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LIMIT THEOREMS FOR DELAYED SUMS!

By Tze LEuNG LAl
Columbia University

In this paper, we study analogues of the law of the iterated logarithm
for delayed sums of independent random variables. In the i.i.d. case,
necessary and sufficient conditions for such analogues are obtained. We
apply our results to find convergence rates for expressions of the form
P[|Sn| > bu] and P[supkzn |Sk/bk| > €] for certain upper-class sequences
(bn). In this connection, certain theorems of Erdds, Baum and Katz are
also generalized.

1. Introduction. Let (a,) be a sequence of real numbers and let (k,) be a
sequence of positive integers. The numbers

Pk, = {Zfix Ay ialfkn

are called the (forward) delayed first arithmetic means (cf. [13] page 80). Such
delayed averages have been studied in connection with summability methods
(cf. [11, [9], [13]). Recently, using the limiting behavior of delayed averages,
Chow [3] has found necessary and sufficient conditions for the Borel summability
of i.i.d. random variables. Making use of delayed averages, Chow [3] has also
obtained very simple proofs of a number of well-known results such as the Hsu—
Robbins-Spitzer-Katz theorem which states that if X, X, ... are i.i.d. with
EX, =0, EIX,) < o (p=1), then ¥&n?—?P[S,* > n] < oo, where S, =
X, + -+ + X, and §,* = max,;_, |S,|.

Suppose X, X;, - - - are i.i.d. random variables with EX; = 0 and E|X,|* < oo
forsomep > 1. LetS,; =X, + --- + X, ., ,, S¥, = max,g,.,|S, ,/. Chow’s
theorem states that

1) lim, , n?8% .« =0 a.e. forevery 0< a < min(2/p,1).
) lim, ,n7 V8% =0 ae. if 2>p=>1.

In this paper, we shall consider the rate at which the convergence in (1) or (2)
takes place. In other words, we want to find analogues of the law of the iterated
logarithm for the forward delayed sums S,, , . Obviously, we have corresponding
results for the backward delayed sums of the form Xotyrn + -+ + X,. Theo-
rem 1 below sheds light on analogues of the law of the iterated logarithm for
certain summability methods for independent random variables. This and related
problems will be treated in [7].

An interesting choice of the sequence (k,) is k, = k for all n. In this case,
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the backward delayed average (X,_,,, + - - - + X,)/k is the usual moving average
used in time series analysis and other statistical applications. Suppose X;, X,, - - -
are i.i.d. N(0, ¢%) random variables. Then

3) lim sup, ., |X,_p41 + -+ + X,|/(2ko’ log n)}

= limsup,_. |X, + -+ + X,p|/(Rka* logn)t =1 a.e.
On the other hand, if | X,| < C for all n, then obviously |X, +--- 4+ X, ;.| < kC
for all n. In general, if X;, X,, - - - are i.i.d. random variables and f is a strictly
increasing function on [0, o) with lim,_, f(f) = oo, then

limsup, . | X, 4 + -+ + X, |/[f(n) =1 a.e.
4 = limsup, . |X, + -+ + X, |/[f(n) =1 a.e.
= Ef-(t|X; 4+ - + Xi[) < oo for <1 and
Ef-'(t|lX; 4+ -+ + X4]) = 00 for ¢>1.

A completely different limiting behavior occurs when we take k, = [an],
a > 0. As in the usual law of the iterated logarithm for §,, it can be shown
that if X,, X,, - - . are i.i.d. random variables, then

lim sup, .. |S¥ ,.|/{2anloglogn} = ¢ a.e.
3) =limsup, . X, + -+ + X,i[eni|/{2anloglogn}t = ¢ a.e.
—EX,=0, EX?=gd.
When a = 1, (5) gives the rate at which the convergence in (2) takes place. To
see the second equivalence in (5), we assume EX, = 0, EX;* = 1 and make use
of a theorem of Strassen [10]: With probability one, the sequence ({,,n = 3)
is relatively compact in C[0, | + ] and its set of limit points in C[0, 1 4 «a]
coincides with the set K, where
Cu(0) = (2nloglogm)=¥{([n1] + 1 — n)Spy + (nt — [n1])Staria} ;
K =1{heC[0,1 + a]: k is absolutely continuous, k(0) =0
and {}** (dh/dt)y’dt < 1}.
Now sup,.x |#(1 4+ a) — k(1)] = a?, where the supremum is attained by the
function A such that h(f) = 0, 0<r<land h(f) = a7}t — 1), 1 £t <1 4 a.
From this, it then follows that
limsup,_ ., |X, + -+ 4+ X,itam—i|/{2anloglogn} =1 a.e.

