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NONBLOCK SOURCE CODING WITH A FIDELITY CRITERION!

BY ROBERT M. GRAY, DAvVID L. NEUHOFF
AND DONALD S. ORNSTEIN

Stanford University, University of Michigan
and Stanford University

A new nonblock source coding (data compression) technique is intro-
duced and a source coding theorem is proved using recently developed
techniques from ergodic theory. The existence theorem is valid for all
stationary aperiodic sources (e.g., ergodic sources) with finite alphabets
and all ergodic sources with separable alphabets and is proved without
Shannon-style random coding arguments. The coding technique and the
optimal performance bounds are compared and contrasted with Shannon
block coding techniques.

1. Introduction. Since Shannon’s (1948), (1959) original development of
the theory of source coding subject to a fidelity criterion, the theory has dealt
almost exclusively with block coding, i.e., “compressing” a source by mapping
consecutive nonoverlapping blocks of source data into an allowed codebook
containing a constrained number of reproduction blocks or codewords. The
fundamental theorems relating optimal source code performance with an
information theoretic minimization—the rate-distortion function—have been
notoriously difficult to prove in general cases, involving complex random coding
arguments coupled with the decomposition of sequences of n-tuples from ergodic
sources into ergodic modes as in Gallager (1968) and Berger (1971), and the
decomposition of stationary sources into ergodic subsources as in Gray and
Davisson (1974).

In many situations, block coding structures are exceedingly difficult to imple-
ment and numerous existing algorithms for real-world data compression such
as the interpolating and predictive compression schemes described by Davisson
(1968) do not have a block structure and hence, cannot be studied using the
Shannon formulation.

In this paper, a new source coding technique dubbed “sliding-block source
coding” is introduced and the relevant source coding theorem proved. The
coding technique is derived from the work of Ornstein (1973) and the theorem
is proved using recently developed techniques of ergodic theory as described,
e.g., in Shields (1973). In particular, the proof of the coding theorem is based
on a simple geometric picture of stationary aperiodic processes (such as ergodic
processes) due to Rohlin as described by Shields (1973), and a generalization by
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Gray, Neuhoff, and Shields (1974) of a distance between random processes
deveioped by Ornstein (1973). Somewhat surprisingly, the theorem proof
involves no traditional Shannon-style random coding arguments.

As a simple example of the coding technique, consider the source coder of
Fig. 1. The binary source data is shifted each time-unit by one letter through

X} —
(x;} % | % e
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=X K X X0 = L,o,1)
Fic. 1. A simple sliding-block code.

the shift register and at each time the encoded letter representing a reproduction
of the center source letter is output. In the example, the reproduction letter
agrees with the central letter in the shift register unless the shift register contains
the pattern “101,” in which case the reproduction bit is the complement of the
center source bit. If the source is a binary independent, identically distributed
sequence with equiprobable zeros and ones, then the average error rate between
X, and X, is easily seen to be §. “Compression” is achieved in that the sequence
{X,} has a reduced entropy rate, shown by computer evaluation to be less than
0.7 bit per symbol. The reproduction process can therefore be transmitted
reliably over a channel with reduced capacity. Note that compression here is
in the sense of entropy rate reduction and not of “redundancy removal” since
the reproduction sequence has memory. “Compression” in the sense of actually
sending fewer binary digits can be achieved by following {X,} by a block-to-
variable length noiseless source coder such as a Huffman coder as described,
for example, in Gallager (1968). We note that such noiseless coders are fairly
easily implemented and often used in real systems.

The structure of sliding block encoders resembles that of non-linear convo-
lutional channel encoders suggesting that possibly both operations of ‘“‘com-
pression” and reliable communication over a noisy channel can be performed
by a single joint source-channel encoder as first observed in the noiseless case
by Koshelev (1973) and Hellman (1974). The observation that sliding-block
source encoders insert redundancy while reducing entropy rate supports this
conjecture since, hopefully, the redundancy can be inserted in a controlled way
to combat channel noise. We therefore feel that the techniques used here to
study the source coding theorem with a noiseless channel may prove useful in
reformulating noisy channel and joint source-channel coding theorems.

