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ALMOST SURE CONVERGENCE OF
GENERALIZED U-STATISTICS!

By PraNAB KUMAR SEN
University of North Carolina, Chapel Hill

Almost sure convergence of generalized U-statistics and von Mises’
differentiable statistical functions is studied with the help of the general
Llog L martingale convergence theorem.

1. Introduction. Let {X;;, j = 1} be a sequence of independent and identically
distributed random vectors (defined on a probability space (Q, .%, P)) with each
X;; having a distribution function (df) F,(x), x € R?, the p (= 1)-dimensional
Euclidean space, for i = 1, - -+, ¢ (= 2); all these ¢ sequences are assumed to
be mutually independent. Consider an estimable parameter (a functional of F =
(Fy, - -+, F,) defined on an appropriate space of c-tuples of df’s):

(1'1) 0(F) = S S¢(xij’j= 1’ ""mbi: 1, ""C) H§=1 H_?:ildFi(xij) )

where m,, ..., m, are nonnegative integers, m = (m,, - - -, m,) (# 0) is the degree
(vector) of §(F) and the Borel measurable kernel ¢ can always be so chosen that
it is symmetric in the elements within each of its ¢ sets of arguments. The cor-
responding generalized U-statistic based on a sample of size n = (n,, - - -, n)) is

(1.2) Um) = [T (;g)_l 2t ¢(Xij,1’a =1, m,i=1,.. 5, 0),

wheren > m (i.e., n, 2 m;,i = 1, ..., ¢) and the summation 1%, extends over
all possible 1 < j, < - <Jmy=ny, i=1,...,¢c. Um) is an unbiased and
symmetric estimator of 6(F); we may refer to Puri and Sen (1971, Chapter 3)
for various properties of U(n).

In the context of weak convergence of generalized U-statistics, Sen (1974a)
has established some Kolmogorov-type inequalities which for square integrable

(with respect to F) kernels insure that
(1.3) Un) — 0(F) almost surely (a.s.)as n— oo .

Since U(m) is symmetric in each of {X, - -, X}y 1= 1, *++, ¢, one might
naturally inquire whether for (1.3), the square integrability condition may be
relaxed. In fact, for ¢ = 1, through the reverse martingale property of the
classical U-statistics, Berk (1966) has elegantly shown that (1.3) holds whenever
¢ is integrable. For ¢ > 2, i.e., for a multiple array of random variables, in
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view of the lack of the complete ordering of the elements of the index set N =
{n: n = m}, it is difficult to provide a direct extension of Berk’s approach.
Nevertheless, by using some specific directional reverse martingale properties of
{U(n)}, we are able to show that (1.3) holds under a condition slightly more
stringent than Berk’s. The main theorem of this note is the following.

TueoreM 1. If E{|¢|(log* ||)*"'} < oo, then (1.3) holds.

The proof is outlined in Section 2. It may be noted that the condition of the
theorem is sufficient but not necessary. In Section 3, we present some special
cases where (1.3) holds under the ideal condition that ¢ is integrable. The case
of von Mises’ differentiable statistical functions is also treated briefly in Section
3. In the sequel, we let p = 1 and ¢ = 2; the case of ¢ > 2 follows by induction,
while the case of p > 1 poses no additional problem.

2. The proof of Theorem 1. Let & ¥ be the o-field generated by the ordered
random variables X, , < --- < X, ,and X,,,,, X, ---,forn > landi = 1, 2.
Note that for each i, &," is nonincreasing in nand & and &% are mutually
independent for every n = 1. Let then % *(n) be the o-field generated by &V
and &%, for n = 1, so that % *(n) is nonincreasing in each of its arguments.
Note that by (1.2), for every k = 0, n,/’ = n, = m, and n, = m,,

E{U(n,, n, + k)| & *(n/, n,)}

= @) 78T Dhpngen Elo(Xy -0 Xy

(2.1) Xagpp =+ s Xagy )| 57!, o))
= (ngm_;k)—l Zlév1<c~-<vm2§n2+k E{¢(X11’ ) lel’

Kooy + 05 Xy N[ F ¥ (0, 1))
=Un',n, + k) a.e.

For every n = m, we define

(2.2) Y(n) = (U(ny, n, + k) — 6(F), k =0,1, ...)

and consider the sequence

(2.3) {Y(n), & *(n); n, = m,}, defined for each n, = m,.

It follows from (2.1), (2.2) and (2.3) that

(2.4) E{Y(n)| & *(n/, n))} = Y(n/, n,) Vn'=Zn=m and n,=m,.
Thus, if we let

(2.5) Z(n) = |[Y(@)|| = supyz,, |U(m, k) — OF)|, nzm,

then, by virtue of (2.4) and the convexity of the sup-norm, for every n, > m,,
(2.6)  {Z(n, n,), & *(n, ny); n = m} isa nonnegative reverse submartingale.