Conversely, if the above limiting relation holds almost everywhere, then by using
an argument due to Feller [5], we can prove that EX; = 0 and EX;® = 1.

In the case X, X,, --- are i.i.d. N(0, ¢®) random variables. (3) states that
lim sup, o, |X, + -+ + X, l/(2k, log n)t = o a.e. if k, = k, while (5) states
that lim sup, ., | X, + -+ + X,y _i|/(2k, loglog n)t = o a.e. if k, = [an]. Be-
tween these two extremes, there is a whole hierarchy of limiting relations charac-
terized by

6) limsup, ., [X, + -+ 4+ Xopp 2l[{2(1 — )k, logn}t =0 ae.,
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corresponding to k, = [n*], 0 < a < 1 (cf. [6]). In the case where X, X,, - - -
are i.i.d. (but not necessarily normal), we shall find in Section 2 necessary and
sufficient conditions for (6) to hold. In Section 3, we shall use our results to
obtain convergence rates for expressions of the form P[|S,| > b,] for some upper-
class sequences (b,). Certain results of Erdos [4], Baum and Katz [2] are also
generalized.

2. Limit theorems for delayed sums. In this section, we first prove (6) for
independent random variables whose moment generating functions satisfy certain
exponential inequalities. Then by a truncation argument, we obtain (6) for i.i.d.
random variables satisfying certain moment conditions which we prove to be both
necessary and sufficient.

THEOREM 1. Let X,, X,, - - - be independent random variables such that EX, = 0,
EX}! =902 and lim,_ 0, =0">0. Let 0 < a < 1. Suppose for j = j,, there
exists v; = 0 such that y; = o(j*/*(log j)~*) and

() exp(rai(l — lir)/2) < Eexp(ex;) < exp (o (1+ L)
whenever |t|y; < 1. Then

(8) lim sup, .. (X, + -+ + Xoypme)/{2(1 — a)n*logn}t =0 a.e.

%) liminf, . (X, + -+ 4+ Xpy0e)/{2(1 — a)n*logn}t = —o  a.e.

(10)  limsup,_. MaX,g;cne | X, + -+ 4+ X, ;|/{2(1 — a)n*logn}t =0 a.e.

Proor. We first prove that the lim sup in (8) is > s a.e. To do this, we shall
make use of Kolmogorov’s (lower) exponential bounds (cf. [8], [12]): Given any
0 > 0, 3¢, ¢, (depending only on §) such that if ¢ > ¢, and ¢c < ¢,, then

(11) P[S > ¢] = exp{—¢*(1 + 9)/2}
for any ¢ > 0 and any random variable S satisfying
201 __ tS < 2 L
(12) exp{f’(1 — tc)/2} < Ee¥’ < exp{t <1 + 5 c>/2}

for all + > 0 with ¢ < 1.

Choose 2 > 0 such that 2* < 2/(1 — a), and set m,, = [AkV*~®]. Let0 < d <
0’ < 1suchthat (1 — ¢")%(1 4+ d) < 1. For the given 4, there exist ¢, and ¢, given
by the Kolmogorov exponential bounds. Setting ¢, = (e,/(1 — 9"))(2 log k)~#,
st = XM L and Z, = (1/s)(X,, + -+ + Xp stm,=)> We ODtain for k suf-

i=0 mk+j
ficiently large and |tf|c, < 1,

(13) exp{’(1 — |t|c,)/2} < Eexp(tZ,) < exp {t* <1 + %ck>/2} .

Letting ¢ = (1 — 8’)(2 log k)* in (11), we have for all large k,
PIX,, + - + Xopiimge = (1 — 0)0{2(1 — a)m,~ log m,}}]
(14) = P[Z, = (1 —0)(2logk)t] = P[Z, = ¢]
= exp{—¢&’(l + 0)/2} = exp{—(1 + 0)(1 — d')*logk}.
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From the fact that A* < 4/(1 — a), it is easy to see that the o-fields &, =
B(X;: m, < < m, + [m,*]) are independent for all large k. Hence it follows
from (14) and the Borel-Cantelli lemma that

(15) lim sup, .. (X, + -+ + Xp s1m,«)/{2(1 — @)m,~log m,}}
= (1 —20)s a.e.

Since ¢ is arbitrary, we have
(16) limsup,_ . (X, + - + X, (ne))/{2(1 — @)n*logn}t = 0 a.e.
Replacing X, by — X, in the above argument, we obtain
(17) liminf, . (X, + -+ + X, )/{2(1 — @)n®logn} < —0  a.e.
Given 0 < d < 1, we shall now show that
(18)  limsup, .. (MaXegspe |X, + -+ + Ko Jf2(1 — a)n® log n}t)
<(1+4+00+d ae.