Modern ergodic theory shares with information theory much of its origins in
the work of Shannon (1948). We hope that the methods and results described
herein may contribute to the realization of Krengel’s (1973) prediction that
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“the pendulum may now swing back again” from abstract ergodic theory to the
Shannon theory of communication.

2. Notation and definitions. In this section we introduce the notation and
definitions necessary to formulate the problem and state the coding theorems.
Additional notation and definitions required only in the proofs will be provided
when needed.

Let A be the source alphabet or space of possible outputs at any given time.
The alphabet 4 will be assumed to be either finite or a separable complete
metric space. Let <Zdenote a g-field of subsets of A4: the class of all subsets of
A4 if A is finite, the Borel o-field if 4 is a metric space. Let Z = A~ denote the
sequence space of all possible doubly infinite sequences drawn from 4; i.e., if
xeZ, then x = (+++, X_y, X5 X3, -+ +), X; € A4, all i. Let X,: Z — A denote the
coordinate function X, (x) = x,. Let T denote the shift operation on Z, i.e.,
X, (Tx) = x,,,. Let§ = &£~ denote the smallest o-field containing all cylinders
of the form {x:x;eB;m < i < n}, where B;,e <%, m < i < n, for all finite
integers n and m. If A is finite then S is also generated by the thin cylinders of
the form{x:x;, = a; m < i < n} wherea,e A, m < i < n. Let p be a stationary
measure on (X, S), i.e., u(TB) = u(B), all BeS. The sequence of random
variables {X,}v__., defined on the probability space (Z, S, p) is then a (directly-
given) discrete-time stationary random process and is called the source. The
source is sometimes denoted by [4, ¢]. Let p¥ denote the restriction of p to
4y, ). ,

The source is aperiodic if #({x: T"x = x}) = 0 for each n. A source is ergodic
if TB = B implies that #(B) = 0 or p(B) = 1, i.e., the only events left unchanged
by shifting are trivial. All nontrivial ergodic processes are aperiodic.

Let H(X") denote the entropy of the random vector X¥ = (X, - -+ Xy_y),
i.e., if (4%, &7, pV) is atomic then

H(XY) = —Xawean p"(x") log p(x™)
where p" also denotes the probability mass function for the vector X7¥. If
(AY, Y, pV) is not atomic, then H(X¥) = co. The entropy rate H(X) or
H([A, p]) or H, of a process is defined by H(X) = limy_, N-'H(XY). The
various equivalent notations will prove useful.

Let A be the available reproducing alphabet, i.e., the set of allowable repro-
duction letters. For any integer N, a sliding-block source encoder of blocklength
2N + 1 is any function f*: 4+ _, 4. The reproduction process {X,}o__.. is
defined by X, = f™(X,_y> + -+, Xp» = -+, Xpin)- If X, is ergodic or only station-
ary, then X, is ergodic or stationary, respectively. As in the Shannon theory,
we consider the source coding problem as separated from the channel coding
problem, or equivalently, we assume a noiseless channel with input and output
alphabet 4. Hence, the source decoder is simply an identity transformation.

Let p be a nonnegative distortion measure on (4 U 4) x (AU A). If 4 is
finite, then p may be any finite-valued distortion measure. If A is not discrete,
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but is a metric space, we take p to be the metric (metric distortion measure)
and assume that 4 U A is a separable complete metric space under p. A sliding-
block source code f™ has average distortion

o(f ™) = Efo(Xo, fM(X_y, -+ -5 Xy))}

where E, denotes expectation over p, and entropy rate H(f™') =, H(X), where
H(X) is the entropy rate of the induced reproduction process.

