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SOME FUNCTIONAL LIMIT THEOREMS FOR
DEPENDENT RANDOM VARIABLES!

BY ALVARO GONZALEZ VILLALOBOS

We prove theorems on weak convergence of random elements Xu(w, #),
0 =t =1, to a Gaussian process. In Part I, these random elements are
constructed on the basis of the linear means of a lacunary trigonometric
series 3] ajcos njw. In Part II, the lacunarity hypothesis is dropped and
replaced by the hypothesis of linear independence of the real numbers
n;.

1. Introduction. In this paper we generalize, in several directions, a theorem
of Billingsley (cf. [1] page 410, Theorem 23.1) on weak convergence of random
elements of (D, Z) to W, the Wiener process. Let D be the set of real-valued
functions defined on [0, 1] that are right-continuous and have left-hand limits;
let 7 be the Skorohod s-field in D (cf. [2] page 111); let C be the set of real-
valued continuous functions defined on [0, 1]; and let & be the o-field that gives
the uniform topology in C. The technique we use to prove that a sequence X,
of random elements converges weakly (cf. [2] page 23) to the random element
X (we shall write X, — X) is a well-known one: namely, we prove that X, is
tight (cf. [2] page 37) in (D, Z)—or in (C, €)—and that all the finite-dimen-
sional distributions of X, tend respectively to those of X (cf. [2] page 124,
Theorem 15.1 and page 54, Theorem 8.1).

In Part I, the random elements {X, (, f): 0 < ¢t < 1} which appear in Theo-
rems (1.2.1), (1.3.1), (1.4.1), (1.5.1), (1.5.2), (1.6.1) and (1.6.2) are constructed
on the basis of the linear means of a lacunary trigonometric series };; a; cos n; o,
o € [0, 27]. (See also (1.2.42).)

In Part II, the lacunarity hypothesis of the sequence {n;} has been dropped
and replaced by the hypothesis of linear independence of the real numbers {2}
(cf. Theorem (2.2.2).)

I would like to express my gratitude to my teacher, Professor P. Billingsley,
who proposed the theme of this paper.

PART I. Lacunary sequences.

1. Let us consider a lacunary sequence of integers {n;},j=1,2, ...,
(nj41/n; > q > 1 for all j) and a double array of real numbers {b,, ;}; m, j =
1,2, ....
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(1.1.1) THEOREM Let B, = (3 217, b5,;) < oo foreachm = 1,2, - ., and
define g,,(x) = cos n; x for x € [0, 2w]. Assume that the following condi-
tions hold:

J"l mJ

(1) Bp = 0

(ii) B, 'sup; |by, il —moe O0-
Then, for each set E C [0, 2] of positive Lebesgue measure,*
im,,_ |E|"'|{xeE: B, "0,(x) £ 2} = 2r)"t {2 _exp(—1t*}2)dt  for 2eR.

Theorem (1.1.1), which plays an essential role in the proof of subsequent
theorems, is a generalization of a theorem of Salem and Zygmund (cf. [11] page
57, Theorem 8) and its proof runs along similar lines as those of this same
theorem. Theorem (1.1.1) contains, as particular cases, several of the important
theorems proved in [10] and [11]. On the other hand, Theorem (1.1.1) for the
particular case E = [0, 2x], is a special case of a theorem of Gaposhkin (cf. [5]
page 423, Theorem 1).

(1.1.2) THEOREM. Let{a;},j= 1,2, ..., be a sequence of real numbers and
define A, = (} T3 ) and B, = (} T3 a (1 — jl(m + D). Let 0,(x) =

m,a;(1 —j/(m + 1)) cosn;x be the Cesdro-1 means of }7.,a;cosn;x. If
A, — oo and A,”'max,;.,, |a; — 0, then for each set E C [0, 2n] of positive .
Lebesgue measure,

|El ll{er B, s (X)Sl}—(2ﬂ') %Sl exp(—tz/Z)dt for ieR.

m—»oo

For a proof, it is enough to observe that the double array b, ; = a,(1 —
j/(m + 1)) satisfies conditions (i) and (ii) of Theorem (1.1.1). This theorem is
also valid, mutatis mutandis, for the Abel means and for the Cesaro-a means of
Y. a; cos n; x, provided & > 0 in the latter.

2. Let us consider a lacunary trigonometric series S(w) = >;7., a; cosn; w,
where n; ,/n; > ¢ > 1, we[0,2z]and a; e R. Set 4, =% 1™, a;’. Let{a, ;},
m,j=1,2,..., be a double array of nonnegative real numbers such that
a,,; = 0 for j > m (later on, in Section 6, this last assumption will be dropped).
Leta,, ;1 1as m1 co and assume that a,, ; | asj increases (in Theorem (1.2.1),
this last assumption, together with (ii), can be dropped if we assume a; = 0(1)).
The linear means of the series S(w) will be denoted by ¢,,(0) = 1™, a,, ;a;cosn; o
for m=1,2, ..., and ¢,(w) = 0. The following theorem, and also Theorems
(1.2.42), (1.3. 1) and (1.6.1), are generallzatlons of theorem of Billingsley (cf.
[1] page 410, Theorem 23.1).

