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SOJOURNS AND EXTREMES OF GAUSSIAN PROCESSES!

By SiIMEON M. BERMAN
New York University

Let X(¢), 0 < ¢ < 1, be a real Gaussian process with mean 0 and con-
tinuous sample functions. For u > 0, form the process #(X(¢#) — «). In this
paper two related problems are studied. (i) Let G be a nonnegative meas-
urable function, and put L = {§ G(u(X(t) — u)) dt. For certain classes of
processes X and functions G, we find, for u — co, the limiting conditional
distribution of L given that it is positive. (ii) For the same class of processes
X, we find the asymptotic form of P(maxio,1) X(#) > u) for u — co. Finally,
these results are extended to the process with the ‘“‘moving barrier,”
X(¢t) — f(t), where f is a continuous function.

1. Introduction. Let X(7), 0 < t < 1, be a real Gaussian process with mean
0 and continuous sample functions. For u > 0, form the process u(X(t) — u).
For large u we call this a “high level” process derived from X. Let G be a
nonnegative measurable function, and put L = §j G(u(X(t) — u))dt. In this paper
we study the limiting distribution of L for # — oo; in particular

(i) the general conditions on X and G under which there exists v = v(#) such
that the conditional distribution P(vL < x|vL > 0) converges, and
(i) the forms of the limiting distribution.

Finally we consider the related problem of determining the asymptotic form of
P(maxg, ,; X(t) > u) for u — oo.

Here we unify and generalize all our previous results in this area [1]—[5].
There G was limited to be the indicator of the positive axis, where L represents
the time spent above u. Here G may be a function of a general type.

In most of our previous work the calculations were done under the assumption
of stationarity. But we did not really use the full force of this hypothesis; indeed,
stationarity is mostly about long run behavior of processes, while we were in-
terested in local behavior. Here we use a weaker hypothesis which seems just
right for the problem: local stationarity. This arose in a natural way in [4], in
connection with processes with stationary increments. Local stationarity means
that the process is approximately stationary in the neighborhood of each point;
it is formally defined in Section 8. It appears to the writer that many of the
known properties of the local behavior of stationary processes are actually valid
also under the more general assumption of local stationarity.
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In the previous papers we started with specific assumptions on r, and then
deduced from these the properties needed to prove our limit theorems. But now
these auxiliary properties appear to be of interest themselves. Here we discuss
these properties in more detail, and show that they hold for broad classes of
Gaussian processes, those satisfying some or all of Assumptions 1-5 below. In
particular we give

(i) two variations of the well-known Fernique Inequality which are sharper
than the original in the cases of interest to us;
(i) a new criterion for weak compactness of measures on function space
induced by continuous Gaussian processes; and
(iii) a general asymptotic relation between the distribution of L and the dis-
tribution of the maximum functional.

We point out an important notational difference between this paper and our
recent one [5]: The function F(x) introduced in [5], formulas (6.11) and (6.12),
is equivalent to a multiple of the function F(0) — F(x), where F is defined in
Section 6 below. (See Section 12.)

I thank the referee for the care he took in reading this paper and for the
comments which helped me to improve it.

2. Two inequalities for the maximum of a Gaussian process. Let X(7), 0 <
t < 1, be a real separable Gaussian stochastic process with mean 0. Define the
function ¢(¢) as

2.1) ¢() = sup_yze B(X(s') — X(9))'» 0<r<1.
We assume:

AssUuMPTION 1. {7 g(e=*") dx < co.

This condition was first formulated by Fernique, who stated that it is sufficient
for the continuity of the sample functions [8]. (See also [7] Theorem 7.1.)
Furthermore, he derived an upper bound on the tail of the distribution of
maxg, ;| X(#)|. This is known as the Fernique Inequality. The continuity of the
sample functions under the above assumption was proved in a different way by
Garsia, Rodemich, and Rumsey [9].

In this section we will derive sharper forms of this tail inequality in two cases:
first when the process has a fixed zero, and second, when the variance is constant.

Throughout this paper ¢(x) stands for the standard normal density function:

P(x) = (2m)~te~i.

W(u) = §3 ¢(x) dx .

Put

It is well known that

(2.2) Tu) < p(u)/u, - for >0,
and that

(2.3) T(u) ~ d(u)/u, for u— 0.
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We will also use another simple fact about the normal density. It follows from
the form of ¢ that

(2-4) $(u + x[u) = p(u)ere=;
therefore,
(2-5) B + xfu) < lu)e= .
Define
(2.6) Q(n) = —2?2:—1 02 g(te=*") dx , 0<t<l1.

This is well defined under Assumption 1, and is a non-decreasing function of ¢.
Our first result is a bound for the displacement of X:

THEOREM 2.1. There exists a positive constant K such that
2.7 P(supy, ;3 X(f) — X ung<__”_>
2.7) (SUPLa,1y X() — X(a) > u) = 06 — a)
for all subintervals [a, b] of [0, 1] and all u > KQ(b — a).

Proor. We modify the proof of the Fernique Inequality given by Marcus
[11]. Suppose first that a =0 and b = 1. Let n be a fixed positive integer
greater than 1, and define the sequence

e(p) = n*, p=xl.

For each ¢ in [0, 1] and each p > 1, choose the integer k(p) so that 0 < ¢ —
k(p)/e(p) < 1/c(p), and choose k(0) = 0. Then X(¢) — X(0) may be represented
as the absolutely convergent series

- k(p+ 1) k(p) ]
2.8 X(t) — X(0) = X2 2)— X (=2 .
2.8) () = XO) = T X (2 F1) — X (Z0)
The almost sure absolute convergence follows from Assumption 1; see [11].
If X(#) — X(0) > u for some ¢, then, for some k = 0,1, ..., ¢(p) — 1, some
g=0,1,...,¢(p) — 1, and some p = 0, it would follow that
k k uq(1/e(p))(log c(p))*
(2.9 X + 9 - X > q '
> (@t ) T @) > Sehidmyegcimy

To verify this we first note that the series in the denominator on the right-hand
side of (2.9) is convergent; indeed, by replacing the terms by dominating integrals,
we find that the series is at most Q(1) < co. Next, if the alternative to (2.9)
held for every k, ¢ and p, then, by (2.8), X(¢) — X(0) would not exceed u for
any . :

Now we replace the series in the denominator in (2.9) by the larger quantity
Q(1), and sum the probabilities of the events (2.9) over k, g and p. The sum is
bounded above by

(2.10) 350 (p) T (i(k’Qg(c_l()P))i) .
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Next we consider the case of an arbitrary subinterval [a, b] of [0, 1]. Put
Y(t) = X(a + #(b — a)), for 0 < ¢t < 1; and let § and QO be the corresponding
functions for the Y-process. Then §(t) < ¢(#(b — a)), and so

(2.11) 0(t) < Q(t(b — a)) -
Now apply the bound (2.10) to the Y-process, but with Q in place of Q. It then
follows, by (2.11), that the probability in (2.7) is at most equal to the series
(2.10) with Q(b — a) in place of Q(1).

In order to complete the proof of the theorem, it suffices to show that

Zou 0T (KGR ¥ (5= 5)

is bounded above by a constant for all #, b and a such that u/Q(b — a) is suffi-
ciently large. This is done in a direct way by means of (2.2) and (2.3). ]

Now we will derive a bound for the distribution of sup, ,; X(¢) in the case of
a process with constant variance. For simplicity we take it to be equal to 1.
First we get a bound on a conditional distribution of the maximum.

LeMMA. 2.1. Suppose that

(2.12) EX(t)=1, for 0 <<t
Let d be a positive number such that

(2.13) qd)y < 1.

Then

(2.14)  P(suppeu X(9) > | X(a) = u + yju) < K¥ (W(;y_—g) :

forallu > 0 and y < 0, and all subintervals [a, b] of [0, 1] such that

(2.15) b—a<d, —y > 2uKQ(b — a).

