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GROUPS OF RANK 2
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Let r, be the probability that a recurrent random walk on a countable
Abelian group fails to return to the origin in the first n steps. For two-
dimensional walk, Kesten and Spitzer have shown that r, is slowly varying.
Le. limy—w rzo/rn = 1. We strengthen this result and show that for any
countable Abelian group of rank 2, r, is super slowly varying in the sense
that limp—co F{ur,)/rn = 1. We use the superslow variation of r, to obtain
the limit law for the number of returns to the origin for all recurrent ran-
dom walks on these groups.

1. Introduction. Let G be a countable Abelian group and {X,,n > 1} a se-
quence of independent, identically distributed G-valued random variables. The
sequence {S,, n = 1} of partial sums of the {X,} (S, = X}, S,,, = X,1a + S,) 18
said to be a random walk on G. We let P,(x, y) = P(S, =y — x),

fnzP(Slio’quEO,""Sn—lio,sn:()) and rnZI_Z%L:lfk'

A random walk on G is said to be recurrent if };%_, f, = 1 (equivalently: r, — 0
as n — co). The walk is said to be aperiodic (with respect to G) if {x| P,(0, x) = 0}
generates G. Dudley [2] has shown that there exist aperiodic recurrent random
walks on a countable Abelian group G if and only if the rank of G is less than
or equal to 2.

Recurrent random walks which are aperiodic with respect to groups isomorphic
to Z? exhibit a remarkable homogeneity in their behavior. Kesten and Spitzer
[7] have shown that in this case r, is slowly varying, i.e. lim,_, r,,/r, = 1. More
recently Jain and Pruitt [6] have shown that the strong law of large numbers
holds for the range of all such walks.

These results both follow from the condition

() sup.o P03 =0 (1)
which holds for all such walks. We show in Theorem A of Section 2 that this
homogeneity of behavior extends to all recurrent walks which are aperiodic with
respect to Abelian groups of rank 2 by showing that (*) holds in this generality.

We prove (Theorem B of Section 3) that for recurrent walks on a countable
Abelian group which satisfy (*), r, is super slowly varying in the sense that
lim,_, r,, 1/r, = 1. We remark that there are slowly varying functions which

Received July 2, 1973; revised January 21, 1974.

AMS 1970 subject classifications. Primary 60J15, 60B15.

Key words and phrases. Random walks, rank of a countable Abelian group, super slowly vary-
ing sequences, occupation time theorem.

380

TS

o

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [ 5
The Annals of Probability. STOR

. ®
www.jstor.org



RANDOM WALKS ON ABELIAN GROUPS 381

are not super slowly varying, e.g. e~“s™* Thus Theorem B strengthens the
aforementioned result of Kesten and Spitzer.

We use Theorem B to prove Theorem C of Section 4 stating that for recurrent
walks on a countable Abelian group which satisfy (*), lim,_, P(r, &%, < ) =
1 — et (t > 0), &%, equalling the number of times the walk visits the origin 0
during the first n steps.

Theorem C extends the results of Erdés and Taylor ([3] pages 141-143) for
simple walk on Z* and Spitzer ([9] page 231) for aperiodic two-dimensional
walk with mean zero and finite second moment. We remark that the same result
may be obtained using only the slow variation of 7,, by employing the occupation
time theorem of Darling and Kac [1] (although this possibility seems to have
been overlooked in the literature).

In view of Theorem A, Theorems B and C apply to all recurrent walks which
are aperiodic with respect to Abelian groups of rank 2. We end this paper with
examples of recurrent random walks on groups of rank 0 and 1 for which (*)
holds and to which these theorems apply as well. We believe these examples
are of some interest in connection with the open questions concerning the range
of recurrent random walks, for in view of the proof of Jain and Pruitt’s strong
law of large numbers for recurrent walks on Z* the strong law of large numbers
would apply in these instances as well.

2. Condition (*) for recurrent walks on groups of rank 2. We say thata random
walk on a countable Abelian group G has genuine rank two if {x € G | P,(0, x) + 0}
generates a subgroup of G of rank two.

THEOREM A. If {S,} is a recurrent random walk of genuine rank two then

*) SUp,.¢ P,(0, x) = O <i> .

n

REMARK. Suppose that G has a subgroup H such that G/H = Z* (it is easily
shown that this is equivalent to G = Z*® T where T is a countable Abelian
torsion group). For these groups the (*) condition for G follows trivially from
the (*) condition for Z* by projecting the walk on G onto a walk on Z2. Not
every countable Abelian group of rank two is however of this type (e.g. Q% Q
being the additive group of rationals) and for the latter groups the simple projec-
tion argument breaks down. For such groups, we provide the following

Proor. Let G, be the group generated by {x e G| P,(0, x) ++ 0}, and let x be
the measure on G, defined by

#(x) = P(0, x).
Let v be the measure on G, defined by
W(X) = Dyeq, L)Y — X) -

It is easily shown that the recurrence of the walk implies that the support of v
generates a subgroup G, of G, of rank two.
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Let G, be endowed with the discrete topology. Let I' be the dual group of
G, and Py(y) the Haar measure on I'. Recall that if m is a probability measure
on G, the characteristic function of m is the function 72 defined on I by #i(y) =
2izee, (1> X)m(x), Vr e T'. We may assume ([8] page 22) that the Haar measure
on I' has been normalized so that the Fourier inversion theorem m(x) =
§r (;’_X)’ﬁ(T) dP(r), Vx € G;, holds.