It is easily shown that if the source is ergodic, then the induced joint process
{X,, X,}o__., is also ergodic and, hence, lim,_,n~' 37 p(X,, X,) = o(f*™)
almost everywhere. This desirable convergence of time average distortion to
its expected value does not follow immediately in the traditional non-stationary
block-coding formulation.

The object of source coding is to produce a reproduction process having an
entropy rate less then some fixed number (possibly due to later channel capacity or
storage constraints) such that the “compressed” reproduction well approximates
the original process in the p sense. We therefore define for rate R > 0 and
blocklength2N + 1 the optimal performance theoretically attainable (abbreviated
OPTA) using sliding-block codes by

O(R, N) = infyw), ypanysp 0(FY) -

As in the usual Shannon approach, we are interested in the optimal performance
over all blocklengths and hence we define d(R) = inf, d(R, N). It is easily
shown that the limit of (R, N) as N — oo exists and equals the infimum.
Unlike the block coding case, it is easy to consider the infinite blocklength
case, i.e., let f*: 4> — A be an infinite blocklength sliding-block code and
define
0*(R) = infye). (st sz O(f ) -

Clearly, d(R) = 0*(R), but we shall later see that 6(R) = *(R), i.e., that finite
blocklength codes perform in the limit of long blocklength as well as a code
allowed to view the entire source sample function. We note that such infinite
codes were suggested by Krengel (1973) in his discussion of Ornstein’s (1973)
paper.

In another departure from the usual approach, the basic theorem will not
involve Shannon’s (1959) distortion-rate function (DRF) explicitly. It is shown
by Gray, Neuhoff, and Omura (1975), however, that the optimal performance
bound is given by the usual DRF when the source is ergodic. Instead of the
DRF, we here use the concept of the g distance between processes. Given the
source {X,} defined on the probability space (Z, S, ¢) and any stationary random
process {Y,} defined in a similar manner on a probability space & = 4=, 8, v),
the g distance §(X, Y) or g([4, p], [4, v]) can be defined as follows:

p([A4, p], [4, v]) = inf,cp,, E[0(X,, Yy)]
P,, = {all stationary measures p on (£ x £, S x $): p(Z x G) = (G), VG e,
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p(B x £) = p(B), Y Be S}, that is, P, , is the class of all measures on random
sequences of pairs such that one coordinate is probabilistically identical to {X,}
and the other coordinate is similarly identical to {Y,}. @ measures how well
two processes can be matched up in an average p sense at a given time if the
two processes are stochastically linked in an optimal stationary manner. Several
equivalent definitions for g and some properties and applications are given in
Gray, Neuhoff, and Shields (1974). In particular, if p is a metric, then so is g.

3. The sliding-block source coding theorem. In this section we state and
discuss the two basic source coding theorems, the lemmas used to prove the
theorems, and some related results.

The basic results of this paper are the following.

THEOREM 1. If [A, p] is an aperiodic random process and if A and A are finite
and p is an arbitrary finite-valued distortion measure, then

(3.1) 3(R) = infij,1.m, 5 6([As 2], [4 ) -
THEOREM 2. If [4, p] is an ergodic random process and if A and 4 are such that

A U A is a separable complete complete metric space under a finite-valued metric p
and if there exists a reference letter a, € A such that

(3.2) E, 0(Xy a)) < p* < o0,
then (3.1) holds.
Note that the “negative” side of the coding theorem

3(R) Z infis,1.m,5n (4, ], [, ¥])
is obvious in both cases since an f” approximately yielding d(R) to within ¢
produces a process v with H, < R and 5([4, p], [4, v]) £ 6(R) + .

The first theorem is not a special case of the second since, even though 4 and
A are more restricted in Theorem 1, p need not be a metric and the source need
not be ergodic.

Roughly speaking, both theorems state that the optimal attainable distortion
using a sliding-block source coder is given by the minimal g distance between
the source and any process [4, v] with the desired entropy rate. The theorems
follow from the following lemmas.