To prove (18), we shall use Kolmogorov’s (upper) exponential bounds (cf. [8],
[12]): If S is a random variable such that Ee*S < exp{r’(1 + (#/2)c)/2} for some
c<0andall0 < tc < 1, then

(19) P[S>e]_<__exp{—e2(l—%c>/2} if 0<ec<l.
Let n, = [,k*~*], where », = (log k)~"?-®, By the Lévy inequality ([8],
page 248),
P[maxosjsngﬂ [Xa, + o+ + X, il = (1 + 0)of2(1 — a)n, log n,}]
S 2PX,, 4 - 4 Ko, gl = (14 8)of2(1 — @)= log m,J?
— (2 ZE.":’C{,“] Ony+i)}]
0 «
<2P[ X+ o+ K gl 2 (14 3) o log k]
for all large &
0 [/
<2p|v, > (1 ¥ T) @loghky | + 2P| —v, = (1 + Z>(2logk)*

(where Y, = {Zg’:}:o+1] o X, + e+ X+ 1n2, 1))

< em{(14 4Y (1 2t

by the exponential bound (19).
Since 6 < 1, it follows from the Borel-Cantelli lemma that

(20) lim sup,_,., (maxoéjénh1 | X, + o+ X il/{2(1 — a)n, log n,})
= (1 + d)o a.e.
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Now pick M > 1 such that Mé > (1. + a)/(1 — «). Setting ¢ = M(log k)i,
we have for n, < n < ny,,, n — n, <j < ng,, and all large k,

PI(X, + -+ 4 X)) — (X, 4 -+ Xopas) > 62(1 — ), log my )]

= P[tnk_a/z(—Xnk — s =X+ Xnk+j+1 SRR Xn+:’) > t5(10g k)&]
< {exp(—1d(log k)¥)}

x Eexp{tn,*(—X,, — - — X,oo+ Xoprjn + -+ + X))}
< k7" exp{20°n, " (Myy — M)} s by (7).

In the case 0 < j < n — n,, we have
P(X, + - 4+ Xop)) — (o, + -+ 4 Xopry) > 0(2(1 — a)m,= log m}i]
< {exp(—td(log k)h)}
X Eexp{tnk_a/z(Xn + o+ Xn+j - Xnk - 't = Xnk+j)}
< kM exp{2t%a’n,~*(j + 1)}
< k" exp(2£a’n, (g, — M)} = O(K0) .
The last relation above follows from the fact that n,,, — n, ~ 7,k*/*~*, while
n,® ~ p, k- and »,-«logk = 1. In a similar way, we can prove that in
either case,
Pl(X, 4 -+ + X)) — (X, + -+ + X, 1) < —0{2(1 — a)n,~ log n}]
= O(k™"?%).
Therefore for all large k,

T D P - Xy — (K + o X))l
> 3{2(1 — ayn,~ log n,}*]
< CkM3(n,; — mngy, = O(k—¥o+a/i—a)
Since Md — 1 > 2a/(1 — a), we obtain by the Borel-Cantelli lemma that
(21) lim sup,_., {2(1 — a)n,~log n,}~*
X (maxnk<n5nk+1 MaXes gng, I(Xa + -+ + Xori)
— (X + o+ X)) =0 ae.
From (20) and (21), the assertion (18) follows. []

LEMMA 1. Let Y, Y,, -+, Z, Z,, - -- be random variables such that for eachn,
Z, is independent of (Y,, ---,Y,). Suppose Z, —,0. Then for any real number c,

(22) lim sup, ., (Y, + Z,) < ¢ a.e.=limsup, .Y, <c a.e.
(23) liminf, (Y, + Z,) = ¢ a.e.=liminf, Y, >c¢ a.e.
(24) limsup,_..|Y, + Z,| < ¢ ae.=limsup, . |Y,|=c a.e. and

limsup, .. |Z,| < 2¢ a.e.
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Proor. Givenanye >0,letr, =inf{n=>=m:Y, >c+2¢}. Let P[|Z,|<e]=1%
for n = m,. Then for m = m,,
PUrnlYn+Z, =+ e]) = P(Ur-n [tw=n, |Zn| < 5])
(25) = X5on Plr, = n]PlZ,] < ],
since Z, is independent of (Y;, ---,Y,)
2} D5 Plow = 1] = }P(Usn [Ya 2 ¢ + 2)).
If lim sup, .. (Y, + Z,) < c a.e., then lim,,_, AU [Yo + Z, = ¢ +¢]) =0,
and so it follows from (25) that lim,,_ ., P(UZ . [Y. = ¢ + 2¢]) = 0. Hence

limsup,_., Y, < ¢ 4 2¢ a.e. Since ¢ is arbitrary, we obtain (22). In a similar
way, we can prove (23), and (24) follows easily from (22) and (23). [