(1.2.1) THEOREM. Let A,* = (3 1™, a% ;a7 Ao* =0, and define X, (v, t) =
o(@)[ A if te[AN[A*, AL (AP, where k =0, ..., m, te[0,1] and we
[0, 27]. Assume that the following conditions hold: ‘

2 By |B| we indicate the Lebesgue measure of the set B.



1092 ALVARO GONZALEZ VILLALOBOS

() Ap —poee 003
(il) 4,"'max,_;, ;] >mnw 0;
(iii) lim,, ., (27)7 {3 X (@, 1)) X, (0, t;) do = I'(#, t,) e R foreach t,, t,€ [0, 1]
and I'(t, t) = t for t € [0, 1].
Consider in ([0, 2], £#)* a probability measure P which is absolutely continuous
with respect to Lebesgue measure. Then, there exists a Gaussian process {X(+, t):

0 < t £ 1} such that
X,=X in (D,92).

Proor. For each m, X,,: [0, 2x] — D is a random element of D. We have
(1.2.2) o p(@) — o, ()| do < K\(A4,** — 4,*7)?

for all g-lacunary series and all » and m, where K, is a constant depending only
on g (cf. [13] page 215, Theorem 8.20). Let us assume that

(1.2.3) P(B) = |B n By|/|B,| forall Be<?,
B, being a fixed subset of [0, 2x], |B,| > 0. Hence, by Chebychev’s inequality,
1.2.4)  P(o, — 0, =2) £ 21%E(o,, — 0,]°) < Q217%4,** — A,*?)}
for all 2 > 0, where Q = Q(g, |B,|) is a constant for all 0 < » < m and for all
g-lacunary series. If 2 > 0 and 0 < i < j < k, the preceding formula implies
P(lo; — ol 2 4 |0, —0;l 2 2)
(1.2.5) < [P(lo; — o = DP[P(loy — 05| Z D]t
< QI (A — AFY(AM — AP
é Ql—3(Ak*2 — ‘AZ:O(Z);i R
because the A4,,** are increasing.
We now prove, following the proof of a theorem of Billingsley (cf. [2] page 89,

Theorem 12.1), that forall 2 > 0, 0 < i, < i, and for all g-lacunary series, there
exists a constant K > 1 such that

(1.2.6) P(max, g, min [|o;, — oy, |0, — 0y |] = 2) < QA°K(Af? — 4F)E,

where Q is the constant appearing in (1.2.5). Let us proceed by induction on
m = i, — i;. Denote by M(w) the number

M(v) = max, o,g;, min [|o, (o) — 0(0)|, |o(@) — o, (0)]] .
For m = 0 and m = 1 the result is immediate. If m = 2, by (1.2.5) we have
P(M(0) Z 2) = P(lo;, — 044l = 4, |00 — 04| = ) < Q1%(AF — AFHE.

Therefore, if m = 2, the result holds for every K > 1. Suppose now that (1.2.6)
holds for i, — iy < m — 1 (and m = 3) and let us prove it for m. Define for
I1<h<m, '

Hy(®) = max, gg; yoony MiN[|0; 40 — 04, |0, — 0, ]

3 &# denotes the Borel sets.
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and
Hy(w) = max, ;s pm MIN[|o; 10 — 04, [0, — 0, ] .
Then, M(w) = max (Hy(w), Hy(w)) and so
(1.2.7) P(M(0) = 1) < P(Hy(®) Z ) + P(Hy®) 2 2).
Using the inequality
Hy(0) = max, gq; gy MiN[|0; 44y — 04, |0 — 0, ]]
+ Min (|0, 1 — Gy gl [0s 401 — 04)) + |04 4m — 04
= Cy(0) + Cy(0) + Cy(o),
we have
P(H\(0) = 2)
(1.2.8) < P(C(@) + Cfw) + Cy(w) = 2)
S ming ;oosensiytie=1 [P(CL 2 4) + P(Cy, Z 4)) + P(Cy = 25)] .
Since m > 3 and the A4}* are increasing, we can choose i < & < m such that
(1.2.9) (AFhao — A8 < 3(AF — 43,
(1.2.10) (A% — A%%,) < 34 — 4.
Since h — 1 < m — 1, it follows from the inductive hypothesis and (1.2.9) that
(1.2.11) P(C, = 2) < QA K(AF o — A < QKAT(AR? — A7) 270,
From (1.2.5) and (1.2.4),
(1.2.12) P(Cy = 2) = P(loy, — 05 ppal = Ay 054000 — 04| 2 4)
S Q4 7H(AE — A
and

(1.2.13) P(Cy = 2;) < QA7%(A4F — AP)E.
Combining (1.2.8), (1.2.11) and the two preceding formulas, we obtain
(1.2.14)  P(Hy(0) = 2) < Q(4} — 43}

X infy o seasagrag=r (AT°K27H 4+ 2,70 4+ 2,79

By the method of Lagrange multipliers, we conclude that the above infimum is
attained at 4, = 271AK#(2 4 2-#K*)~'and 2, = 2; = A(2 4 27iK*)~*. Consequently,

(1.2.15) P(Hl((l)) = Z) < Q1—3(A;:6;2 _ A:;;z)g(2 + 2_3K*)4 .
For K = K* = [2(2—* _ 2—3)—1]4,
(1.2.16) (2 + 2—§K*)4 é %K.