LEMMA 1. Given two finite alphabet stationary aperiodic processes [ A, p] and
[4, v], a (finite-valued) distortion measure p, and 3 > 0, there exists for N = N(J)
sufficiently large a sliding-block code ™) for [A, p] such that
3.3) o(f™) < 5([As p, [4,v]) + 5

H(f™) < H((4,»]) + 6.

LEMMA 2. Given two stationary ergodic processes [A, p] and [4, v] such that

(i) A U A is a separable metric space under a ( finite-valued) metric p, and
(ii) there exists a reference letter a, € A satisfying (3.2),
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then for any & > 0, there exists for N = N(0) sufficiently large a sliding-block code
[ satisfying (3.3).

The lemmas state roughly that the optimal behavior between the coordinates
of a random process of pairs can be mimicked arbitrarily closely by a deter-
ministic sliding-block encoding of one process. The theorems follow from the
lemmas simply by optimal choice of [4,v]. Lemma 1 and Theorem 1 are
proved in the next section and demonstrate the basic approach. Lemma 2, and
hence Theorem 2, follow from Lemma 1 via straightforward two-step encoding
procedures involving quantization as in Gray et al (1974), (1975), and hence
their proofs are relegated to an appendix. The two-step procedure, however,
requires ergodicity.

The results described have several interesting similarities and differences with
the usual Shannon-style block source coding theorems as stated, e.g., in Berger
(1971), and Gray, Neuhoff, and Shields (1975). In each case, a deterministic
optimum is related to a stochastic optimum. In the Shannon case, the stochastic
optimum (the distortion-rate function) is in terms of a limit of optimizations
over finite dimensional vectors with a constraint on the average mutual infor-
mation between randomly chosen source and reproduction vectors. Here, the
stochastic optimum is directly in terms of processes and is in terms of the
entropy rate of the reproduction. This viewpoint resembles a conjecture of
Dick (1973) and is discussed in some depth in Gray, Neuhoff, and Omura (1975).

The usual proofs involve the random generation of an ensemble of code-books
and prove that there exists at least one code in the ensemble that works nearly
optimally since the average over the ensemble is close to the optimal. In the
proof of the sliding-block coding theorem, no such ensemble of randomly
generated codes is used. Instead, the encoder is constructed based on a
geometric picture of random processes called a gadget. The aperiodicity (or
ergodicity) is used only to construct such a gadget and the proof then consists
of copying one gadget representing a joint process onto another representing
the source. Hence the ergodic theorem or law of large numbers are not used
and there is no average over an ensemble of codes. The encoder f™ is given
by a mathematical construction, but it is likely difficult construction in a
practical sense and the source coding theorems should be considered only as
existence theorems. Itishoped, however, that the existence results will stimulate
research on potentially tractable implementable sliding-block source codes, and
on the construction of entropy reducing functions with good fidelity.

The block source coding theorem relates.a corresponding d(R) function to
the distortion rate function D(R) as defined, for example, in Gray, Neuhoff,
and Shields (1975). The potential use of this result is that the DRF can usually
be evaluated via computer (Blahut (1972)), while the direct evaluation of d(R)
is usually intractable. It is shown by Gray, Neuhoff, and Omura (1974) that
for ergodic sources,

inf[ﬁ.v]:H,sze o([4, ¢, [A\, v]) = D(R)
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so that the optimal performance using sliding-block codes is (not surprisingly)
the same as that using block codes and hence the Blahut (1972) algorithm is
also applicable to sliding-block performance bounds.

Contained in the proof of the previous coding theorems is the following
corollary, also proved in the next section

COROLLARY 1.
0*(R) = 6(R) = lim,__, d(R, N) .
In words, an infinite blocklength sliding-block code can be approximated
arbitrarily well by a finite blocklength sliding-block code of sufficiently large
blocklength.