THEOREM 2. Let X, X,, - - . bei.i.d. random variables andletd > 0,0 < a < 1.
Then the following statements are equivalent:

(26) EX, =0, EX}? = ¢ and E| X |¥(log* |X;| + 1)™"* < o .
27) The limit relations (8) and (9) both hold.
(28) The limit relation (10) holds.
(29) lim sup,_., |[X; + -+ + X,|/{2nloglogn} =0 a.e. and
lim,_ n=**logn)~tX, = 0 a.e.
Proor. It is well known that (26) and (29) are equivalent. Now assume (26).

To prove both (27) and (28), given 6 > 0, we choose an integer k > 1 such that
k — ak > 1 and pick ¢ > 0 such that ek < 4. Define

Xn’ = XnI[IXn]z:na/z(logn)}]
X, =X, I[Ianén“/"’/(logn)]
XIII — Xn . XI _anl.
LetU, = X, — EX,”. Then EU, = 0, EU,* = 0, — ¢’ and |U, | < 2n°/*/(log n) =
o(n*/*(log n)~%). Hence the sequence U, satisfies the hypothesis of Theorem 1
(cf. [8] page 255), and so with probability one,
(30) limsup, ., (U, + -+ + U, pe)/{2(1 — a)n® log n}t
= 0 .
= limsup,_, MaX,g;cne |U, + -+ + U, 5|//{2(1 — a)n*logn}t,
(31) liminf, . (U, 4+ -+ + U,ne))/{2(1 — @)n*logn}t = —0 .
We note that since EX, = 0, we have for all large n,
Ean”l = IS[|X1|>na/2/(10gn)] X dPl
= O(n*/*~Y(log n)*=~1) .
Therefore

(32) lim, ., >0 E|X;, |/{n*logn}} = 0.
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Since |X,””| < en*’*(log n)t, we have for all large n
PIIX"| 4 - -+ + [ Xl 2 9(n* log n)t]

< PLRVL X0 | {en(log n)?} = K]

< P[X)!; #+ 0 for at least k of the indices j =0, - - -, [1n*]]

< ("EPHIXP(log* | Xi| 4 1)7* = n(log n)™"*]

= O(n**{(log n)*=[n}*) , by the Markov inequality.
Since k — ak > 1, an application of the Borel-Cantelli lemma gives
(33) lim sup, ., 23 [ X)) ;|/{n* logn}t < 6 a.e.
As § as arbitrary, we obtain (27) and (28) from (30), (31), (32) and (33), noting
that P[X,’ = 0i.0.] = 0.

We now show that (27) implies (26). Define
= (Xo + -+ Xaipaoy ) [{2(1 — e)n=lognjt,

Zn = Xn+[n“]/{2(1 — a)n“ log n}b .
We note that (27) implies that limsup, _...|Y, + Z,| < ¢ a.e. Since Z, is independ-
entof (Y;, ---,Y,)and Z, —, 0, we obtain from Lemma 1 that limsup,_, |Z,| <
2¢ a.e. Butlimsup,_. |Z,| can only be o a.e. or 0 a.e., and so lim,_, Z, = 0
a.e. This implies that E|X|¥*(log* |X,| + 1)7"* < oo. Letting p = EX), ©* =
Var X, it then follows from our preceding proof that
(34) limsup, .. (X, + -+ + Xpime — 2°0)/[{2(1 — a)n*logn)P} = = a.e.

From (27) and (34), it is clear that x = O and r = ¢. Therefore we have proved
that (27) implies (26). Since (28) also implies that limsup,,_, |Y, + Z,| < sa.e.,
it is easy to see that (28) implies (26). []

3. The convergence rate of P[|S,| > b,] for certain upper-class sequences
(b,)- In [2], Baum and Katz have proved that if X, X,, - - are i.i.d. then for
a>%andp > 1/a,

E|X||" < oo, andforthecase a<1, EX;=0
(35) = 3 ne2P[|S,] > en®] < oo forall ¢ >0
= 3 nP* 7 P[sup,., |Si/k* > €] < oo forall ¢ >0.

By making use of Theorem 2, we can easily prove the following theorem which
can be regarded as some sort of limiting case of (35) when « = } and p > 2.