We shall prove (1.2.6) for K = K*. By the two preceding formulas,
(1.2.17) P(H(w) = 1) < $QKI%(A}* — A7)} .
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By using the inequality
Hy(0) < max; ;g Min (lo, — 0, 4, [0, — 0,)))
+ min (l"iz — Gl [Oign — "ill) + I"iz - "ill
= Bi(0) + By(w) + Cy(w)
and an argument similar to the one leading to formula (1.2.17), we find
(1.2.18) : PH,=2) < %QKX‘a(A;';z _ A;;;z)g )

Finally, by (1.2.17), (1.2.18) and (1.2.7), formula (1.2.6) is established.
Next, we show that there is a constant K, = K,(q, |B,|) for which

(1.2.19) P(max, g |0, — 0,] = 2) < KA~(AR — A}

for all 2 >0, 0 < i, < i, and for all g-lacunary series. The left-hand side of

the previous formula is bounded by
P(loy, — 0,| = 34) + P(max, o, min[lo, — o, |, |0, — 0, |] = 34);

and so, combining (1.2.4) and (1.2.6), we obtain (1.2.19) with K, = 2°Q(1 + K).
On the other hand, it follows from (i), (ii) and the assumptions on the a,, ; that

(1.2.20) (i*) A4,* —>pe ©, (ii*) max,_;,, (4,*)7Ya;ap ;| = mowO0 .

We shall need this formula once we prove the following two lemmas, which
show that {X,} is tight in (D, &).

LEMMA 1. Fore > 0 and v > 0, there exists an Ny, = Ny(e, n) such that for all
m = N, there exist r=r(m), 0< t,< --- <t, =1, 0 =0(s, 7,9, |By), 0<
0< 1, and(t, — t,_,) = 0 such that

(.221) Y, P <sup,k_1§,§tk X (@, 1) — Xp(w, t,_)| = %) <7.

Proor. For fixed m, suppose 1 < i, < i, < m, and let 1, = A}*/4,** and t, =
A¥[A4,**. By formula (1.2.19),

P<sup,l§t§,2 X (@, 1) — Xp(w, 1)] = f3_)

(1.2.22) —P <maxi1s,,§i2 o) — 0, @) 2 5 A,,,*)

< 3 3K ’ #
=(? At — )}

Taking the points 7, of the form 4}?/4,**, by (iii) we have
MaXgism [t — fhoa] Dm0

Therefore, if we choose 0 < d < 1 so that

(1.2.23) 0 < 37%%K,~?,
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there exists an N, = N,(d) such that

(1.2.24) t, — b <30

for all m > N, and k =1, ..., m. For each m = N,, there exist r = r(m) and
0=1r<t,< .-+ <t =1 for which

(1.2.25) 05t — b,y whenever k=1, ...,r.

Since rd < 1, by combining the last three formulas, we see that the left-hand
side of (1.2.21) is bounded by '

3K, Di (e — i) = 7,
and so Lemma 1 is established.
LeEMMA 2. The sequence {X,} is tight in (D, ).
Proor. If xe D, 0 < 0 < 1, and w,(0) = sup,,_,<; |X(s) — x()|, then

(1.2.26) P, (xeD: 0, d) = ¢)

< ;=1P<w: SUP,,_ zese, [ Xn(@, 1) — Xp(0, 1,_)] = ?>

(cf. [2] page 56 and page 128). By Lemma 1, the right-hand side of (1.2.26) is
bounded by » for m = N(e, ») and so

(1.2.27) P.(xeD:w,(0) =)<y for m = Nye, 7).
Moreover, by the definition of the random elements X,,, if a > 0,
(1.2.28) P, (xeD:|x(0) >a) <7 for m>=1.

The two previous formulas imply that the sequence {P,} is tight (cf. [2] page
127, Theorem 15.5). Consequently, Lemma 2 is established. We shall now
prove the convergence of the finite-dimensional distributions of {X,,}.

If we define b, ; = a;a,, ; forj < mand b, ; = 0 for j > m, (1.2.20) implies
that b,, ; is a double array of real numbers satisfying conditions (i) and (ii) of
Theorem (1.1.1). Since

PXy(o, )< x) = P(2H9) < x 4™} gna A, 4,
m = AF T AF A, ¥ m=>eo
Theorem (1.1.1) implies that
(1.2.29) P(X, (¢, t) £ X) —p_0 MO, H)[x]*

for each € [0, 1].

Let us write I' (1, t,) = (1/27) §i* X, (0, )X, (o, t,) do for t,, t,€ [0, 1]. For
fixed m, {T',(t; t:)}y,,¢,cr0 is the covariance matrix of the process {X, (v, f):
0 < t < 1} with respect to the normalized Lebesgue measure in [0, 2x], i.e.,

4 N(E, V)[x] denotes the normal distribution with expected value E and variance ¥ at the point
xeR.
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T..(t, ;) = Cov (X,(+, t,), X,.(+, 8,)). Hence, {T', (1, t,)} and its limit I'(z, t,)
are positive definite matrices. Consequently, by Kolmogorov’s theorem, there
is a Gaussian process {X(.,?): 0 <t < 1}, X(o, 1): (Q*, &Z*, P*) - (R, &),
such that E(X(., t)) = 0 and Cov (X(., t,), X(+, t,)) = I'(#,, ;). Furthermore,
V(X(-, t)) =T, t) = lim,,_, 4,**/A4,** = t. Thus, we can rewrite (1.2.29) as
follows:

(1.2.30) X, (os t) = X(o, 1)

Now we are going to see that this formula is also valid for p points.

