATISTICS THE UNIVERSITY OF CHICAGO 1118 EAST 58TH STREET CHICAGO, ILLINOIS