THEOREM 3. Suppose X,, X,, --- are i.i.d. random variables and p > 2. If
EX, = 0, EX;? = ¢’ and E| X,|?(log* | X}| + 1)7?/* < oo, then for any ¢ > o(p — 2)},

(36) > n?272P[|S,| > e(nlog n)t] < oo
(37) 21 n? P2 P[SUp,s,, |Si/(k log k)| > €] < oo .

Conversely, if for some ¢ > 0, either (36) or (37) holds, then EX, =0 and
E|X[(log* |X,| + 1) < oo.
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Proor. Let a = 2/p. Then 0 < a < 1. Set n, = [kV?-*], and note that
(S, : k = k) is an independent sequence. Therefore by the Borel-Cantelli

ke
lemma, the following two statements are equivalent:
(38) P[|Snk,nka| > o(n,~logn,)t i.0.] =0
(39) Ziies P[|Suyel > 0(n,*log ny)t] < oo .

For any real number ¢ > 1, define S, = X, + --- + Xj,;. Then (39) is equiva-
lent to

(40) §7 Pl[Suatamw| > 3{r+/1% log (/0-)}] df < oo .

Applying a change of variable 1 = /4~ to the integral in (40), we then find
that (39) is equivalent to

(41) L n/e*Pl|S,] > (8/at)(n log n)}] < oo .

Suppose EX, = 0, EX;’ = ¢* and E|X|?(log* |X,| + 1)7?? < co. Then by
Theorem 2, (38) holds for all é > o{2(1 — a)}}. Therefore (41) holds for
olat > o{2(1 — a)/a}t = o(p — 2)}, and so we have proved that (36) holds for
e > a(p — 2)L

Given & > ¢ > a(p — 2)}, choose ¢ > 1 such that § > ect. By the Lévy in-
equality,

P[maX,igeg.i+1 [Si/(k log k)}| > £]
< 2P[|Spi+y| > E{cflog e}t — {2 DI EX

< 2P[|Si+1] > efcit log ¢+ for all large j.
Therefore
Dinang 1 *P[SUPyz, |Si/(k 1og K)}| > £]
(42) S M X, e T PlmaX,igug.in [Si/(k log k) > ]

<M Z;‘LI C(p/z—l)jP[|S[cj+1]| > 5{ci+1 log c"“}*]
where M, M’ are positive constants. Since we have proved that (36) holds, it
follows that the last series in (42) is finite. Hence we have proved (37).
Now assume that (36) holds for some ¢ > 0. Then (41) and therefore (38) holds
for some 0 > 0. We first prove that EX;* < co. Without loss of generality,
we can assume that X, is symmetric. If EX;? = oo, then we can choose ¢ such

that EX?*ly <oy > 0°/(1 — @). Let X,/ = X, Iy <. It then follows from the
proof of Theorem 1 that

limsup, ., (X5, + -+ 4+ X ip,e-){2(1 — @)n*logm}t = 6/(1 — a)t a.e.
(cf. (15)). Therefore using an argument of Feller (cf. [5] page 346),
limsup,_., S, ../(n,*logn,)t = 2% a.e.,

contradicting (38). Hence EX;’ < co. It is also easy to see from (38) that
EX, = 0. Therefore

(43) lim,_, P[|S,| > e(nlogn)}] =0
(44) lim,_, nP[|X,| > e(nlog n)] = 0 = lim,_,, nP[|X,|* > n].
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Let B, = [|S,| > ¢(nlogn)!], and for k = 1, - . ., n, define
R = [|X] > 2e(nlagn)t], T\ = [| Digisniee Xil < e(nlogn)t].
Then by an argument due to Erdds [4], we have
P(B,) 2 X1 {P(T™) — nP(R™)}P(R,™) .
From (43) and (44), we can therefore find 2 > 0 such that
(45) P(B,) = inP(R,™) .

Using (36) and (45), we then obtain that ¥ n?*='P[|X;| > 2¢(n log n)}] < co and
so E|X,[7(log* | X,| + 1)7" < eo. []

In [4], Erdos has obtained the following result: If X, X;, --- are i.i.d. with
EX, = 0 and EX* < oo, then there exists a constant r such that 37 P[|S,| >
n*(log n)"] < co. We note that his result follows immediately from Theorem 3
with p = 4. Theorem 3 also gives a complete answer to the problem of finite-
ness of moments of the random variable N(¢) = 35 Ijjs,2ca0gm? Fecently consider-
ed by Stratton [11]. We shall present this and other related results elsewhere.

Acknowledgment. I am deeply grateful to Professor Y. S. Chow for intro-
ducing to me the concept of delayed averages and for his valuable suggestions.
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