LemMmA 3. Fort, ---,t,€[0,1],

(1.2.31)  (Xa(es 1)y - X5 1)) =moseo (X(e5 11)s -5 X(es 1)) -

Proor. We may consider #, < ... < t,. By the Cramér-Wold theorem (cf.
[4]), it suffices to prove that

(1'2'32) Zz?=l Sz‘Xm(" ti) = m—oo Zf=1 fz‘X(" ti)
for &,, ..., &, e R. Since X(-, #) is a Gaussian process, we have
(1'2'33) Zf=1 Ez Xm(" ti) = m—oo N(O’ vV [Zf=1 Ez X(” ti)]) .

If X, (0, t;) = A,* o) (w) fori =1, ..., p, we can write the left-hand side
of the previous formula in the form

1
A *

m

(1.2.34) i &, X (0, 1) = S b, COsn; o,

with the definition
(1.2.35) bui=a; X7, &a,,; for j<m, b,; =0 for j>m.
Write B,, = (3 2™, b2, ;). Since for 1, < t,,

1
L. t) = RS Tk ata ey,
B 2 A*Z
(1.2.36) y m*2 = 2N, él A—k;i—z + 2 Disicass S Lot 1) -
Thus, by (iii), it follows that
2
(1.2.37) lim,, AB% = 2060+ 2 Tagians, S T (15 1)

= V(Z?:l S@ X(', tz))

and so B,, —,,_., co. Moreover, by (1.2.20) and (1.2.36)

m—oo

E3

maX1 . bfn,j S 21’(21)_1&"2) Am
=js=m B2 = =154 B

2
max, g, ——mi— 0.
” A

2
m

Therefore, the array b, ;, defined in (1.2.35), satisfies conditions (i) and (ii) of
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Theorem (1.1.1). Combining (1.2.34), Theorem (1.1.1) and (1.2.37), we obtain
(1.2.33) and so Lemma 3 is established.

The process {X(+, #): 0 < ¢ < 1} may be chosen so that Xe D. In fact, let
us consider two points ¢ and ¢ 4 £ in the interval [0,1), > 0. Ife > 0, by
(1.2.32) and (1.2.4),

(1.2.38) PX(|X(s, t + k) — X(+, ) gs)ég_h; 0100
Furthermore, by (1.2.32) and (1.2.5),

(1:239)  PHX(es 1) = X+, Dl 2 2 X, ) = X 0)] 2D = 2 (6, — 1y

for 0 < ¢, <t £ 1, From the two formulas above, it follows that the Gaussian
process {X(+, #): 0 < t < 1} may be chosen such that X is a random element of
D (cf. [2] page 130, Theorem 15.7).

From Lemmas 2 and 3 we conclude that, under the assumption (1.2.3),

(1.2.40) X, =X in (D,Z).
Therefore,
(1.2.41) |By N {X,, € A} =, .. P¥(X € A)|By|

for every B, e &, and Ae 2. Hence, for a fixed 4 € Z, the sequence {X,,~(4)}
is strongly mixing with density P*(X e 4) (cf. [9]). Since P is absolutely con-
tinuous with respect to Lebesgue measure, formula (1.2.41) implies that P(X,, €
A) >pw P*(X € A) (cf. [9] page 216, Theorem 1). Thus, Theorem (1.2.1) is
established. []

The previous theorem admits (with an analogous proof) the following im-
mediate generalization:

(1.2.42) THEOREM. Let us consider a lacunary sequence of integers {n;}, j =
1,2, ..., and a double array of real numbers {b,, ;}, m,j = 1,2, .... Let B, =
(3 27 bh )t By =0, and define o,(0) = 37,b, ;cosn;oform=1,2,...;
o(0) = 0, where w € [0, 2z]. Let X, (o, t) = o(w)/B,, if te[B?B,?, B:,,/B.,?),
where k = 0,1, ..., m; t€[0, 1] and w € [0, 2x]. Assume that the following con-
ditions hold:

(a) b, ; =0forj > m;

(b) B, —pw 90

(¢) B,'max,_;., |0, ;| —mw 05

(d) sign b,, ; = constant for fixed j;

(e) b, ; increases with m, for fixed j,

(f) lim, . (27)7 §§* X, (0, )X, (0, ) do = T(1, ;) € R, foreach t,; t,€ [0, 1]
and I'(t, ) = t for t [0, 1].

Consider in ([0, 2z], £#) a probability measure P which is absolutely continuous with
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respect to Lebesgue measure. Then, there exists a Gaussian process {X(s, #): 0 <
t < 1} such that
X,=X in (D,9D).
3. Since the Wiener process in (D, Z), W = {W,(-): 0 < t £ 1}, is charac-
terized by the properties E(W,) = 0 and Cov (W,, W,) = min {7, 4}, an immedi-
ate corollary of Theorem (1.2.1) is the following

(1.3.1) THEOREM. Under the conditions of Theorem (1.2.1) and the additional
condition I'(t,, t,) = min {t,, t,}, we have X,, = W in (D, Z).