4. Proof of the finite alphabet source coding theorem. Let {X,} be a random
process defined as previously on a sequence probability space (Z, S, ) with a
finite alphabet 4 = {a,, ---, a;}. Let P = {P, ..., P,} be the partition of X
according to the zero coordinate, that is, the atoms P, are given by P, =
{x:xeZ, X(x) = x, = aq,). Note that X, (x) = X(T"x) = a, if T"xeP, or,
equivalently, x ¢ T-"P,. Thus T-"P =, {T-"P,, - .., T-"P,} partitions Z accord-
. ing to the output at time n. Given two partitions P = {P,, ..., P} and Q =
: {Qys - -+, Q;} of the same space, the join P v Q is the partition of X with atoms
PnQsk=1,---,K,j=1,...,J. Thus V2= TP partitions  according
to the outputs at times zero through n — 1, i.e., the atoms of \/7-} T-'P are
simply all the disjoint n-dimensional thin cylinders of the form {x: x; = a,,,
0ign—1}=N T‘iP,,i. The notation /7= T-*P also denotes the o-field
generated by the atoms; i.e., the class of all unions of atoms of the partition
Vi TP,

The distribution d(\/ 7=} T~*P) is defined as the vector having as entries the
measure of the atoms of \/¢~* T~*P in lexicographical order, that is,

A\ T7'P) =, {p(N i T‘iPki); all k* = (kg -+, k) €{l, .-+, K}"}.

Given any event F, the partition \/»~' T-'P/F is the partition on F induced by
Ve T-*P, i.e., it has as atoms all sets of the form F n (N T‘iP,ci). If
#(F) > 0, the conditional distribution d(\/¢-* T-*P/F) is the vector of con-
ditional probabilities p((;=) TP, | F) = p(F n (Ni= TPy )/ (F).

The key to the proof of Lemma 1 is the following strong form of Rohlin’s
Theorem that gives a simple geometric picture of the behavior of stationary
aperiodic processes over finite time (Shields (1973) pages 16-17, 22-24, 64):

ROHLIN’S THEOREM. Given a stationary aperiodic process (Z, S, y), a positive
integer n, and any ¢ > 0, then there exists an event F such that F, TF, ..., T*"'F
are disjoint sets, py(Ur=f T'F) = 1 — ¢, and

d(\Vi=s T-'P) = d(\ 1=} T*P|F).

Intuitively, the theorem states that any stationary aperiodic random process
has a similar structure over any finite time in the sense that the sequence space
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% can be “carved up” into n disjoint sets that are all shifts of a base F, the union
of these sets has almost all of the probability measure, and the base reflects the
n-tuple distribution of the entire space, i.e., given any n-tuple (a,, - - -, a),
p{x:x;=a, 0<i<n—1}) = p({x: x;, = a,,0 <i < n— 1}|F). In other
words, the base F is independent of all n-dimensional cylinders {x: x, = a,
0 < i< n—1}. The collection {T*F;i =0, --., n — 1} together with the par-
tition P is called a gadget or e-gadget (T, n, F, P).

ProOF oF LEMMA 1. Given the two stationary aperiodic processes [4, p] and
[4, v], and & > 0, let p be a stationary measure on (X x 2, S x ) approximately
yielding the infimum defining 5([4, p], [4, v]), i.e.,

(4.1a) p(Z x B) = u(B), VBeS,
(4.1b) p(B x Z) = u(B), VBeS,
(4.1¢) E,[p(X,, Yo)] < p([4, ¢, [, v]) + 9/3 .

This is possible by the definition of 5. The §/3 is required since the infimum
might not be a minimum. Since [4, »] and [4, v] are aperiodic, the joint process
[4 x 4, p] must also be aperiodic.

