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ON THE RECURRENCE PROPERTY OF GAUSSIAN
TAYLOR SERIES!

By J. S. HwaNG

Université de Montréal

We prove that a Gaussian Taylor series has the recurrence property on
any rectifiable Jordan domain such that the intersection of its boundary
with the unit circle is of positive measure.

Let {Z,} be a sequence of complex random variables which are independent
normally distributed with expection zero and unit variance. As was introduced
by J. P. Kahane ([2], page 125), a power series is called a Gaussian Taylor series
if it can be written as
M F) = X5 a,Z,2",
where a, > 0, limsup,_.. a,”" = 1, and z is a complex variable. Since Z, =
O(log n)t a.s. (almost surely) ([2], page 121, Proposition 3), it follows that a.s.
(1) admits the unit circle C = {z: |z| = 1} as a natural boundary ([2], page 32,
Theorem 1).

Let D be the unit disk and let E be a subset of D. We say that F has the
recurrence property on E if we have a.s. liminf|F(z) — w| = 0, as |z| —» 1, z ¢ E,
for each complex number w. With the help of this definition, a theorem of
Zygmund ([2], page 127, Theorem 1) can be stated as follows:

THEOREM A. Let F be defined by (1); if 3,5 a,> = oo, then F has the recurrence
property on the whole disk, i.e. E = D.

Naturally, we may ask on what kind of subset of D, F has the recurrence
property? Kahane has answered this question under some additional conditions
on the coefficients a, ([2], Theorems 2, page 127, and 6, page 132], namely,

THeOREM B. If 3 %~ a,’ = co and a, = O(1/nt), then F has the recurrence property
on any radius.

THeOREM C. If 3¢ a,? = co and a, = o(n/log n)}, then F has the recurrence
property on any circular set (i.e. a union of circles tending to C).

Without those additional restrictions on a,, in our present note, we shall prove
the following generalization of Zygmund’s theorem.

THEOREM. If 315 a,’ = oo, then F has the recurrence property on any subregion
R of D, bounded by a rectifiable Jordan curve J such that the measure |J n C| > 0.
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Proor. The proof of the above result depends mainly on the following six
well-known theorems: Fatou ([1], Theorem 2.1), Carathéodory ([¢], Theorem
3.2), Riesz ([1], Theorem 3.3), Nevanlinna ([1], page 41 or [3], page 204),
Lindeldf ([1], Theorem 2.3), and Paley-Zygmund ([2], page 45, Theorem 1).

Let z = z(w) be a conformal mapping from D, = {w: |w| < 1} onto R and
let G(w) = F(z(w)). Clearly, F has the recurrence property on R if and only if
G has the recurrence property on D,,. Suppose on the contrary that G has no
recurrence property on D,, then there exists a disk D(a) with center at a such
that with positive probability the range of G has no common point with D(a).
It follows that with a positive probability, the function H(w) = 1/(G(w) — a) is
bounded and therefore by Fatou’s theorem H(w) as well as G(w) has a radial
limit along almost every radius.

According to the theorems of Carathéodory and Riesz, the mapping z(w) can
be extended to be homeomorphic on the boundary and the derivative z/(e')
exists almost everywhere. This allows us to define the following two sets:

Let A4 be the set of all points p of J n C such that G(w) has a radial limit
along the radius ending at w(p), where w(z) is the inverse of z(w).

Let B be the set of all points p of J n C such that the inverse w(z) is conformal
at p from the interior of R.

Clearly, by what we have proved, we can see that |4| = |J n C|. It remains
to prove that |B| = |J n C|. Todo this, we first observe that the Riesz theorem
([1], pages 50-52) has shown that the derivative z’(w) belongs to the Hardy class
H' and the boundary function z(e'’) is absolutely continuous. By virtue of
Nevanlinna’s theorem, we find that z’(w) has angular limits almost everywhere
on the unit circle C, in w-plane. Let w, be a point on C,, for which the angular
limit z’(w,) exists and is different from zero. We shall prove that z(w) is con-
formal at w, from the interior of C,. Let w,(f) and w,(r) be two analytic arcs
lying in the interior of C, and ending at w, such that

lim,_, wj(t) =W, and lim,_, wi(t) = wj' +0, j=12.
Let a be the angle subtended by these two arcs at the point w,, then we have
cos a = lim,_, (w/(£), W)/ (0)/|w//(t)wy' (1) = (w, w)')/|w/w)| ,

where (a, b) is the inner product.
Let § be the corresponding angle subtended by their images z(w,(f)) and z(w,(7))
at the point z(w,). Then by applying the following relation,

lim,_, z'(wy(f)) = lim,_, 2'(wy(t)) = 2'(w,) = 0,
we conclude that

cos § = lim,_, (2'(wi())wy'(2), 2'(wo(1))ws' (1)) /12" (wi(B))wy' ()" (wo(£))wy' (1)

= (Z'(wo)wy'5 2 (wo)wy')/|2' (wo)w, 2! (w)w,'| = cos a .

This shows that z(w) is conformal at w, from the interior of C,.
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On the other hand, from the absolute continuity of z(e’), we can see that
the image of a set of measure zero is of measure zero. It follows that the set
of all points p for which the inverse w(z) is not conformal at p from the interior
of R is of measure zero. We thus establish the equality |B| = |J n C| and there-
fore |[An Bl = |/ n C|.

We now consider a point e’ ¢ 4 n B. Let r(6) be a local piece of the radius
{re: 1 — 6 < r < 1} for small enough é > 0. Then by the definition of B, the
image w(r(6)) lies within a triangle in D, with one vertex at w(e*). From the
definition of 4, the function G as well as H has a radial limit along the radius
ending at w(e?). Owing to the Lindelof theorem, we can see both of G and H
have angular limits at w(e”’). It follows that F has a radial limit along r(6).
This shows that with a positive probability, the function F has a radial limit
along almost every radius ending atJ n C. Since 3} a,’ = o0 and |/ n C| > 0,
this contradicts the theorem of Paley-Zygmund. The proof is complete.
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