Proor. Put E*X(t) = E(X(t)| X(2) = u + y/u); then by the elementary formula
for the conditional mean, we have E*X(f) = (u + y/u)EX(#)X(a). The condition
(2.12) implies that

¢t — a) = 2(1 — EX(1)X(a)) , for a<t<b;
this and the conditions (2.12) and (2.13) imply that E*X(r) satisfies
E*X(t) £ u + y/2u, for a<t<b.
Therefore, if supy, ;; X(f) > u, then
(2.16) Supyy, iy W(X(1) — E*X(1)) > —y/2.

Put Y(t) = u(X(t) — E*X(t)), a < t < b. Condition the process by Y(a) = 0,
that is, X(a) = u + y/u. The conditional probability in (2.14) is then at most
equal to

(2.17) P(supga,y Y(1) — Y(a) > —y/2|Y(a) = 0).
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We wish to apply Theorem 2.1 to this probability. All we need is the correct
“Q-function” on the right-hand side of (2.7). So we find a bound on the “4-
function” of the Y-process.

By the constancy of the variance of the conditional normal distribution,
Var[Y(s) — Y(s")| Y(a)] may be calculated under Y(a) = 0, or, equivalently,
X(a) = u + y/u. By definition, this conditional variance is

Var {u[ X(s) — E*X(s)] — u[X(s") — E*X(s")]| X(a) = u + y/[u} .

In evaluating this, we treat E*X(s) and E*X(s") as fixed—not random variables—
because they are conditional expectations given X(a). Hence, these may be
ignored in the calculation of the variance:

Var {u[X(s) — X(s)]| X(a) = u + yfu} .

This is at most equal to Var {u[ X(s) — X(s’)]} because the conditional variance
never exceeds the corresponding unconditional variance. (This argument was
also used in [2], top of page 69.) It follows that uq is a bound for the “g-function”
of the Y-process; therefore, by (2.6), uQ is a bound for the “Q-function.” We
conclude that a bound for (2.17) may be obtained by replacing Q and  in (2.7)
by #Q and —y/2, respectively. []

COROLLARY TO LEMMA 2.1.

(2.18) P(supy, 4y X() > u, X(a) < u — M/u)

< [p)uIK §5 ¥ (mwy—_a—)) erdy,

for all u >0 and M > 0, and all intervals [a, b] such that b — a < d and
M > 2uKQ(b — a).

Proor. Write the probability in (2.18) as the integral of the conditional prob-
ability given X(a) =y, times the density ¢(y). Then change the variable of
integration fromy to y* = u(u — y), and apply the inequality (2.5). The resulting
integral is at most equal to

%L) §5% P(SUPLa,s X(1) > u| X(a) = u — y'[u)ev’ dy’ . -

Now apply (2.14) to the integrand. []

Our main result is now stated:

THEOREM 2.2. If (2.12) and (2.13) hol;i, then
(2.19)  P(supy, ) X(1) > u)

S| it ()]

forall u> 0 and M > 0 and intervals [a, b] such that
(2.20) b—a<d and 2uKQMb—a)<M< ¥,
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Proor. The event {sup, ,; X(#) > u} is decomposed into its intersections with
{X(a) > u — M[u} and {X(a) < u — M/u}. The former event has probability
W(u — Mju), which, by the last inequality in (2.20), and by (2.2) and (2.4), is
at most equal to

pu)  __ e*
u 1 — My’

The intersection with the second event has a probability satisfying (2.18). The
right-hand side of (2.19) is the sum of these probabilities. []

3. Application to the distribution of the maximum at a high level. Now we
study the asymptotic form of the bound (2.19) for u — co. If the interval [a, b]
consists of just a single point ¢, then sup, ;; X(?) is equal to X(¢); hence, by (2.4),
the bound for the distribution of the maximum is simply ¢(u)/u. For any interval
[a, b] the coefficient of ¢(#)/u on the right-hand side of (2.19) represents an ad-
ditional factor in the bound due to the nondegeneracy of the interval. As u
increases, the ¥-integral becomes infinite, and so the coefficient of ¢(u)/u tends
to co with u. The following theorem tells how quickly the coefficient increases.
For simplicity we take the interval to be [0, 1].

THEOREM 3.1. Let M be an arbitrary positive number, and let d satisfy (2.13).
For every u sufficiently large, let v = v(u) be so large that

(3.1) uQ(1/v)y < MJ2K  and v—1>1/d.
Then, under the assumption (2.12),

v(u) e o
() Psupn X() >0 < PO L C 4 Kz V(oKMe )
Proor. Decompose [0, 1] into [v] intervals I, each of length [v]-!. Then
{supyo,1; X(¢) > u} implies {sup, X(#) > u} for at least one I. Apply Theorem 2.2
to each of these intervals: the condition (3.1) implies the hypothesis (2.20). By
Boole’s inequality the right-hand side of (3.2) is a bound for the sum of the
probabilities for the various intervals. []

The advantage of the bound on the right-hand side of (3.2) is that the coef-
ficient of vé(u)/u converges to a finite limit as # — oo:

(3-3) P(supgon X(1) > u) = O(vg(u)/u) .

(A special case of this appeared in [2].) The estimate (3.3) is sharper in simple
examples than the estimate obtainable from the original Fernique Inequality [8].
If ¢(f) < ct, for t near 0, where 0 < @ < 2, then v can be chosen to be O(u%*),

and so the right hand member of (3.3) is O(u**~*¢(u)/u). However the Fernique
Inequality yields only

P(supe, X(f) > u) = O (u"‘¢ <ﬁ(T)>> ,

which is a much larger bound for # — oo.
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4. Application to weak compactness. The Fernique Inequality was stated for
the absolute maximum sup | X(#)|, and our inequalities for sup X(7). However,
these estimates are simply related by the double inequality

P(sup X(f) > u) < P(sup | X(#)| > u) < 2P(sup X(t) > u).

Indeed, the first inequality is clear from |X] = X; and the second from the
equivalence of the processes X(f) and — X(7) when the mean is 0.
It follows that (2.7) can be put in the form

4.1 P(supy, u, |X(1) — Xi <2k¥( 2 ).

1) (SUptan 1X(0) — X@)] > ) < 2KV (5"

This can be used to state criteria for the weak compactness of families of meas-
ures induced by Gaussian processes.

THEOREM 4.1. Let {X (1), 0 < t < 1}, where y runs over some index set, be a
family of Gaussian processes with mean 0 and continuous sample functions, and such
that

(4.2) sup, EX*(0) < oo .
Let Q. (1) be the “Q-function” (2.6) for the process X,. If
4.3) lim, ,sup, Q,(k)(log A=)t = 0,

then the family of measures induced on C[0, 1] by the family (X,) is weakly compact.
Proor. The condition (4.2) implies
lim,_, sup, P(|X,(0)] > a)=0.
Under (4.3) and by virtue of (2.2), it follows that
4.4) lim,_, h~*¥(e/sup, Q,(h)) = 0, for ¢ > 0.
According to the inequality (4.1), the relation (4.4) implies
limy_,sup, , A=*P(max,g,.y | X,(5) — X, (1)) > h) = 0.

Therefore a well-known criterion for weak compactness implies the conclusion
of our theorem. (See the monograph of Billingsley [6] page 56.)

In the next section we will apply Theorem 4.1 to a family of “high level con-
ditioned processes” obtained from a given Gaussian process X.

5. Weak compactness of the family of high level conditioned processes.
Throughout this section let v = v(u), # = 1, be a non-decreasing function which
tends to co with u and satisfies

(5.1) sup,»; #Q(1/v) < o .