Given the probability space (Z x S, 8x 8, p), let U denote the shift on X x s,
ie., if z=(x,y)eZ x £, then U shifts the pair sequence z: (U(x, y)), =
(Xp41> Ynyr)- Let W= {W,; k =1, ..., K}denote the partition of X x 3 accord-
ing to the X coordinate of the zeroth letter, i.e., W, = {(x, ») : x, = a;}. Similarly,
define the partition V' = {V,,j =1, ---,J} by V; = {(x, ) : o, = b;} where b; €
4 =,{b, ---,b,}. The partition W Vv V therefore partitions the space = x &
according to the output at time zero of each coordinate. The average distortion
between the coordinate processes is

(4.2) oW, V) =4 EJo(Xo, Yo)] = Zies Ziar 0(@s b5)p (Wi 0 V)
< 5[4, £, [4:0]) + 373,
and the entropy rate of the [4, v] process can be written as

H([4, v]\=, HU, V) = lim,__ n*H(\/ 3~ UV),
where
H(VS”_I UiV) = - Zall atoms G of Vg =1 yiy #(G) log #(G) *

Given 0 < d < e7!, choose an integer / large enough such that
I=H(V ™ UY) — H(U, V)| < 63

and chose ¢ small enough and n large enough so that

(4.3a) Klpo, e < 6/3

(4.3b) S+ (—Dn ) <o/3

where p, =, max, ; o(a,, b;) was assumed finite.
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Step 1. Use the Rohlin Theorem to construct an e-gadget (U, n, F, W v V)
on the joint sequence probability space (Z x 2, S x S, p) i.e., U'F, i =0, ...,
n — 1, are disjoint sets, p(Us' U'F) = 1 — ¢, and

4.4 AV U(W v V)F) =d(\V U (W V V).
Note that this implies that
4.5) AV U-V|F) =d(V 3 U-).

In a similar manner, construct an e-gadget (7, n, F. P) on the source space
(%, S, p) so that T*F, i = 0, - - ., n — 1, aredisjoint, #(|Js~* T*F) = 1 — ¢, and
(4.6) d(V2-'T~'P|F) = d(\J3~* T-'P) .
By definition of the 5 metric, p on (2 x £, § x §) induces the original source
measure g on (Z, S), and therefore d(V¢~' T-*P) = d(\ ¢! U~*W) and
(4.7) d(V e~ U-W|F) = d(\J;~* T-*P|F) .
When two gadgets satisfy (4.7), i.e., when the distribution of all n-tuples on the
bases are equal, the gadgets are said to be isomorphic and we write (U, n, F, W) ~
(T, n, F, P). From Lemma 4.4 of Shields (1973), since (U, n, F, W) ~ (T, n, F, P)
and V is a partition of £ x X, then there is a partition Q = {Q,, ---, Q,} of
Ui TF such that (T, n, F, PV Q) ~ (U, n, F, W v V), i.e., such that

| d(V§ TPV Q)[F) = d(V§~ U(W v V)/[F)

=d\V U (WV V).
Note that this implies that

(4-8) d(V37* T-°Q[F) = d(V§~' U*V|F)
so that (T, n, F, Q) ~ (U, n, F, V).

Step 2. Extend the partition Q of (Jz~'T‘F to X in any manner. From
Lemma A of the Appendix with / = 1, (4.8) implies that

(P 0 Q) —p(W N V)| < ¢ all &, j

o(P, Q) = Xou,; 0(ar, b)p(Py 0 Q)
= 2k P(@ b)p(We 0 V) + Kl € py
< (4, ¢, [4,v]) + 29/3 .
Application of Lemma A to (7, n, F, Q) and the isomorphic (U, n, F, V) yields
PH(VE T-Q) < FH(VE U= + Ji(e + (I — Dn~Yh
< H(A4, v]) + 20/3.

and therefore

Comment. This proves the lemma for f‘ since f‘* is equivalent to the
partition Q by defining f')(x) = b; iff x € Q; and therefore

(4.92) H(f) < IMH(Vi T~Q) < H((4, v]) + 20/3
@9b)  p(f) = ;s (@ b)u(Py 0 Q) < (A, i, [4s v]) + 253