Now

30 = 1eeP and
SUP, g Pin(0, X) = sUp,eq, §r (75 X)(A())™" dPr(r)
< §r 80P dP(r) = §1 (50))" dPy(r) -
Also, sup, ¢ Py, 11(0, x) < sup,.q Py,(0, X), so that to prove (*) it suffices to show
that § (3(7))" dPy(r) = O(1/n).

As, G/ has rank two, we may find x,, x, € G,, such that v(x;) > 0, y(x,) > 0,
and the subgroup H of G, generated by {x,, x,} is isomorphic to Z2. #(y) is real
and nonnegative so that

0 = 2(r) = Zseq, Re(r; ¥)u(x)
= v(x) Re(r, x) + v(x)) Re (7, %) + (1 — v(x;) — v(x;)) -
We write ¥(y) in place of the last expression and conclude that

0 =< §r @M)" dP(r) = §r (Y ()" dPr(7) -

WenowletI', = {y e I' |y = 1 on H} = the annihilator of H. It follows from the
Pontryagin duality theorem ([8] page 35) that I'/T", is (isomorphic to) the character
group of H and it is thus isomorphic to T?, the torus. Writing dPpr(r + 1Y)
for the Haar measure on the quotient group I'/T'; and dPy (r,) for the Haar
measure on I';, we may assume ([8] page 54) that the Haar measures have been
adjusted so that i

@0 S (PN AP() = Som, APr(r + 1) §e (U + 1)) dPr(1) -

Observe now that (y + r;, x) = (7, x) - (11, X), and, for x € H, (7, x) = 1 so that
Y(r + r) = ¥(y)forall y,eT',. Thus ¥(y + r,) is constant on any given coset
7 + I'; and we denote this constant value as W(y + I')). It follows then from
(2.1) that

§0 ()" dP(r) = ¢ Sopr, (¥(r + T0))* dPryr(r + T)

where ¢ = §, dPp (1)) < oco. The last integral, however, is in effect an integral
over T? and the argument employed by Spitzer ([9] page 73) to show- that
sup,. z2 P,(0, x) = O(1/n) for genuinely two dimensional recurrent walk apphes
directly to this integral, and shows that it is O(1/n).

3. Super slow variation of r,. We will need as lemmas the slow variation of
r, and an inequality employed in Spitzer and Kesten’s proof of slow variation.
We state these below as Lemmas 1 and 2; the proofs may be found in ([7] pages
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307-309) under the assumption that the walk is “genuinely two dimensional.”
The reader may observe, however, that the only way in which this hypothesis
enters the argument is through (*).

LemMmA 1. If a recurrent random walk {S,} satisfies (*) then
¢, 2 my+ my + my=m (my, my, my > 0), then f, < ¢my~'r,, 1,
LemMma 2. If {S,} has property (*) then r, is slowly varying.

THEOREM B. If {S,} is a recurrent random walk on a discrete Abelian group G
which satisfies (*) then r, is super slowly varying.

ProoF. Given m, we apply Lemma 1 taking m, = m, = [m[4], m; = m —
m, — m, to obtain

S S emy7 0 S 6mTi g

Since r,, is slowly varying r?, ,, ~ r,?so that f, < ¢;m~'r,’. In particular, for
n<mg 2n we have f,, < ¢,n'-r,?, thus
(3’1) rn—an_'Zn+l m_ r2'
Now write t, = 1/ry. By Lemma 2, once again, we have t, ,,/t, — 1 as k — oo,
and (since our walk is assumed recurrent) , 1 co. Finally, in view of (3.1) we

have 1/t, — 1/t,,, < ¢,/t,}, whichisequivalenttot,,, — t, < ¢;t,,,/t,, from Wthh
it follows that ¢,,, — #, < ¢,. In particular we have

B — tipiogyey1-1 = Ci([10ga 7] + 1)

so that

(3 2) 1> tk—[log‘ztk]-l — L, — (tk - tk—[logatk]—l)
o tk tk
> tk—c4([log‘2tk]+l) > 1 _c [10g2 tk] + 1 _)1
—_ - . = 4

L L
(since log, t, = o(t,)).
Reintroducing the r, we find that (3.2) yields

ok

—1
rye — [log, 1/ry] — 1

However,
- 1 - - 1
2—[log, /rok]—-1 é 2' loggl/rgk — ok
therefore
2k—[logzl/r2k]—1 < 2kr2k s

and in view of the monotonicity of {r,}, it follows that

(3.3) k1.