Such a function certainly exists under Assumption 1; indeed, let v(x) be a solu-
tion of the equation

(5.2) uQ(1/v) = 0(1).
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(The existence of a solution is ensured by the monotonicity and continuity of g
(and of Q).) Put

(5.3) Q*(1) = sup,5, 4Q(1/v) , o<r<1.
For u > 1, and fixed ¢, 0 < ¢ < 1, form the process
5.4 X*(5) = u(X(t 4 s/v) — u), —tw<ssv(l —9),

and condition it by X*(0). This process arises in a natural way in the analysis of
the high level excursions of X (see [2]—[5]). Note that the process X* depends
on two indices, t and u: X*(s) = X¥,(s), 0 <t < 1, u = 1; however, for con-
venience, the indices have been suppressed.

We now assume for Q* a version of the condition (4.3). In the course of the
proof of Theorem 5.1 below we will show that Q* dominates the “Q-function”
of the process X}, for all ¢ and u.

AssuMPTION 2. There exists a function v satisfying (5.1) such that
(Q*(h))*logl/h— 0O for 2| 0.

(Assumption 1 merely states the finiteness of Q(1), but Assumption 2 imposes
a rate of convergence on Q(¢) for t — 0.)

THEOREM 5.1. For a closed bounded interval on the real line, I, contained in
[—tv, v(1 — ©)], let P, , be the measure on C(I) induced by the centered process

(5.5) X*(s) — E(X*(s)| X*(0) = y), sel,
conditioned by X*(0) = y, for fixed y. Under Assumptions 1 and 2 on X, the family
(P.: 0=t < 1,u = 1) is weakly compact over C(I).

Proor. We apply Theorem 4.1 with I in place of [0, 1]. The conditioned
process (5.5) is Gaussian with mean 0. The condition (4.2) is satisfied for this
process because Var (X*(0)| X*(0)) = 0. The condition (4.3) is also satisfied:
As at the end of the proof of Lemma 2.1, we find that the “g-function” of this
conditional process is dominated by the function ug(t/v):

Var (X*(s) — X*(s")| X*(0)) < u? Var (X(t + s/v) — X(t + 5'|v))
< w(js — s|fv)
Therefore, its “Q-function” is dominated by Q* for all  and #; thus, Assumption
2 implies the condition (4.3). []
The proof of Theorem 5.1 depended on the fact that the centered conditional

process has mean 0, so that Theorem 4.1 can be directly used. But we will need
a version for the uncentered process X*. For this purpose we state:

AssumPTION 3. There exists #, > 0 such that the family of functions of the
variable s, E(X*(s)| X*(0) = y), se I, forms a totally bounded subset of C(7) for
n=uand 0 << 1.
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THEOREM 5.2. Under Assumptions 1-3 the measures (P},), u = uy, 0 <t < 1,
induced by the conditioned processes X*(s), s € I, are weakly compact over C(I).

ProOF. Write X*(s) as the sum of the centered process (5.5) and the centering
function E(X*(s)| X*(0) = y). By Theorem 5.1, the measures of the centered
process are weakly compact. Under Assumption 3 the centering functions are
contained in a compact subset of C(I). It follows from the linearity of weak con-
vergence that the measures induced by the sum X* are also weakly compact. []

Assumptions 2 and 3 hold whenever ¢(f) = O(¢*) for ¢ | 0, for some a > 0
(see Section 8); and whenever ¢(7) = O(|log ¢|-%) for some a > 1 (see Section 13).
Our last result of this section is:

LeEMMA 5.1. Under(2.12) the process X*(s), conditioned by X*(0) = y, is equiva-
lent to the process X*(s) + yEX(t)X(t + s/v), conditioned by X*(0) = 0.

PROOF. As in the proof of Theorem 5.2, write X*(s) as the sum of the centered
process (5.5) and the centering function. The conditional finite-dimensional
distributions of the centered process, given X*(0) = y, do not depend on y;
indeed, by the well-known property of the multivariate normal distribution,
the conditional covariance matrix does not depend on the conditioning value.
Therefore, the conditioned process X*(s), given X*(0) = y, is the same as the
conditioned process X*(s) — E(X*(s)| X*(0) = 0) + E(X*(s)| X*(0) = y), given
X*(0) = 0. The statement of the lemma is now a direct consequence of the
elementary formula for the conditional expectations of X*(s), given X*(0) = 0,
y» respectively.

6. Sojourn times of Gaussian processes. Let Y(¢), 0 < 7 < 1, be a separable
measurable stochastic process with Borel sample functions, and G(y) a nonnega-
tive measurable function. Then the integral L = §} G(Y(¢)) dt is called a “sojourn
time” of Y; indeed, when G is the indicator of a set, then L represents the time
spent by Y in the set. Throughout this paper we assume that G satisfies

(6.1) 0< §=, G(y)evdy < oo, forall ¢> 0.

This means that G may increase—but not too quickly—for y — oo, and that G
must tend quickly to 0 for y — — co.

For u = 1, take the process Y(f) to be u(X(r) — u), 0 < t < 1, where X is
Gaussian, so that

(6.2) L=4} G(u()("(t) — w))dt.

If G is the indicator of the positive axis, then L represents the time spent above
the level u.

Suppose that EX(f) = 0 and EX*(f) = 1 for all . By Fubini’s theorem we get
a simple formula for EL:

(6.3) EL = {2, G(y)p(u + y[u) dy[u .
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It follows from (2.4) that
(6.4) EL ~ ¢(u)ju §=,, G(y)e~vdy, for u— oo.

We also have a formula for the conditional expectation. For any fixed ¢t and
y, and with r = EX{(s)X(?):
(6.5)  E(L|X(t) = u + yJu)

> G x—ry—i—u“(l—-r))d ds )
5§ G098 ( (i — r) *ud — Py

This follows from Fubini’s theorem (like (6.3)) and the definition of the con-
ditional normal density.

Now we state an integral identity for the distribution of L. It is a more general
version of the one in [5], where G was the indicator of the positive axis.

LEMMA 6.1. Let I{- - .} be the indicator of the event {- - -}; and put
L, = {{ G(u(X(s) — u))ds.

Then forall0 £ 4 < B < co:
(6.6)  §EP(L>x)dx = §}E[I{A < L, < BIGu(X() — u))] dr

Proor. It suffices to prove the result for 4 = 0 and all B > 0; furthermore,
it suffices to prove

¢ L > x}dx = {; {0 < L, £ B}G(u(X(t) — u))dt, for B>0,
almost surely, and then take expectations and apply Fubini’s Theorem. We
claim that each side of the above equation is equal to min (L, B). This is easy
to see for the left-hand side. As for the right-hand side, suppose first that
L < B. Then L, £ Bfor 0 <t < 1, and the integral is equal to {; Gdt, or L.
Next, suppose that L > B. Put r* =sup(¢: L, = B); then the integral is
5*Gdt = Lt. = B. D

Let v = v(u) be an increasing function of u. One of our concerns is determin-
ing the limit
(6.7) lim,  POL>x) for x> 0.

E(vL)

For u > 1, put
(6.8) F(A) = SAPOL > x)dx
E(vL)
then F, is non-increasing, and F,(0) = 1 and F,(c0) = O because
(e P(vL > x) dx = E(vL).
The family of functions (£,),,, is uniformly absolutely continuous on every
half-line 4 > 4, > 0:

F(Ad) — F (A + ) = WﬂBEL(Ti)x_) dx

< (4th dx (by Chebyshev inequality) < 4/4,.
x
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Now we apply the identity (6.6) to the numerator in (6.8) to get an alternate
expression for F,. Put B = co and replace L by vL on the left hand side of
(6.6); then

F,(A) = (EL)™ \{ E[I{vL, > A}G(u(X(t) — u))] dt,
and the latter is equal to
(EL)™ §5 § 2 P{oL, > A[u(X(t) — u) = y}G(y)g(u + y[u)u= dy dt .