SOURCE CODING . 487

Step 3. Since the g-field S is generated by the cylinders, given any ¢’ > 0,
there exists an N sufficiently large and a partition Q € \V3¥ T—*P such that

0 — Q| =4 D7 (0 A Q) < &
where A denotes symmetric distance. This follows since each atom in Q can
be approximated arbitrarily closely by a cylinder set (generator of the o-field)

or from Shields’ (1973) Lemma 10.1. From Shields (1973) Lemma 8.2, 4’ can
be chosen sufficiently small and thus N sufficiently large to ensure that

[lim,_, n*H(V 3~ T~Q) — lim,_, n*H(V ' T~*Q)| < 6/3 .
In addition, since )
p(P, 0) = TK, 7=10(ay, by)pu(P, N Q—,)

andsince P, N 0, (P, N Q;) U (Q; A Q;),sothat u(P, n Q;) < u(P, N Q;) +
#(Q; A Q,), we have that

(P, 0) £ Tk Tfer p(a1s b)1(Py 0 Q;) + pulQ — O
< 304> 11, L4, v]) + 203 + o d' .
Choosing ¢’ so that in addition p, ¢’ < /3, we have that
lim, ., = H(V 3~ T-0) < lim, .. n=H(V3* T-Q) + 3/3
< PH(VETQ) + 6/3 < H(A,v]) + 9,
o(P, 0) < (14, 1, [4,v]) + 5.
Since 0 € V¥, T-'P, defining the function ™ by

@y yorir Cynor Tyy) = b; iff N¥» T-iPki c Q;

and

will yield .
p(f ™) = p([4, ¢, [4,v]) + 0
H(f™) < H(4, ) +
completing the proof of the lemma.

Proor oF THEOREM 1. Let [A4, v] approximately yield the infimum of (3.1)
i.e., given ¢ >0

oA, ], 1A, v]) S infiz i, <n 604, 2], [, V]) + 0
H(4,»]) < R.

Application of Lemma 1 to the above implies that there exists for sufficiently
large N a function f‘ such that

p(f™) < infi; 1.4 <p 04, ], [4, »]) + 35/2
H(f‘”’) <R-+0.

Since § is arbitrary, the theorem is proved.
Using the above [4, v], (4.9) proves the corollary.
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APPENDIX
LEMMA A. Given two spaces (Z,S,y) and (2,8, i), and two e-gadgets
(T, F, n, Pyon (%, S, ) and (T, F, n, P) such that

(@) 1Pl = IIP]| = K

(b) d(V3~* T-'P|F) = d(V ;= T-'P)
(©) - (T, F,n,P) ~ (T, F, n, P)
then

(i) For any |l < n and any l-tuple (k,, - - -, k;_y),
(U T-P) — (NG TP )| < e + (I — D™
(ii) If e+ (I — 1)/n < e7?, then
|H(VE T-*P) — H(V§ T-P)| < K'(e + (I — )/m)t .
Proor. Equations (b) and (c) imply that
w37 TP, [F) = (M3~ T-*P,)  any k" = (ko -+, kpoa) -
Given a fixed k' = (ko - - -, k;_y),
(N T-°Pg) = 32 (N~ TPy, | TF)(TF)
+ WO TPy, | 2 — (3~ TIF)u(E — (37 T9F)
Since g is stationary,
#(Nizy TP, | TPF) = p(Mizo T~ 0Py, | F)
= w23 TP, | F) -
Ifj>=0andj+ ! —1=<n—1, then
(N3 T-iPE,-..; |F) = Zk":ki=ii_f;i5i$i+l—l 2Nz T-iP,‘i|F)
= Dlkmiky=k_jisisiti-1 #(Niz T-°P,)
= ANt TPy, )
= (N TP s 0<j<n—!
independent of j. Thus, we have
(NG T7Py) = X526 (6™ TPy | TF)(T7F)
+ T3 (O TPy, | TF)u(T3F) +
< (n— [+ DO TPy + (I — a4 ¢
= (M T7Pg) + (1 — Dn' + ¢
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and
(N T7Pg) 2 (NG T Pg)(n — 1+ Dn(1 — ¢)
o = MO TP — (1 — D — ¢
proving (i).