Consequently, by the two celebrated inequalities of Doob (1953, page 317), we
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have for every 2 > 0,
AP{sup, Z(n) = 1}

< sup,, E{sup, iz, |U(ny, n,) — 0(F)|}
(2.7) = sup,, [{e/(e — Y1 + E(U(n) — 6(F)| log* |U(n) — 6(F)])}]

= {efle — D1 + E(j¢ — 6(F)| log* |[¢ — O(F)])},
where the last inequality follows from the fact that U(n) — 6(F) = E{¢ —
0(F)| & *(n)}, (n = m) and the Jensen inequality. Having proved this, we can
now virtually repeat the modified Cairoli arguments of Symthe (1973, pages
167-168) [who considered the a.s. convergence of X(n) = (X, X;)/||n||, where
the X, are independent and identically distributed random variables and i =
(i + -+, i) = 1 for some positive integer r] and complete the proof of (1.3) on
the same line. For brevity, the details are therefore omitted. []

3. Some general remarks. By virtue of (2.1), it follows that
3.1 E{U(nl)| & *(n'1)} = U(n'1) for every n' = n = max (m,, m,),

and, as such, by noting that EU(n1) = 6(F), we obtain by the reverse martingale
convergence theorem that whenever E¢ exists,

(3.2) U(nl) — 0(F) a.s., as n-— oo .

The same argument holds if one considers the sequence {U([na], n — [n2]),
n = n,, where [s] denotes the largest integer < s, 2€(0, 1) and n, = min {n:
[n2] = m, n — [nd] = m,}. Thus, for the diagonal case, for (1.3), the integrability
of ¢ suffices.

For a multidimensional array of random variables, {X,, i = 1}, Smythe (1973)
has studied the necessity of E|X|(log* |X])™! < oo for the strong law of large
numbers to hold. Though, as indicated in Section 2, the proofs involve similar
techniques, in our case, E|g¢|(log* |#])°~* < oo is only a sufficient condition for
(1.3) to hold. Towards this, we consider the following theorem where (1.3)
holds under the ideal condition that ¢ is integrable.

THEOREM 2. Suppose that
(33 O(F) = Zososm ®(8) [15-10.9(F) ,

where the a(s) are real (known) constants and the 6,'9(F ;) are functionals of only the
Jjthdf Fi,j=1, ..., c. Then, (1.3) holds whenever ¢ is integrable.

Proor. Because of the linearity in (3.3), it suffices to prove (1.3) for the
particular case of ¢,(F) = ][5, 0,(F;). - A simple summation shows that in
this case
(34) U(n) = Ul(nl) e Uc(nc) , Ynz=zm,
where the U(n;) are the classical one-sample U-statistics, and hence, U,(n;) —
0,9(F;) a.s. as n; — oo, for every j(=1, --.,c), when ever ¢ is integrable.
Hence, (1.3) holds whenever ¢ is integrable. []
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Let us define the empirical df’s by
(3.5) Fo(x) =n"" Y, e(x — X)), n=1, i=1,...,¢c,

where for a p-vector u, c¢(u) = 1 iff all the p components of # are nonnegative,
and is 0, otherwise. Let then F(n) = (F(), .-, F{). The von Mises’ differenti-

able statistical function #(F(n)) can now be defined as

(3.6) § ooV j=1, - omyi=1, -, ) [T5 174 dF) (x:5)

:nl—ml...nc—mcz(n)qj(Xiju,a: 1, “',miai= 1, ...,c),

where the summation 2(,,) extends over all possible j, =1, - -+, n,i=1,..-,c.
0(F(n)) is an alternative estimator of #(F), though it is not necessarily unbiased.
From (1.2) and (3.6), we obtain by some standard steps that for n = m,

(3.7) O(F(m)) = Zogasw H(n, )U(N; 5)

where h(n, 0) = [[:, {n,~™n™1} = 1 + O(n,™"), n, = min (n,, ---, n,) and for
s # 0, A(n, s) = O(n~*""), U(n, 0) = U(n), defined by (1.2) and for each s, U(n, s)
is a generalized U-statistic of degree < m (with at least one strict inequality
sign). Thus, if we assume that :

(3-8) E{|¢|(log* [8])™} < o0,

where the m; arguments in the ith set of ¢ are not necessarily all distinct, i =
1, ..., c, then by (3.7), Theorem 1 and (3.8), we conclude that for every ¢ > 0,

3.9) n'=|U(m) — 0(F(m))| - 0 a.s., as n,— co,
so that §(F(n)) also converges a.s. to #(F), as n — oo.
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