(The constant v in E(vL) is absorbed by the change of variable in (6.8).)
Let Pstand for the probability in the integrand in the integral displayed above;
then, by (2.4) and (6.3),

F(A) = §6 2. P - G(y)exp(—y —‘2}’2/3“2) dydt
Zw G(y) exp(—y — y*[20%) dy
The denominator converges to {=_, G(y)e~¥ dy for u — co. Write the integrand
in the numerator as

P G(y)es + P )™ — 1)e.

The double integral of the second term converges to 0 for # — co. We conclude
that

(6.9) F(A) = §0 §% P{vL, > A|u(X(1) — u) = y}G(y)e~* dy dt + o(1y,
2o G(y)e™" dy

for u — oco.

In the following theorem we show that the existence of the limit of F, is tied
to the existence of the limit of the conditional distribution of vL,, and that the
limit of F, is a mixture of the conditional limits.

THEOREM 6.1. If
(6.10) HB(A; t,y) = lim,_, PlvL, > A|u(X(t) — u) = y}
exists for almost all A > 0,0 < t < 1, and — oo < y < oo, then so does
(6.11) F(4) = lim,_,, F,(4), forall 4A>0.
F is then given by
§0 8% (45 1, y)G(y)e™* dy dt

2w, G(y)e™" dy

F is absolutely continuous, and its Radon-Nikodym derivative F' satisfies

. PWL>X)_ o
(6.13) hmMTL) = —F(x),

(6.12) F(A) =

at all points of continuity x > 0.

Proor. The convergence (6.11) for almost all 4 > 0 is a consequence of (6.9)
and Fubini’s theorem. The convergence for all 4 > 0 then follows from the
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uniform absolute continuity of F,. The form (6.12) of the limit is a consequence
of (6.9) and (6.10). The absolute continuity of F follows from the uniform
absolute continuity of F,.

For the proof of (6.13) note, by (6.8), that F,(4) may be expressed as an
integral with integrand P(vL > x)/E(vL). By Chebyshev’s inequality, the latter
is dominated by x~*. The integrand is a monotone function; therefore, by weak
compactness, it has a weak subsequential limit #(x). By dominated convergence
it follows that

F(A) — F(B) = \§ W(x)dx, forevery 0 < A< B< o0 ;
therefore, F'(x) = — W(x) for almost all x. We conclude that W is the only
weak limit, and (6.13) follows. []

According to Theorem 6.1 we can find the limit (6.7) by first finding the limit
(6.10). Our only hypotheses were the facts that the mean is 0 and the variance
1; we made no use of Assumptions 1-3. Now we will have to make two more
assumptions in order to develop a method for finding the limit (6.10). The
earlier set of assumptions, involving the g-function, put an upper bound on the
variance of the increments of the process. In the assumptions below we put a
lower bound on the variance. By analogy with the definition of the g-function,
we define a “p-function”:

(6.14) Py = inf,_,, E(X(s") — X(5))?, 0<r<1.

The next assumption will be stated in two forms. The first is simpler, and is
called

ASSUMPTION 4a. p(s) > O for s > 0.

Now we record this in an equivalent form which is more convenient for later
reference:

AssUMPTION 4. There exists a function v = v() for u > 1, such that v(¥) —
oo, for u — oo, and inf,, ,., up(s/v) > 0, for s > 0.

Since the form 4 obviously implies 4a, it suffices to show that 4a implies 4.
The monotonicity and continuity of p imply that for every u and s there exists
v = v(u, 5) such that up(s/v(u, s)) = p(s). Then lim,__, v(u, s) = oo, for fixed s,
and thus

v(u) = inf (v(u, 5): v(u, 5) = s)
is well defined for all sufficiently large . It follows that v(z) < w(u, ) for all
large u, for each s, and so

up(sfv(u)) = up(sfv(u, 5)) = p(s) -
It also follows that for each fixed s, v(x) = s for all large u; hence, from the
previous double inequality,

inf,, up(sjv(u)) = p(s) , for large u.

This is sufficient for the statement of Assumption 4.
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For arbitrary 6, 0 < 6 < 1, we define
(6.15) Pi(S) = infz1 50z 4p(s]0) $>0.

Under Assumption 4 this is positive for s > 0. Our next assumption is that no
two values of the process are completely negatively correlated.

ASSUMPTION 5. inf, , correlation (X(s), X(s')) > —1.

The purpose of the next lemma is to show that it is only the values X{(s) for s
relatively close to ¢ which significantly affect the conditional distribution of vL,
given u(X(f) — u) = y. Here we estimate the contribution of the values X(s) for
s significantly far from z.

LEMMA 6.2, Let X(1),0 < t < 1, be Gaussian with mean 0 and variance 1. Then
under Assumptions 4 and 5 there exists a positive number J, depending only on y,
such that

(6.16)  E(L,_y| X)) = 4 + yJu)
= 7 {57 4G9

5 P(3up(9))
o T - IR

forall0 < t<1,0<0<t,u=1andd> 0 such that 6v > d.
Proor. The expected value in (6.16) is given by v times the double integral

in (6.5), with ¢ — d/v in place of 1 as the upper limit of integration. By simple
algebra:

x—ry+u2(1—r) x—ry +u (1_,->&.
u(l — rit (1 = Py 141/’

thus, as in (2.4), we find the ¢-kernel in (6.5) to be

() er (CrE) e (7 )
Put ¢ = inf EX(5)X(s"); then the product above is at most equal to
d(u((1 — r)/2)t) exp < ] ) exp [—min <_)2i ' _T_ c>1 .

(Note that —1 < ¢ < 1 under Assumption 5.) Substitute this bound for the ¢-
kernel in the representation of the conditional expectation, and integrate over x.
Then, from (6.5), we obtain the bound -

ds

(6-17) Jv §§4 g(u((1 — ")/12)5)(—*)/7);

where

J= exp< ! ){; G(x)e=" dx + §°.. G(x) exp <_

X c)dx}.

According to (6.2), J is finite.



1012 SIMEON M. BERMAN

It follows from the definition (6.14) of p and the fact that EX?*(s) = 1 that
I —r=1— EX(s)X(#) = $p*(|s — 1|); therefore, the expression (6.17) cannot
but increase if (1 — r)/2 is replaced by }p*(|s — #|). Change the variable in the
resulting integral from s to v(¢ — s); then we get this bound for (6.17):

6.18 Iy (l <i>)__d_s___.

© WO )) e
Split the domain of integration at the point s = v, to obtain two integrals.
These are bounded by the corresponding terms on the right-hand side of (6.16);
indeed, this follows from the definitions (6.14) and (6.15) of p and p,. [

The significance of the inequality (6.16) is as follows. If the integralin (6.16)
is finite, then it can be made arbitrarily small by choosing d large. Furthermore,
we will show that the second term on the right-hand side tends to 0 as # — oo
for a large class of Gaussian processes. The resulting inequality means that if
X(#) is “high,” then the expected sojourn time above a high level over an interval
separated from ¢ by d/v units is small if d is large.

7. On the relation between the maximum and the high level sojourn time.
The major result of this section is about the relation between the event that X(7)
surpasses u at some point ¢ in [0, 1], and the event that it spends “relatively little
time” above u. As a continuous function, X must spend positive time above u
if it surpasses #. The main theorem of this section estimates “how much” time
it must spend above . Such estimates were given in special cases in [2] and [5].
Throughout this section we hold to Assumptions 1-3, but we do not need
Assumptions 4 and 5.

We take G as a function satisfying (6.1); however, in this particular section
we put additional restrictions on G:

G(y) is piecewise continuous, and G(y) >0 forall y
in some nondegenerate interval (0, 7).

Since X is continuous the integral L in (6.2) is positive whenever X(0) < u and
maxg, ,; X(¢) > u.