Tiakryi)

We have now shown that r,/r,, ; — 1 if n is restricted to the subsequence of
indices of the form n = 2*. In order to extend this result to the full sequence
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we observe that
Ac,aj £ n—jr; < ¢ynr,, . ([6] Lemma 2.1)
If 2 < n < 2%+ we have

rgkf-l < rn rgk

A

Tiskryesesl ey T [2k+1ryp 4 105)
and both extremes of this last inequality go to 1 in view of (3.3).
4. Returns to the origin. We appropriate the usual terminology for random
walks on Z¢ and refer to &,, the number of indices k < n for which S, = 0,
as the number of returns of the walk {S,} to the origin. In this section we use

the superslow variation of r, to obtain the convergence in distribution of the
number of returns to the origin for all recurrent random walks satisfying (*).

THEOREM C. If {S,} is a recurrent random walk on a discrete Abelian group G

which satisfies (*) then for any t > 0,
lim, ., P(r, %, <t)=1—e".
RemARK. Note that
E(#,) =PS,=0)4+ PS,=0) 4 --- 4+ P(S, =0).
But the sum is asymptotic to 1/r, ([5] page 281) when r, is slowly varying.
Consequently the conclusion of the theorem may be formulated as
lim,_, P(Z,|E(,) <t)=1—e".

ProoF. Write W, = the waiting time for the kth return to the origin, and
let T,=W,, T, =W, — W,_,, k> 1. The T,’s are independent, identically
distributed random variables. We have

P(r, %, =z t) Z P(Wiyp 11 S 1)

= [IE4" (T, < nflt/r,] + 1)
= P(T, < nf[tfr] + L)/,

But, in view of the superslow variation of r,

P(T, S nfltr,] + 1) = 1 — M 14m
= 1 —rn+0(rn)'

‘

Therefore,
Pr,Z, =1 = (1 —r, + o(r,)/»o0 — et
On the other hand,
P(r, Z#, 2 1) = PWiy,,n = 1)
< TI}0 P(T, < n)

= (1 — r)mal et
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5. Examples. We conclude with examples of recurrent random walks on Z
(rank 1) and Z,® Z,® - - - (rank 0) for which (*) holds (Z, denotes here the
additive group mod 2).

ExaMPLE 1. We consider the random walk on the line with transition function
P(0,0) = 1 — 2/x, P(0, x) = 2/n(4x* — 1)~ for = 0. This walk is recurrent and
has the characteristic function ¢(d) = 1 — |sin /2] ([9] page 89).

Observe that

SUp, .1 P(0, x) = 1/2z §=_ (1 — |sin 6/2])" d6

2 (enq . 2 . ( 20)” 1
==z —sinf)"df < = §i*(1 — =) df = .
T 3 ) o % T n+1

EXAMPLE 2. We consider the walk on G = Z,® Z,® - . . for which P0,x)=0
unless x = x, = (3,5, - - -, 0/ ...), 1 £k < oo, and P(0, x,) = 27%(d,* denotes
here the Kronecker delta symbol). The walk is known to be recurrent (9]
page 95). Let ¢(y) = X.cq P(0, X)(7> X) = X5, 2%y, x,)" 7 € T, be the char-
acteristic function of the walk, I' being the dual of G. Then P,(0, x) =

§r [4(7)]" dPr(7) so that
5.1 sup,.¢ P,(0, x) < §r |¢(T)In dP.(7) .

It is shown in [4] that the measure space I' endowed with the Haar measure
Py can be identified with the unit interval [0, 1]endowed with Lebesgue measure.
In this identification (7, x,) becomes the kth Rademacher function oi(2), 0 <
t <1, where ¢, = 1 on [0, %), —1 on [4, 1], etc. We thus replace y by ¢ and
write ¢(f) = Y17, 27%¢,(r), 0 < t < 1. The estimate (5.1) becomes

(5:2) SUP, e Pu(0, x) < §5 |B(0)[" dt .

Since ¢(1) = —¢(1 — ), we have §3|¢(7)|" dt = 2 §}|¢(r)|" dr. It is convenient
to write W(r) = 1 — ¢(r) = 15, 27%(1 — ¢,(f)) and to study ¥(¢) on each of
the intervals E; = [2-4+Y,279), | <j < 0. To begin with ¥(s) < 1 for all
t€ [0, 3) while fort e E;, wehave 1 — r,(f) =0 for k = 1, 2, ey l—r (=2
so that

W() = 2297 + T, 1251 — r(0) = 129 2 1.

But, [0, §) = U5, E;, sothat 1 > W(f) > s forall r e [0, 1),
therefore -
lp(e))" = |1 — We)» < (1 — 1y for 1[0, }
and
SUp,cq Pu(0, X) < 2 §¢ (1 — n)"dt = O(1/n) .
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