4. The next theorem gives a closed expression for the limit process appearing
in Theorem (1.2.1) for the case of Cesaro-a means, a > 0, and constant coef-
ficients. Observe that these limit processes X,(+, #) are such that X,(, ) —,,,
W,(+) (cf. Theorem (1.5.1)).

Observe also that for a > 0, if 0, (0) = 11", a,, ;a; cos n; ® are the Cesaro-a
means of S(w) = 5., a;cosn;w, then the double array a,, ; = [(1 + a/(m —
j+ 1)) .-+ (1 + a/m)]* satisfies the conditions required in Theorem (1.2.1),
excluding (iii).

(1.4.1) THEOREM. Using the notation of Theorem (1.2.1), let g,(w) be the
Cesaro-a means of S(w) with « > 0 and |a;| = M + 0. Then,

X(es ) = X(o, 1) = a(l + 2a)L (W) — 2yt ds

fort >0, X, («,0) =0, and 50 X,(+, t) —,,0 Wi().

Proor. By definition, X,(-, ) is continuous for ¢ > 0. Furthermore, since
W,(+) is continuous and W () = 0, |X,(+, t)| —,,,0.

Hence, X, (-, f) is continuous for z¢ [0, 1]. Consequently, X, is a random
element of C because X,(-, f) is Borel measurable for each ¢. By definition,
{Xa(+, 1): 0 < t < 1} is a Gaussian process. It follows from the continuity of
the Wiener paths that

T S Wt = 0 o W)

where I" denotes Euler’s gamma function. Consequently,

lim, o X,(+, 1) = lim, ;o L& T D e )0 — x)e1ax = W)

I(a)
Since E(W,(+)) = 0 and E(|W,(+)|) = ((2/=)x)}, Fubini’s theorem implies that
(1.4.2) E(X,(+, 1) =0 for all .

Since E(|W,(«)||W,(+)]) < (xp)t and E(W,(+)W (+)) = min {x, y}, Fubini’s theo-
rem implies again that

(1:43)  EX(0 X0 ) = (1 +20) - §x7l(s, — 1) + x]edx
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for t, < t,, and, in particular,

(1.4.4) E(X}2(.,0)=1t.
By definition,
Hg_;
o (0) = 27, H":a’ a;cosn;w ,

where H,* = ("*) = (I/m!)(a + 1) -+ (a + m) (cf. [13] page 77, (1.15)).
Since H,,* = (m=/(T(a + 1)))(1 + O(1/m)) (cf. [13] (1.18)), it follows that

He_, A% 1
1.4.5 m.=__zn_r:< —_> 0<#>.
(1.4.5) s = i LY +o(
Therefore,
7\ 2a
(1.4.6) 24,5 ~ M? ;e;o( - #)

and similarly
(1.4.7) ey oy = M ,;=°< - %)“ <1 N —]I—>a ’

where k and / are such that X, (0, t,) = 4,,* o (0), X, (0, t;) = A,* '¢,(0) and
n £ t,. By (1.4.6),

(1.4.8) 240 =M
d + 2a)
and so
(1.4.9) koo, L n.
m m

By (1.4.7),

(1.4.10) S ajte, a, =~ M Q%(;‘))_“i §Ek o1 4 1y dt .

Combining (1.4.10) and (1.4.8), we have

I — k)t (142
Tty 1) = L= 070 (L+ 29)

§&/t=krx(1 + 1)~ dt;

(kD)
and so, by (1.4.9)
(1.4.11) ', t,) = % o xo[(1, — 1) + x]*dx.
1 %2

Consequently, conditions (i), (ii) and (iii)’ of Theorem (1.2.1) are satisfied. More-
over, by (1.4.3) and (1.4.11),

(1.4.12) E(X (+, )X (=, 1) = T(1,, 1,)
for t, < t,. By (1.4.2), (1.4.4) and (1.4.12), Theorem (1.4.1) is established. []

5. The limit process X{(+, f) appearing in Theorem (1.2.1) is not necessarily a
Wiener process (see Theorem (1.4.1)). To ensure convergence to the Wiener
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process, additional conditions have to be added. A variety of conditions which
ensure convergence of X, to the Wiener process appear in the next theorems,
which are an immediate consequence of Theorem (1.3.1). Theorem (1.5.1) is a
theorem of Billingsley (cf. [1] page 410, Theorem 23.1).

(1.5.1) THEOREM. Under the conditions of Theorem (1.2.1) with assumption
(iii) excluded, if a,, are the partial sums of S(w) = Y5, a; cos n;w, then X,, = W
in (D, 2).

(1.5.2) THEOREM. Under the conditions of Theorem (1.2.1) with assumption
(iii) excluded, if o,(w) are the Cesaro-1 means of S(w) and if (n + 1)~* 317_, ja? =
o(A,}), then X,, = W in (D, Z).

Observe that the conclusion of the previous theorem continues to hold if
a=O0(/n)yorifa?=0(/nlg n... (g, n)*),where0 <a=l,p=12,...,
and lg, denotes the natural logarithm iterated p times.

6. In the following two theorems, which are generalizations of Theorem
(1.2.1), the triangular matrix {a,, ;} is replaced by a doubly infinite one. Theo-
rem (1.6.2) refers to the particular case of Abel means.