THEOREM 7.1. If X has mean O and variance 1 then, under Assumptions 1-3,
P(maxp,,; X(#) > u, vL <€) _

v(u)/u

Proor. In estimating the probability in (7.1), we refine the method of proof
of Theorem 3.1. Split [0, 1] into [v + 1] disjoint intervals /, each of length
1/[v + 1]. If maxg ,; X(¢f) > u, then the maximum exceeds  either in the first
interval I, or else for the first time in some interval I after the first:
(7.2) {maxg,,y X(1) > u} C {max,ug, .y X(7) > u}

U U:{X(@) < u, max; X(1) > u},

where a is the left endpoint of /. According to Theorem 2.2 and the property

0.

(7.1) lim,_, lim sup, .,
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(5.1) of v, the event {max, ,,..;; X(#) > #} has probability of the order ¢(x)/u
for u — co. Then it follows from (7.2) that (7.1) is implied by

P(X(t) £ u, maxg, ;,,,) X(s) > u, vL < ¢)
P(u)/u

(7.3) lim,_, lim sup, .., SUPy<; <1

=0.

Next we claim that the inequality X(r) < u in (7.3) may be replaced by the
double inequality ¥ — M/u < X(f) < u for large M > 0. Indeed, by (5.1) and
the corollary to Lemma 2.1, the ratio

P(X(t) < u — M]u, maxy, ) X(5) > ¥)
P(u)/u

tends to 0 as M — oo uniformly in # and 7. Thus in (7.3) it suffices to estimate

P(u — Mfu < X(f) £ u, maxy, ,,,,,; X(5) > u, vL < ¢)
B(u)/u '
Next we write the probability above as the integral of the conditional proba-
bility given X(f); we recall the definition of the process X* in (5.4); and we

note that L < {!** G(u(X(s) — u))ds. Then, as in the proof of Lemma 2.1, the
ratio displayed above is at most equal to

§° » P{maxg, ;; X*(s) > 0, §§ G(X*(5)) ds < ¢| X*(0) = yle v dy.
By Lemma 5.1, this is equal to

(7.4) % P{max, ,; (X*(s) 4+ yR) > 0,
§3 G(X*(s) + yR) ds < | X*(0) = Ole* dy ,
where R = EX(t + s/v)X(?).

In order to prove (7.1) it now suffices to estimate the bound (7.4), and to show
that if {u} is an arbitrary sequence tending to infinity, and {¢} is an arbitrary
sequence in [0, 1], then the corresponding sequence (7.4) has a subsequence
which converges to a limit L(¢) for alle > 0, and is such that L(¢) — 0 for ¢ — 0.
Let {u, } be a double sequence constructed from such a u-sequence and ¢-sequence.
Then, by weak compactness (Theorem 5.1) we can find a subsequence for which
the process X*(s), conditioned by X*(0) = 0, converges weakly over C[0, 1] to
a limiting process U(s) for which U(0) = 0. It follows that the joint distribution
of the functionals

max, 57 (X*(s) + yR) and §s G(X*(s) + yR) ds

converges weakly to the corresponding joint distribution of the functionals of
the process U(s) + y. (Note that Assumption 1 implies R — 1 uniformly.) There-
fore, the conditional probability in (7.4) converges to

P{maxgyy U(s) > —y, §s G(U(s) + y) ds = ¢}
except possibly for a countable set of y’s and ¢’s. Therefore, the integral (7.4)



1014 SIMEON M. BERMAN

converges to the limit
§2 . P{maxg,y U(s) > —, §3 G(U(s) + y)ds < eJev dy .
This tends to 0 for e — 0. Indeed, by bounded convergence, the limit is obtained

by putting ¢ = 0. Then the integrand is equal to 0 because U(s) is a continuous
function such that U(0) = 0. J

8. Locally stationary Gaussian processes. We will now describe a general
class of Gaussian processes which satisfy Assumptions 1-4. Then we will use
the results above and additional properties of these processes to prove limit
theorems for the sojourn times and maximum functional. We suppose again
that

(8.1) EX(t)=0, EX(n=1.
We introduce the property of local stationarity. Suppose there exists a con-

tinuous function H(#) such that H(r) > 0 for all 0 < 7 < 1; and a continuous
monotone function K(s) with K(0) = 0 and K(s) > O for s > 0 such that

8.2 tim,_, ZXC+9) = XOF _ gy, uniformlyin 0< <1,
(8.2) o NS © formly in 0= 1 <
Then X is called locally stationary. In particular, when X is stationary in the
usual sense, then the numerator in (8.2) is a function of |s| alone, and H is a
constant.

The interval [0, 1] in the definition of local stationarity was chosen for sim-
plicity; the definition can be extended to any compact interval . There is a large
class of locally stationary processes which are not strictly stationary. Let Y(?)
have stationary Gaussian increments, with EY(#) = 0 and EY(r) = o%(¥), t = 0,
where o%(f) is positive for + > 0, and continuous, and ¢%(0) = 0. If (o(s + #) —
a(1))/a(k) converges for & — 0 uniformly in 7 € I, where I is a compact interval
bounded away from 0, then the process X(f) = Y(#)/a(?) is locally stationary on
I. This is implicit in [4], Section 1. Sufficient conditions on ¢ are also given
there.

Conditions (8.1) and (8.2) guarantee the continuity in (s, ) of EX(s5)X(?).

Our previous work on high level excursions of stationary Gaussian processes
depended on hypotheses of local regularity of the covariance function. Now
we make a corresponding assumption for the locally stationary process, namely,
that X is regularly varying of index a, for some 0 < & < 2:

(8.3) lim,  , K(st)/K(s) = t*, for t=0.
This condition, together with (8.2), implies that E(X(¢ + s) — X(¢)) is uniformly

regularly varying.
For convenience, we recall certain results on functions of regular variation:

(8.4) lim,  , K(5)s7*¢ = oo, for every ¢ > 0.
(8.5) lim, , K(s)s=*** = 0, for every ¢ > 0.
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For every ¢ > 0, there exists 6 > 0 such that
(8.6) Lse+e < K(sh)[K(h) < 25~

for all 0 < s < 1 and % > 0 such that sk < 4.

These are basic results of Karamata [10]. His results also show that the con-
vergence (8.3) is uniform on compact intervals in the open set # > 0. This was
extended in [5] to the closed set # > 0:

8.7 The convergence (8.3) is uniform on compact z-intervals of [0, oo].

A major part of our analysis depends on the construction of a function v =
v(u) for u > 0. For sufficiently large u > 0, let v be the largest solution of the
equation
(8.8) wK(1jv)y=1.
v certainly exists because K(s) is monotonic, continuous, and tends to 0 with s.
As a function of u, v is monotonic and tends to co with u. It can then be ex-
tended arbitrarily to all positive # in such a way as to preserve monotonicity;
however, our interest is in only values of v for large .

As an immediate consequence of (8.2), (8.3) and (8.7) we obtain:
(8.9)  lim,_., wE(X(t + s/v) — X(f))* = 2H(t)|s|*

uniformly in 0 <t <1, andon compact s-intervals.
We also recall from [5] an asymptotic relation between u and v:

(8.10) lim,_ v u?=0, for every ¢ > 0.

THrEOREM 8.1. If (8.1), (8.2), and (8.3), and Assumption 4a hold, then so do
Assumptions 1-4; in particular 2, 3 and 4 hold when v is chosen according to (8.8).

Proor. According to the definition (2.1) and the condition (8.2), we have
(8.11) ¢*(t) < constant - K(f) .

