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LLN FOR WEAKLY STATIONARY PROCESSES ON LOCALLY
COMPACT ABELIAN GROUPS

By M. F. DriscoLL, J. N. McDoNALD AND N. A. WEISsS

Department of Mathematics, Arizona State University

A generalization of the weak law of large numbers is proved in the
case of a process indexed by a second countable locally compact Abelian
group. An application is given to random measures.

1. Introduction and statement of results. Let G be a locally compact, second
countable, Abelian group, let <& denote the Borel g-field of subsets of G, and
let ¢ be any fixed Haar measure on (G, <Z). Following Debes et al. (1970) we
define a sequence {K,} of subsets to be regular if the following conditions hold:
(i) K, is compact for each n, (ii) #(K,) > 0 for sufficiently large » and (iii) if U
is any symmetric, relatively compact, open neighborhood of 0 then

lim, Ao _
w(K, + U)
where (K,); = {xeG: x + U C K,}.
Debes et al. (1970) have shown that G always possesses at least one regular

sequence of sets.
A process W(x), x € G is called weakly stationary if, for x, y € G, EW(x)’ < oo
and EW(x)W(x + y) is independent of x and continuous in y.

THEOREM 1. Suppose W(x), x € G is weakly stationary. Then there is a random
variable A such that for any regular sequence {K,} of subsets of G,

lim, ,, —— ( s &, W(x + 2)dp(x) =

uniformly for z € G.

Let A be a random measure on (G, &Z). It is called stationary if for B,, - - -,
B, e &7 the distribution of (A(B, + x), - - -, A(B,, + x)) is independent of xe G.
Let & denote the class of relatively compact Borel subsets of G. Then A is
called weakly stationary if for B, C € &, EA(C)* < oo and EA(B + x)A(B+ x + )
is independent of x and continuous in y.

In Debes et al. (1970), it was proved that if A is stationary with EA(C) < oo,
C e & then there is a random variable A such that for {K,} regular

____A(K”-]-Z) —A|=0.
©(K,)

We prove the analogous result for weakly stationary random measures.

lim,_,, sup, E
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THEOREM 2. Suppose A is a weakly stationary random measure on G. Then there

is a random variable A such that for {K,} regular

AKK, +2) _
t(Ky)

lim,_,, sup, E A ) .

2. Proofs.

LeMMA 1. Let G denote the dual group of G. Then for any regular sequence {K,)
of subsets of G,

(1) lim, —(7<")‘ §x, <r> Xy dp(x) = Lay(r) (re G) ’

where 1, denotes the indicator function of the set B.

Proor. Note that if {K,} is regular then for any x € G,

) lim, (K, + x)AK,) =0
" #(K,)

where A denotes the symmetric difference operation.
If y = 0 then it is clear that (1) holds. So assume 7 + 0 and choose x,e G
such that (7, x,> = 1. Then,

s Xo) SK,, {1, Xy dp(x) = SK,,M,, 1> x) dp(x)
= Yk, <1 %) Ap(%) + k4090, <T> XD dp(X)
- S(K,,\(x,,+zo)) {rs X) dp(x) .

From this and (2) it follows that as n — oo
i Ve T D A Krowy — 1] s MELHIE) 0

Proor or THEOREM 1. Let 77 be the closed linear manifold of LYQ, &, P)
spanned by the process W(x), xe G. Since the process is weakly stationary it
induces on 27" a group U,, y € G, of unitary operators via U, W(x) = W(x + y).
By the generalized theorem of Stone (Loomis (1973) page 147),

U, =441, y) dE,; yeG.

Set ¢(dy) = dE, W(0). Then
W(x) = §a<r» x)¢(dr) 5 xeG.

By Fubini’s Theorem for random measures

1 z = K1y 2) , o(d
gy e W+ D) = 55 [ BB 10y o) | o)

Using Lemma 1 and |«(K,)™* {¢, <7, x) dp(x)| = 1 we get

$Ureo §5 S22 G, <1 33 ) — L) Fidy) 0
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asn — oo, where F(dy) = E(|¢(dy)|*). Thus by the usual isomorphism (see Doob
(1967)) we conclude that, uniformly in z,

NEK¢ZE2 d ] d 0
§ [#(K”) Sx, <7 %) dpe(x) | d(dr) — G((0}) -

LEMMA 2. Let B be a compact symmetric neighborhood of 0. If {K,} is regular
then so are {K, + B} and {(K,);}.

Proor. That {K, 4 B} satisfies (i) and (ii) and {(K,)z} satisfies (i) is clear.
Now let U be any open, symmetric, relatively compact neighborhood of 0. Since
B + U is also an open, symmetric, relatively compact neighborhood of 0,

(3) lim, H(Kn)prw) 1.
wK, + B+ U)

Now, (K, + B), C K, + B + Uand (K,)z,, C (K, + B),. The inequalities

1> (K. + B)y) > (Ku)p+v)
= uK, +B+U) = K, + B+ )
and (3) imply that {K, + B} satisfies (iii).

Let V' be a relatively compact, open, symmetric neighborhood of 0 with B V.
By the regularity of {K,}, the relations x((K,)s) = p(K, 4+ V)/2 > 0 hold for n
large.

Finally, let U be any relatively compact, symmetric, open neighborhood of 0.
From (K,)z.; C ((K,)s)y and the regularity of K,

£(((K,)5)z) > £((K,)540) 1
#(Ka)z +U) — (K, + B + U)

as n — oo. Thus {(K,),} satisfies (ii) and (iii).

Proor oF THEOREM 2. Let B be a compact symmetric neighborhood of 0 with
p(B) = 1. Let W(x) = A(x + z 4 B) for x, ze G. Since A4 is weakly stationary
so is W, for each z.

By Fubini’s theorem it follows that for K € &

Sx We(x) dp(x) = S (K 0 (y + B))A(dy + 2) .
Using this we conclude that
Skpen Wilx) dp(x) 2 ik, #((Ks + B) N (y + B)A(dy + 2) = A(K, + 2).
Because y ¢ K, = (K,); N (B + y) = ¢ we also obtain that
S(K”)B Wz(x) d[l(X) é A(Kn + Z) .

Consequently, for sufficiently large n,

Wz(x) d#(x) °

1 AK, + 2) 1
——— Sk Wix) 4, = = K,+B
i) Yerwn WA AR = U < ones S

Theorem 2 now follows.
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