The proof of the next theorem follows the same lines as that of Theorem
(1.2.1).

(1.6.1) THEOREM. In Theorem (1.2.1), if the condition a,, ; = O for j > m is
replaced by > 5., a,, ;|a;| < oo, the conclusion continues to hold with the following
new definitions of o,(w) and A,*: o, (0) = )7, a, ;a;cosn;0 and A, * =
(3 X5 ah, a0t

In particular, we may set a,, ; = r,"i, where r, is a sequence such that 0 <
r,<land r,11asm— co. In this case, the ¢,(w) are the Abel means (with
a discrete parameter) of S(w) = 37, a;cos n; w.

The next theorem deals with the Abel means of S(w) with a continuous pa-
rameter r¢ [0, 1).

(1.6.2) THEOREM. Let )5, r*ila;| < oo for every re[0, 1). Define

AX =G D, rriaf)t, 0, (®) = 5, a;r"cosn;w and

X (0, t) = o,(w)]A* if A*|A** = t. Assume conditions (i) and (ii) of Theorem
(1.2.1) and assume that lim,_, (1/27) §i* X (0, t,)X (o, t;) do = I'(t,, t,) € R when-
ever t,, t,€ [0, 1]. Let P be a probability measure on ([0, 2x], <), absolutely con-
tinuous with respect to Lebesgue measure. Then there exists a Gaussian process
{X(+,): 0 <t < 1} such that X, =,_, X in (C, &€).

Proor. The X, are random elements of (C, €"). By Fubini’s theorem, all
the arguments leading to (1.2.4) in the proof of Theorem (1.2.1) are valid for
the random elements X,(w, f). Therefore, there is a constant Q such that

(1.63) P(o, — o 2 = 2 (42 — 4,
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for all 0 < u < 5 <1 and every 2 > 0, provided P is the probability measure
defined by (1.2.3). Therefore, by the definition of X,

(1.6.4) P(X,(, 1) = X( ) 2 D) < 2 (1, — 1)}

for 0<#<4<1and re[0,1). Since X,(-,0) =0, the previous formula
implies that the family {X.},.(,, is tight in (C, &) (cf. [2] page 95, Theorem
12.3). Furthermore, because of Theorem (1.1.1), Lemma 3 which is used in
the proof of Theorem (1.2.1), is valid for the random elements X,. Therefore,
there is a Gaussian process {X(+, 7): 0 < ¢ < 1} such that

(1.6.5) (Xo(es 1)y - X 1)) =,a (X(o5 1), -0, X(o5 1))

fore, ..., 1,¢[0,1].
By the last two formulas and the Cramér-Wold theorem, we conclude that

PHX(e 1) = X(, )] 22 £ 2 (6 — 1)

It follows from this formula that we may choose X such that X is a random
element of C (cf. [2] page 96, Theorem 12.4). Therefore, X, —,_, X in (C, & )s
if the probability measure P is defined by formula (1.2.3) of Theorem (1.2.1).
If P is absolutely continuous with respect to Lebesgue measure, we proceed as
in Theorem (1.2.1). [

7. REMARK. In Theorem (1.2.1), because of (1.2.32) and (1.2.2), we have
E((Xp(e5 t + H) — X5 OF) Do E(X (5 8 + B) — X(o, ) < o0

for tand ¢ 4 A in [0, 1]. Since we also have

I
for X,(o,t + h) = A,*'¢,(0) and X, (o, ) = A4,* 0,(»), it follows that
E(X(, t + ) — X(-, D)) < QJAJE.

Consequently, for a given 0 < ¢ < }, there exists a stochastic process {Z(-, 7):
0 < r < 1} with the same finite-dimensional distributions as those of {X{(-, #):
0 < ¢ < 1}, such that, with probability one, it satisfies a Lipschitz condition of
order & (cf., e.g., [3] page 74). For analogous reasons, the same conclusion
holds for the limit process {X(, 7): 0 < ¢ < 1} appearing in Theorem (1.6.2).
If X = W, it is known that we may take 0 < & < } (for this theorem of Wiener
see, e.g., [3] page 75). ’

E(IXM(O, t 4+ h) — Xm('9 t)ls) <0 (Ar*ﬁ Az“);

PART 2. Sequences of linearly independent numbers. -

1. The lacunarity hypothesis used in the previous functional limit theorems
has been dropped in Theorem (2.2.2). A theorem of Kac-Steinhaus (cf. [7]
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page 47, and [8] page 11, Theorem 5) and its generalization by Salem and
Zygmund (cf. [11] page 60, Theorem xii) suggested that a theorem like Theo-
rem (2.2.2) might be true. An essential tool for the proof of Theorem (2.2.2)
is Theorem (2.1.1), which deals with triangular arrays, and generalizes Theorem
xii of Salem and Zygmund.

Real numbers 4,, 4,, - - - are called linearly independent if the only solution in
integers (ky, k,, - - -) of the equation k, 4, + k4, + -+ - = Qisk, =k, =---=0.
In what follows, {,}, v = 1,2, - - -, will be a sequence of linearly independent
real numbers.