Assumption 1 now follows from this and (8.5).
If v is defined by (8.8), then it follows from (8.6) and (8.11) that

—-1,—22
(8.12) ug(v-'e~*") < constant K_(I'g_fl_) < constant . e=**a=)
poe

for all sufficiently large u and all z > 1; therefore, (5.1) holds. If Q* is defined
as in (5.3), then, from (8.12), it follows that lim, , Q*(s)s~#*=* = 0 for ¢ > 0,
so that Assumption 2 holds. _

By the elementary formula for conditional expectation we find (see (5.4))

E(X*(s)| X*(0) = y) = w(EX(t + s/v)X(t) — 1) + yEX(t + s/v)X(¢) .
The latter is equal to
— W E(X(t + s[v) — X(1)) — FYE(X(t + s/v) — X(1)' + ),
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which, by (8.9), converges uniformly in s (in compact sets) and ¢ [0, 1] to
— H(#)|s|* + y for u — co. Therefore, Assumption 3 is valid.

Let p(¢) be defined as in (6.14), and p,(s) as in (6.15), with v as in (8.8); then
up(s[v) = min(p,(s), up(d)). It follows from the left-hand inequality in (8.6) that

(8.13) Pii(s) = 45t for sufficiently small 7,
and, from Assumption 4a, that p(d) > 0. It follows that the statement of As-
sumption 4 holds with v given in (8.8). [J

We will show that the process X*, defined in (5.4), converges weakly to a
limiting process for u — oco. Let U(s), —o0 < 5 < oo, be a Gaussian process
with
(8.14) EU(s) =0, EU(s)U(t) = |s|* + |t]* — |t — s|*.

(See [2] page 67.) For each ¢in [0, 1], and with H(¢) in (8.2), let W (s) be the
process
(8.15) W(s) = (H(#))tU(s) — H(?)|s]*, —0 <5< 00,

THEOREM 8.2. Under (8.1), (8.2) and (8.3), the process X*(s), s € I, defined in
(5.4), with v as in (8.8), conditioned by X*(0) = y, converges weakly to the process
W(s) + y, for u — oo, for any closed bounded interval I containing the origin, for
any fixed t in [0, 1], and any y.

Proor. If u is large, then so is v, and then [/ is contained in [ —vz, v(1 — 7)].
By Theorem 5.2, the measures induced by X* are then weakly compact over
C(I). Therefore, to complete the proof, it suffices to show the convergence of
the finite dimensional distributions to those of W,(s) + y.

According to the calculation in the proof of Theorem 8.1, we have

E(X*(s)| X*(0) = y) — —H(@)ls|* +y -
By the elementary formula for conditional variance, we have
Var (X*(s) — X*(s")| X*(0))
= WE(X(t + s/v) — X(t + §'|v))?
— W[EX(t)X(t + s/v) — EX(1)X(t + s'|v)]*,
and this, by (8.9) and the relation
EX(t)X(t + s[v) — EX(8)X(t + s'|v)
= 3E(X(t + 5'[v) — X(1))" — $E(X(1 + sv) — X(1))*,
converges to 2H(#)|s|*. These limiting moments agree with those of the process
W) +y. O ’

9. A limit theorem for the sojourn time above a high level. In this section
we show the existence of the limit (6.7) under the conditions of Section 8, and
determine the explicit form of the limit. According to Theorem 6.1, it is enough
to find the function & in (6.10).
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THEOREM 9.1. Let X satisfy (8.1)‘, (8.2) and (8.3), and Assumptions 4a and 5;
and let v be the function defined by (8.8). If G is piecewise continuous, then the
limit (6.10) exists and is equal to

(9.1) B (45 1,y) = P(§p GV (s) + y) ds > A},
where W (s) is defined by (8.15).

Proor. For arbitrary fixed d < vt, write
(9-2) WL, = v(L, — L,_4,) + VL gy, -

The first term on the right-hand side of (9.2) is, by definition, equal to
%, G(X*(s)) ds. According to Theorem 8.2, its conditional distribution, given
X*(0) = y, converges to that of {°, G(W,(s) + y)ds. By the equivalence of the
processes W(s) and W,(—s), the latter integral has the same distribution as

(9:3) §6 G(Wi(s) + y)ds .

Next we show that the contribution of the last term in (9.2) to the limiting
distribution is negligible if d is large. From this we will conclude that the limiting
distribution of vL, is that of (9.3) with d = co.

Apply (6.16), and then to it the estimate (8.13):

EL,_y | X(f) = u + yju) £ T3 ¢ (2(1) s(aﬂ"z) 2(2)ts @t ds

20—,
(2m)tup(3)

By (8.10), the last term above tends to 0 as u — oo; therefore,

exp (—u’p*(9)/8) -

limsup, ... E(VL,_y), | X(t) = u + y[u)
(a+e)/2 2(2 to—(ate)/2
JST ¢ <2(2)*s ) (2)ts ds .

The latter tends to 0 as d — co. The proof is complete. []

According to Theorem 9.1 7 exists and is given by (9.1). The result is stated
for a process defined on the interval [0, 1]. However it can be extended to a
process on an arbitrary interval [a, b]. For example, supposea = Oand b = T.
Let H(t), 0 < t < T, be the function in the condition (8.2) for local stationarity.
Put Y(r) = X(#/T); then Y is defined on [0, 1] and is locally stationary with “H-
function” H(t/T) and “K-function” K(s/T). Thus the only alteration in the limit
(9.1) is that ¢ is replaced by #/T.

When X is stationary, H(?) is a constant and so W,(s) is independent of 7. F(A)
is then the ratio of single integrals in (6.12). A special case with G the indicator
of the positive axis first appeared in [2]. A particular class of locally stationary
processes was considered in [4], and a limit of the type (6.12) obtained, again
with G the indicator of the positive axis.
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We would like to show that the function F given by (6.11), where the kernel
& isin (9.1), is of positive variation. Otherwise, the limit (6.13) would be
equal to 0.

THEOREM 9.2. F is of positive variation if

(i) a<?2,o0r

(i) a =2 and {*, G(x + y)|log|x|| dx < oo, on a y-set of positive measure in
the support of G.

ProoF. Assume the contrary, that F is constant. Then, as a monotonic func-

tion of A4, <& would be constant for all y in the support of G and all ¢ in [0, 1].
But this would imply

(9.4) o G(W,(s) + y)ds = 0 almost surely
or
9.5) { G(W,(s) + y)ds = oo almost surely.

The expected value of the above integral is

= e G x_ti’)s_) 2H(f)s*) 4 ds dx .
. 55 60x + 008 (Tgeny ) QHOS) dods
By a change of variable of integration we can remove the factor H(f) and write
this integral as a positive multiple of

(9.6) > G(x + y)e#*[§e exp (—x*[4s* — s*[4)s~** ds} dx .

Under (6.1), G is positive on a set of positive measure, and so (9.6) is positive;
therefore (9.4) is impossible.

If & < 2, then the inner integral in (9.6) is dominated by {5 exp (—s%/4)s~*ds;
thus, by (6.1), the double integral (9.6) is finite; therefore, (9.5) is 1mposs1b1e

If « = 2, then the inner 1ntegra1 in (9.6) is a decreasing function of x* which
is of the order |log|x|| for x* — 0. Therefore, the double integral (9.6) is finite
under case (ii), and so (9.5) is impossible.

10. The tail of the distribution of the maximum. In this section we derive
the exact asymptotic form of P(maxy,,; X(r) > u) for u — co. Theorem 3.1
implies

. P(max, ;; X(f) > u)
(10.1) lim sup, ., (0,11 < 0.
vp(u)/u
Now we show that under the conditions of Theorem 9.1 the ratio above actually
converges to a positive limit.

TuEOREM 10.1. Let X satisfy (8.1), (8.2) and (8.3), and Assumptions 4a and 5;
and let v be defined by (8.8). If G is a function satisfying the conditions of Theorem
7.1, and also the condition

(10.2) G(y)=0, for y >0,
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and F is given by (6.12), then

(10.3) —F'(0) = lim, |, x"}(F(0) — F(x))

exists and is positive and finite; furthermore,

P(max, ;; X(t) > u) _
vp(u)/u

Proor. If G satisfies the conditions of Theorem 7.1, and also satisfies (10.2),

then L > 0if and only if max,,; X(r) > u. The point of the theorem is to extend
the relation (6.13) to x = 0, and so conclude that

P(max;, X(t) > u) ~ —F(0)E(uL) .