From Blackwell, Brieman, and Thomasian (1959), if |p — p’| < ¢ < e}, then

|plogp — p’logp’| < ¢ and hence \
|H(VE T7P) — H(Vi™ TP)| < K'(e + (I — Dn )t

PrROOF OF THEOREM 2. Parallel to the proof of Theorem 1, we first prove
Lemma 2.

PrOOF OF LEMMA 2. As in the finite case, let p be a stationary ergodic measure
on (T x £, § x S) approximately yielding the infimum defining 5([4, ], [4, v])
i.e., (4.1) is satisfied. Since A4 is separable under p, we can construct a counta-
ble partition {G,};, of 4 with maximal diameter /6. Let a, be any element of
G, and relabel, if necessary, so that the reference letter g, is in G,. Since

E {o(X, a5)} = p* < oo, then as in Gray and Davisson (1974) the alphabet 4
can be quantized as follows: Choose K = K(4) such that

itk Efo(Xy, a)ly} < 6/6
where I, is the indicator function of G,.. Define the quantized alphabet A=
{ay, - -+, ax_,} S A and the quantizer function q: 4 — 4 by
q(x,) = a, if x,eG,, | k<K-—1
= aq, otherwise

E{o(Xo), 9(X0)} = Y4 dpX(x)o(x, 9(x))
(A.1) = $k-1,0euy6, A (X)P(X, (%))
' + Sx-1,00uy0, A(X)0(%; ay)
=9/3.
We next similarly quantize the alphabet A.

E{0(Y,, bo)} = E,{o(Yo, b)}
V= E{o(Yy, Xo) + 0(Xos a0) + 0(ay, bo)}
< (4, £, [4, v]) + 8/3 + p* + (a0, b)
so that if ([4, p], [4, v]) < oo (otherwise the lemma is trivial) we can construct
a quantized alphabet B = {b,, - --, 4,_,}, where J = J(5), and a quantizer
§: A — B such that

(A.2) E{o(Ye 4(Yo))} < 9/3.

Let [4, ] be the resulting quantized source {g(X,)} and let [B, 5] be the resulting
reproduction process {§(Y,)} induced by [4, ] and [4, v], respectively. Note
that (A.1) and (A.2) imply that

P4 ol [, A) < 3/3,  a(LA »1, [B, 5]) < 373,

and note
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and therefore since g is a metric

a4, 21, B, 9]) < p([4, ¢, [4, v]) + 25/3 .
Note that since [B, 5] is a quantized version of [4, v],
H(B, o)) < H(4,v)) < R

Quantizing an ergodic source yields an ergodic process. Aperiodicity, how-
ever may not be inherited. Application of Lemma 1 with /3 to [4, #] and
[B, 5] yields a code f™ : 4*¥+! — B such that p,(f™) < p([4, ], [B, ) + /3
and H;(f™) < R + 0. This in turn implies a code f@: A*+! 4 given by

F® s ooy xy) =4 fP(q(x-x)s - - -5 4(xy)) such that
pulf™) = 0(f™) < (14, 1], [ v]) + 6.
H,u(f(N)) — H/'Z(f(N)) é R + 0

completing the proof of the lemma.

Theorem 2 follows from Lemma 2 exactly as Theorem 1 follows from
Lemma 1.
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Note added in proof. J. Feldman of the University of California, Berkeley
has pointed out that the proof of Theorem 1 is not quite complete since the rate
is R + 0 rather than R. The § can be removed as in the block coding case by
using the continuity of the DRF.