(2.1.1) THEOREM. Let {b,, ;}; 1.4.....mm=1,2,...» b€ a triangular array of real num-
bers. Let uswrite B, = (¥ 2™, b% ;) and S, (0) = 117, b, ;COs 4;® for all w e R.
Assume that the following two conditions hold:

(i) B, —pe 05
(ll) max,<;<m Bm_llbm,jl ) 0.

Then, .
lim, . limy... o [0 € [~ T, T]: B, 5,(0) S )| = @) §2a exp(—3) i

for all y e R, with the possible exception of a countable set.

PrOOF. Since B, 'S, () is an almost periodic function in the sense of Bohr,
by Wintner’s theorem (cf. [12] and [6] page 249),

F,*(y) = lim_.. [{o e [T, T]: B,7Sa(@) = }}I/2T

exists for all y e R with the possible exception of a countable set.
If we write F,(y) = F,*(y*) for all y ¢ R, then the theorem will be established
if we show that

(2.1.2) Pm(X) = §=. €Xp(ixy) dF ()

= lim,_.. 517 {7 5 €XP(iXBy2Sn()) &) — o EXP(— 42 .
As in the case of Theorem (1.1.1), if &,(y) = 3B, ~* X711 b} ; €08 24;),
@2.13)  gu(x) = o(1) + exp(—4x?) lim,_, _le_ §70 exp(—3x%.(7)

x TI™. (1 + ixB,~*b,, ;cos 2;y)dy .
Set E, .., = {y e [=T, T]: [¢a(y)| Z 7); then

1 1
T ]Em,rl,TI = 2T 728 6 dy

(2.1.4)

47 B D B Vs g S5 COS 1y cOS Hy dy -
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Since

(2.1.5) Ircosd;ydy —, .0 and Ircos*d;ydy —, .1,

1y
2T 2T

by (2.1.4) we obtain

(2.1.6) lim sup,_,, E,,r| £27%7B, " 1™, bt .

1
2T .
By (ii), the right-hand side of (2.1.6) tends to 0 as m — co and so

1

2.1.7 lim su —_
( ) s pT—’°° 2T ]

Ep 1l Pmaw 0.

Formulas (2.1.7) and (2.1.3) imply that
(2.1.8)  $a(x) = o(1) + exp(—4x7)
X By o % I (L + i5B,7tb,, ;€05 2,) dy
By (2.1.5) and the independence of the system {cos 2, y} with respect to the re-

lative measure (cf. [8] page 10, Theorem 3), the limit which appears in the
right-hand side of (2.1.8) equals 1 and, therefore, (2.1.2) holds. []

2. In the proof of Theorem (2.2.2) we shall use the following lemma, which
has a simple proof.

(2.2.1) LEMMA. Under the hypotheses of Theorem (2.1.1) and with the notation
S, *(w) = B, 'S, (w), we have that

. 1 ' '
limy 5 {0 € =T, T): s < S5(@) S 31y, < S2,0) < )

exists for all except, at most, a countable set of values of y,, y,'.

(2.2.2) THEOREM. Let {a;}, j =1,2, ..., be a bounded sequence of real
numbers and set A, = (} 2,7 a;)t. For each m, T =1,2,...,0¢ [—T, T]
and t € [0, 1) define X,™(w, t) = 4,7 ¥\ a; cos 2;0° and X,™(o, 1) = 4,7 X
275t a;cos A;@; and consider the normalized Lebesgue measure in [—T, T]. If
(24,%/m) —,_ ¢ # O, then, there exists a family of stochastic processes {Z™(s, t):
0<t=1},m=1,2,..., such that X," — , . Z" — . Win (D, 2).

Proor. It is clear that the X,™ are random elements of (D, ). Let us write
Sy(®) = Y% ,a;cos 2; 0, and

(2.2.3) Fm*(yl’ ceey yk; tp MY tk)
= lim,_., 517 o e[—T, T]: X,"(w, t)) < y,- for all i)|

§ [m1] indicates the largest integer less than or equal to mt.



1104 ALVARO GONZALEZ VILLALOBOS

fory,, -+, y,eRand t, ..., 1,¢[0,1]. By Lemma (2.2.1), F,* is well defined
for all except, at most, a countable number of O oY) e R
We now consider the k-dimensional distribution function F™ defined by

Fm(yl’ s Ve by ""tk) = Fm*(y1+’ ""yk+; t, ""tk)'

By Kolmogorov’s existence theorem, there is a family of stochastic processes
{Y™(-,0:0<t<1}, m=1,2, ..., such that

(2.2.4) F™yy, o ooy yas by o 5 B)
=P, (0'eQ,: Y™, 1)<y, forall i=1,...,k);
therefore, it follows from (2.2.3) that
(2:2.5)  (X"(es 1)y o X" (os 1)) = (Y™(o 1), 05 Y™, 1)) 5
and also
(2.2.6) (1 X" (e, 1) — Xp"(es 1)), [ Xp™(e, 1) — X:"(+» 1))
=rae ((Y™(e5 1) — Y™(e5 1)], [Y™(e, 1) — Y™(o, 1))
fort,1,4,€[0,1]. Letey, ---,,e Rand 0 =¢t, <t, < --- < t, < 1. It fol-
lows from (2.2.5) that
Po(Tia a; Y™(e, ;) < x)
(2.2.7) = lim,_,, 2T) o e [T, T]: Sk, a; X;™(o, 1;) < x}]
= lim;_, QT)fwe[—T, T]: 17,b, ;c08 ;0 < x- A,}|;

where b, ; = a; 31, ... kmigzs @ If 1, = 1, substitute m — 1 for [mz,]. Set
B, = (3 X, b4 ;). Since lim,, , A, %4, =tfor0 <t < land 4,242 _, —»
1, we have
limm—»eo BmzAm—z = tl(al + e + (’Ylt;)2 + (tz - tl)(aﬂ + M + ak)2 + tee
+ (% — )’