(10.4) lim, .., —F(0) §=.. G(y)e-v dy .

The above conditions on G certainly imply those of Theorems 9.1 and 9.2;
therefore, according to these theorems and Theorem 6.1, F(x) exists, is of
positive variation, and has the derivative F'(x) satisfying (6.13). We write
x"(F(0) — F(x)) as x~* { —F'(y)dy. By (6.13), —F" is non-increasing, so that
its right-hand limit exists at 0. On the other hand, it also follows that the limit
of x~}(F(0) — F(x)) for x | 0 exists, and the two limits are equal. We call this
common limit — F’(0); this proves (10.3).

The limit (10.3) is positive; indeed, if it were 0, then as a monotone function,
— F'(x) would vanish for all x, and F would be constant. But this would con-
tradict Theorem 9.2.

By the same reasoning as in the proof of Theorem 8.1 of [5], we find that

(10.5) —F'(0) < liminf,_, [E(vL)]""P(max ,; X(f) > u)
and
P(max;oy X(1) > u)
E(vL)
. . P(max, ; X(t) > u, vL < ¢)
< —F'(0) + lim,_, lim sup, _,., loa) =°)
= —FO) + lim..y P E(vL)
By (6.4) E(vL) may be replaced by a constant multiple of vg(u)/u. The finiteness
of —F’(0) now follows from (10.1) and (10.5); and, by Theorem 7.1, the last

member of (10.6) is equal to 0. The relation (10.4) follows. []
It follows from Theorems 9.1 and 10.1 that

lim, P(vL > x) _ F'(x) ’

P(wL > 0)  F'(0)
This means that the conditional distribution of vL, given that it is positive,
converges:

(10.6) lim sup, ..,

x>0.

lim,_, P(vL < x|vL > 0) = 1 — F'(x)/F'(0).
If the interval [0, 1] is replaced by [0, T], then (10.4) takes the form

i P(maxp,ry X(0) > ) _ _ proy ¢ y
lim,_,, 7[‘v¢}(u)/u = —F'(0) §=.. G(y)e vdy.
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11. Sojourn times for the moving barrier. Letf(f),0 < ¢ < 1, be a continuous
function. For arbitrary u > 0, consider the integral

(11.1) L = {{G(u(X() — u — f(t))) dt .

We assume again that G satisfies (6.1). If G is the indicator of the positive axis,
then L represents the time spent above the curve x = u + f(f) for 0 <t < 1;
thus, we call L a “sojourn time above a moving barrier.” As in Section 6, we
also define

(11.2) L, = §{ G(X(s) — u — f(s))) ds , o<1,
The following expectation formulas correspond to (6.3) and (6.5), respectively:

(11.3) EL, = §2. G(y){§i ¢(u + y[u + f(s)) ds} dy/u ;

(11.4) E(L,| X(t) = u + y/u)

_ g X = fls) —ry + (1 — 1) ds
= §§52.. 600 ( s )dx =

As in [5] we assume that f(#) > 0 for # > 0, and that f(0) = 0; and we note
also that the calculations to follow can be extended to any f with a unique mini-
mum on [0, 1]. For fixed 8 > 0, we assume that f is regularly varying of index

B:
(11.5) lim,_, f(25)/f(?) = s*, for s = 0.

By analogy with the definition of the function v in (8.8), we define the mono-
tonic function w = w(u), for all large u, as the largest solution of the equation

(11.6) uf(ljwy = 1.

It follows from (11.5) and (11.6) that

(11.7) lim,__, uf(t/w) = ¢, for t > 0.
Now we derive an asymptotic formula analogous to (6.4).

LemMma 11.1. If X has mean O and variance 1, then
EL ~ PO 11 4 1p) §=. GO)er dy,
wu

where T is the Gamma function. The right-hand side of the above relation.is inde-
pendent of t.

Proor. Write the argument of the function ¢ in (11.3) as u + (y + uf(s))/u
and apply (2.4); then insert the resulting expression in the integrand and change
the inner variable of integration from s to sw:

A0 g G(perfsie expl—uftsfw) — (7 + wf(siw)Y/2u] dsh dy
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By (11.7) we expect the inner integral to converge to
feefds, or T 41/p).

The convergence can be justified by the reasoning used in the proof of Theorem
9.1: The integrand is dominated by exp(—4s?*<) for s < wd; and the integral
from wo to wt is of the order w exp(—u* - constant), which tends to 0. [J

Let z = z(u) be a monotone function of . By analogy with (6.8) we define

§%5 P(zL > x) dx
E(zL) ’

The main difference between sojourns for the level and the moving barriers
is that the sojourn above the level barrier is likely to take place at any point of
the interval, but that for the moving barrier only at the beginning of the interval.
Indeed, in the latter case, the growth of the barrier for # > 0 makes it improb-
able for a sojourn to occur too far from the origin. This is reflected in the asser-
tion of Lemma 11.1: EL, is asymptotically the same for any ¢ > 0. We apply
this result and show that the contribution of z-values to the sojourn time integral
comes asymptotically only from those values which are of the order 1/w. More
exactly, we will show that the computation of the limit of F, may be done by
replacing L by L,,, in (11.8), passing to the limit over #, and then letting d — oo.

(11.8) F(4) =

Lemma 11.2.
$% P(zLy,, > x)dx
E(zL)
Proor. Fix d > 0; then choose u so large that d/w < 1. It follows that
L,, <L,andso

lim,._, lim sup, ... SUp 50 | Fu(4) — =0.

P(zL > x) £ P(zLy;,, > X);
therefore,

0 < F(d) — Y5 PELaw > 0)dx g §7 P(zLye > x) dx
E(zL) E(zL)
_ B(L = Ly)

EL
As in the proof of Lemma 11.1 we express E(L — L,,,) as a double integral of
the form (11.3) but with the domain of the inner integral from d/w to 1. Then,
by the same estimates as in that proof, we obtain
E(L — Ly)
EL

~ = G(y)e v dy \3 e ds .

Let d — co to complete the proof. []
The following is an analogue of Theorem 6.1:
Tueorem 11.1. If
(119) (41, y) = lim, ., P{zL,,,, > A|u(X(t|w) — u — f(1]w)) = }
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exists for almost all A, t and y, then so does
(11.10) F(A4) = lim,_,, F,(4), A4>0.
F is then given by

Sgo {S?-oeo .@(A; t, y)G(y)e-v dy}e—-tﬁ dt .

(11.11) F(A) = T'(1 + 1/8) §=.. G(y)e~* dy

F is absolutely continuous, and

. P(zL>x)
(11.12) hm"—m—E(TL)—— = —F'(x)

at all positive continuity points of F'.

Proor. According to Lemma 11.2 we can find the limit of F, by replacing
L in the numerator of (11.8) by L, and then letting u — co and d — co. Apply
Lemma 6.1 with the process X(r) — f(¢) in the place of X{(¢) and the time interval
[0, d/w] in place of [0, 1]:

(E(zL))~* §% P(zL;,,, > x)dx
= (EL)™' {3, P(Ly, > x)dx
= (EL)™* §¢/* E[I{zL, > A}G(u(X(t) — f(t) — u))]dt.

As in the calculations between (6.8) and (6.9) above we find the last expression
to be equal to

(EL)™* §¢™ 2o P{zL, > A u(X(0) — f(1) — u) = Y}G(y)p(u + y[u + f(1)) dy dt .