Therefore the double array b, ; satisfies the hypotheses of Theorem (2.1.1), and
consequently (2.2.7) can be written

limy o Pu(Tkes a; Y7(o, 1) < %)
=N(0’t1(a'1+ +a,,)”+(t2—t1)(a'2+ a4
+ (8 — ti)a)[x]
that is, ‘
(2.2.8) D5 Y00 ) = Db a; Wt,-(‘) .

By using the Cramér-Wold theorem, we conclude that

22.9) (Yo s s Yoy 1)) = (W (o), -y Wi (1)
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fogt<t<t,<landy > 0, then
gl e [= T, T]: 170, 1) — X,"(0, 0] 2 1,
| X, ™(@, 1) — X,™(o, )| 2 Y}

1
(2.2.10) <4,y ((ﬁ> §27 IStmeg — Stmarl* de

X (711_') §27 [Stma — S[mt1]]4 da))é
< H . y=¥([mt,] — [me])}([mt] — [mt,])},

where H is a constant. Since (2T)~* {7, cos pw dw —,_,, 0 for ;2 &= 0, and since
the sequence {4,} is linearly independent, it is easy to see that there is a constant
K, independent of m, ¢, and t,, such that

. 1
(2.2.11) lim,_,, T §Zr (S[mtal(w) — Sime(@)) do < K(A?mtzl - A?mtll)z .

It follows from (2.2.11) and from the inequalities of Chebychev and Holder that
for 0 < 1, < t, < 1 there is a constant K’ independent of m, ¢, and ¢,, such that

. 1
(2.2.12)  limg o - {o € [T, T]: [Stmip(®) — Smega(@)] 2 I}

S K-y (Al — A

for all values of y > 0, with the possible exception of a denumerable set. The
limit which appears in the left-hand side of the previous formula exists because
Stme,1(®) — Stme (@) is an almost periodic function. By (2.2.12) and Lemma
(2.2.1),

. 1
(2.2.13) lim, ., 2T Hoe[—=T, T]: [Simeyy — Stmal Z P5 [Stmer — Spmep| = Y}

= Ky=(Al ey — A1)t

forall0 < <tr<t,<landally > 0.
We now show that there is a constant K* independent of ¢,, ¢, t,and m such that

. 1
lim, . |0 € [~ T, T]: |X;(@, &) — X,(, 0] Z 5,

(2.2.14) | Xp™(w, t) — X:™(o, t)| =y}
K*
é 73_(1.2 - tl)a M

In fact, if [mt,] — [mt;] < 1, the left-hand side of the formula above vanishes;
therefore it is enough to consider the case |t, — ¢,| = 1/m. By (2.2.13), the left-
hand side of (2.2.14) is bounded by K*y=%(4,,~*4},..; — 4, *4},.))}. Hence, it

is enough to show that 4, -4, ., — 4,74}, < K(u—v), where0 S u < v < 1,
v — u = 1/2m, [mu] = [mv] + 1, and K is a constant independent of m, u and
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v; this is in fact true because m/24,* is bounded, and so (2.2.14) holds. Com-
bining formulas (2.2.14) and (2.2.6), we obtain

(22.15)  P(|Y™(est) — Y™(s, D) = p, [Y™(+, 1) — Y™(o, )| 2 )

K*
S S5 =),

For t,, - -+, 1, €[0, 1], denote by g ..., the probability measure associated with
the k-dimensional distribution function F™(y,, -+, 5 t;, -+, ). If 0 <4 <
t < t, by (2.2.15) we have

(22.16)  pr BB B): 1B —BlZ y B — Bz s

7 (t, — )t

If0<r<1,h>0and ¢+ ke (0, 1), then
[ Xp™(es £+ B) — Xo™(os Ol =pae [Y7(es £+ 1) = Y7, D)5
and it follows from (2.2.12) that, for ¢ > 0,

K’ _
LB Bo) i By — Bal Z ¢} = = (An *Almiseny — Am At

Consequently,

(2'2'17) F’?Hh{(ﬁn .Bz): |.31 - ﬁzl = 5} ‘—’uoo .

By (2.2.16) and (2.2.17), there is a family of stochastic processes {Z™(+, 7): 0 <
t <1} in (D, &) with the same finite-dimensional distributions as those of
{Y™(+,2): 0 <t < 1} (cf. [2] page 130, Theorem 15.7). Since P, *(Z™(., 1) #
Z™(+, 17)) = 0, it follows from (2.2.5) and (2.2.10) that X,™ —,_., Z™in (D, Z)
(cf. [2] page 133). Finally, from (2.2.9) and (2.2.15) we conclude that Z™ —,,_,
W in (D, Z) (cf. [2] page 128, Theorem 15.6). Therefore, Theorem (2.2.2) is
established. []
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