Change the variable of integration from ¢ to tw, and estimate the ¢-kernel asin
the proof of Lemma 11.1. Then the expression above is asymptotic to

§8 §20 P(zLyyw > A|u(X(t]w) — ft]w) — ) = y}G(p)e*~* dy dt
DL+ 1/8) §2 G(y)e dy
The proof of (11.10) and (11.11) is completed by letting # — oo and then d — oo;
(11.12) follows as (6.13). [T

12. A limit theorem for the sojourn time above a moving barrier. In order
to obtain the limit of F, for the moving barrier we assume, as in [5], page 366,
conditions on the relation between the growth of the function X in (8.2) and
the growth of fin (11.1). We suppose the existence of the following limit, finite
or infinite: ‘

(12.1) p = lim,_, f(t)/K¥(1) .
It follows, as in [5], Lemma 3.3, that
(12.2) lim,_ w/v = p¥«,

where p = 0 if @/2 < B and p = oo if a/2 > B. Recall that « and j are the
indices of variation of K and f, respectively.
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There are three cases to consider in the limit theorem for the moving barrier,
corresponding to p = 0, 0 < p < o0, and p = co. If p = 0, then f grows at a
rate slower that K*, and the limiting distribution of the sojourn time is very
similar to that for the level barrier. As in that case, the normalizing function
istaken tobe v. If 0 < p < oo, then fis of the same order as K*, and the moving
part of the barrier plays a role in the limiting distribution. The functions v and
w are of the same order, and either may be used as the normalizing function.
The case p = oo is very different from the first two: The barrier rises so rapidly
that the sojourn time is dominated by the value of X(0). The normalizing func-
tion is w. The first two cases, but not the third, were considered in [5] for
stationary X and G the indicator of the positive axis (ibid., Section 1).

THEOREM 12. 1. Under the assumptions on X and G stated in Theorem 9.1, and
conditions (11.5) and (12.1) on f, the limit (11.9) exists and

(45 1, y) = PS5 GW(s) + y) ds > 4}, for p=0,z=1v;

(12.3) = P{§§G(Wy(sp™/%) — (t — s + 1 + y}ds > 4,
Jor 0<p< o0, z=w;
=1{§5G(y+tﬂ——sﬂ)ds>A}, fOI‘p:oo,Z:W,

where I{- . .} is the indicator of {- . .}.

Proor. The proof is based on the methods used for the level barrier in
Theorem 9.1, and for the moving barrier for the stationary case in [5], Theorem
6.1. Since many of the details have already been given there, these will not be
repeated, and the present proof will only be sketched.

We analyze the conditional probability on the right-hand side of (11.9). By
a change of variable of integration we write zL,),, as

(2/0) §8 G(U(X(t]w — s/v) — ) — uf(efw — s[v)) ds .
This can be expressed as a sojourn time of the X*-process in (5.4):
(12.4) (2/0) §§7* GX*(—s) — uf(t]w — sv)) ds
and the conditioning in (11.9) may be written as
(12.5) X*0) = y + uf(t/w) .

Here the unwritten parameter ¢ in X* has been replaced by 7/w. Since the latter
tends to O for u — co, it can be shown, as in the proof of Theorem 8.2, that the
process {X*(s)}, conditioned by X*(0) =y, converges weakly to the process
{Wy(s) + y}. Now the condition (12.5) is asymptotically the same as

(12.6) X*0) =y + 1,

by virtue of (11.7); therefore, it is to be expected that {X*(s)}, under the
conditioning (12.5), converge weakly to {W(s) + y + *}. Since {W,(—s)} is
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equivalent to {W(s)}, it follows also that

(12.7) {X*(—s)}, conditioned by X*(0) =y + uf(t/w),
converges weakly to {W(s) + y + t##}, over C(I),

for any compact interval 1. We apply this and (11.7) to determine the condl-
tional limiting distribution of (12.4).

Case p = 0. Here z = v and w/v — 0, so that uf(t/w — s/v) ~ uf(t/w) — t#;
therefore (12.4) converges in conditional distribution to {* G(W(s) + y) ds.

Case 0 < p < . Here a = /2, and, by (12.2), we may take z = w = vp'/=;
therefore (12.4) converges in distribution to

PUeSET G(W(s) +y + 1 — (1 — spVey) ds.
This is equivalent to the random variable in (12.3)

Case p = oo. Here z = w, and v/w — 0. Change the variable of integration
in (12.4):
§ G(X*(—sv[w) — uf((t — s)/w))ds .

For each s, X*(—sv/w) converges in conditional probability to W,(0) = 0; thus,
it can be shown that the conditional distribution of the above integral converges
to the (degenerate) distribution of the constant §{ G(y + #* — s*) ds. This com-
pletes the proof. []

In the case p = 0, the Z-function in (12.3) does not depend on #; here the
function F in (11.11) takes the form

> G(y)evdy
This does not depend on 8, the index of variation of f. This suggests that this

case of the theorem is true for a larger class of functions f satisfying f/K* — 0.
When p = co, F can be put in the form

F(A) = §2. [§5 G(y — t#)dt — Al*e~vdy
T +1/8) §2. G(y)e™ dy
This does not depend on «, the index of variation of K. This suggests that this
case of the theorem is true for a larger class of processes such that f/K* — oo.
When G is the indicator of the pos1t1ve axis, we obtain the simple form F such
that

b
—F(x) =
T +1/8)
Finally we remark that it can also be shown, as in Theorem 10.1, that — F’(0)
exists, is positive and finite, and

; P(max,,; (X(1) — f(0) > u) _ _ roy . o —y
lim,_,, L (]v/w)q&(u)/u = —F(0)-T'(1 + 1/8) §=. G(y)e ¥ dy .
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We point out the relation between the functions F defined in this section and
the one defined in [5], formulas (6.11) and (6.12). Let F* represent the latter.
We consider only the case of finite p and G the indicator of the positive axis, which
is the case treated in [5]. F*(x) is the limit of {g P(vL > y)dy/[(v/w)d(u)/u].
F(x) is defined here as the limit of {> P(vL > y)dy/E(vL). From Lemma 11.1
and the particular form of G we get

E(wL) ~ T'(1 + 1/B)(v/w)é(u)/u .
It follows that

F¥(x) = I(1 4 1/B)(F(0) — F(x)) -

13. Remarks on further extensions. The hypothesis (8.3) was used through-
out the calculations in Section 8. This prompts the question whether (8.3) can
be replaced by other assumptions; for example, K(s) ~ |log s|=* for small s, for
a > 0. Assumptions 1-4 are valid for such K under certain restrictions on «a;
however, this is not sufficient for the prcof of the limit theorems of the kind
proved in Sections 8-12. For this choice of K, we find

q(t) ~ constant - |log ¢|=*/*, Q(f) ~ constant - |log ¢|4-*72 .
It is evident that Assumption 1 holds if and only if « > 1. Put
(13.1) v = exp(u™).

It follows from the form of Q and the definition (5.3) of Q* that Assumption 2
holds if and only if m > 2/(a — 1). From the calculation in the proof of The-
orem 8.1 we see that E(X*(s)| X*(0) = y) — y is uniformly asymptotic to a mul-
tiple of —3(u* 4 y)|log s — u™|~*; hence Assumption 3 holds if and only if m >
2/a. Assumption 4 holds with any a« > 0 and v of the above form but with
m < 2/a. Assumption 5 does not involve the form of K(s) for small s, and can
be separately assumed.

In Section 8 v is given in (8.8), and it is shown that Assumptions 2, 3 and 4
hold for this choice of v. When K(s) ~ |log s|~*, the solution of (8.8) is (13.1)
with m = 2/a. Therefore Assumptions 2 and 3 are not satisfied for this v. Note
also that the conditions on m for Assumptions 2 and 3 contradict the condition
for Assumption 4.

One of the main points in our calculation is that if v is a solution of (8.8),
then L(r) = lim,_,, #’K(#/v) exists and is continuous at r = 0. However, if K is
slowly varying, then L(f) = 1 for ¢ > 0, and L(0) = 0. This suggests that the
methods and results for such K are very different from those in the case (8.3).
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