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SPACING DISTRIBUTION ASSOCIATED WITH
A STATIONARY RANDOM MEASURE
ON THE REAL LINE!

By SIDNEY C. PorT AND CHARLES J. STONE

University of California, Los Angeles

Let _#" denote the collection of all Radon measures » on R such that
0 < limgoe 7((0, x])/x = limg——o n((x, 0])/|X| < co. Forne #;letn-1e s
be the measure whose distribution function is the inverse of the distribution
function of n. Given a random element N of _#~ having distribution P,
let PI denote the distribution of N-1. Let N be a random element of _#~
having stationary distribution P and let PT be the appropriately defined
tagged distribution corresponding to P. It is shown that P’ has an asymp-
totically stationary distribution PS on .#. Moreover P = (PS)S, P1 = (PS)T,
and PT = (PS)I. PS is given explicitly in terms of P7. In particular, if N
is purely nonatomic with probability one, then PS = (PT)I. If P is a sta-
tionary compound renewal process, then so is PS.

1. Description of results. Let n be a Radon measure on the real line IR, that
is, a measure on the Borel sets in R such that n(C) < oo whenever C is compact.
For x e R, let n, be the Radon measure determined by n,(4) = n(x + A4). Here
x+ A= {x+y:yed}. Set n(x) = n((0, x]) for x = 0 and n(x) = —n((x, 0])
for x < 0. Then n(x), x € R, is determined uniquely by the requirements that
n(0) = 0 and n((a, b]) = n(b) — n(a) for —co < a < b < oo (using the same
symbol to denote both the measure and the corresponding distribution function
is convenient and should cause no confusion). Let 7# = lim,_,, n(x)/x if the
indicated limit, finite or infinite, exists, in which case 7, = 7 for all x ¢ R.

Let n be such that n([0, 00)) = n((— o0, 0]) = +oco0. For xeR set I(x) =
sup[y: n(y) = x] and let n~' be the Radon measure on R determined by
n=((a, b]) = I(b) — l(a) for —oco < a < b < co. If 7 exists, then (n~7) = 1/7.

Let _#" denote the collection of all Radon measures n on R such that 7 exists
and 0 < # < co. Then .4 can be made into a measure space by choosing the
smallest o-algebra on ./ such that for each Borel set A R and each ¢ ¢ [0, oo],
{ne 4" n(A) < t} is measurable. Let % denote the collection of all bounded
measurable real valued functions on ..

Let N be a random element of /" and let P denote the distribution of N. N
and P are said to be stationary if N, has distribution P for all xe¢ R. Let &
denote the collection of all such stationafy probability distributions P on /"

Given P e & there is a unique probability distribution P* on .4 called the
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tagged distribution associated with P such that for all fe % and all Borel subsets
AcC R

M 4] § Pi(dN)f(N) = § PAN)(1/N) § fIN.)1,(x)N(dx) .

The relation between this definition of P” and the usual definition of the tagged
distribution (Palm measure) used, for example, in Mecke (1967) and Port and
Stone (1973) will be discussed at the end of this section.

Let N be distributed according to P e .. The distribution P’ of N—* is called
the inverse distribution associated with P. It is a probability distribution on .4~
but it need not be stationary. According to Theorem 1, however, it is asymp-
totically stationary. That is, there is a probability distribution PS on .4 such that

2) § PS@N)f(N) = lim,_, § P(dN)(1/b) §3** f(N,) dx

holds for all fe % uniformly for a ¢ R. If PSsatisfies (2), it is called the spacing
distribution associated with P. The main purpose of this paper is to prove the
following result, which asserts that a spacing distribution always exists. The
proof of this result will be given in Section 2.

THEOREM 1. Let Pe . Then thereisa PS e 7 such that for fe & and a > 0
() § PS@N)f(N) = | P(N)(1/aN) §3'® f(N7?),) dx .
PS is the spacing distribution associated with P. Moreover P = (PS)5, P! = (P%)7,

and P" = (PS)!. PS is given explicitly in terms of P" according to the formula

(4) § PSEN)AN) = § PT(AN)[1xop=0) N({O})S o SINT).) dx
+ 1(N((0))=0) (N )] *

If P is concentrated on the purely nonatomic measures in 4", then PS> = (PT),

Suppose P e . If P is concentrated on the purely atomic measures in ./
then P” is concentrated on {ne .#": n({0}) > 0}. In this case (4) implies that
P$ is determined from P” according to

() § PS(AN)A(N) = § PT(dN) = N({O}) 2oy SINT),) dx .

Let .77 denote the measures in .4~ which are concentrated on the integers
and let ¢, denote the integer valued measures in .4~ Let P e .5 be concen-
trated on .#,. It follows from (5) that

(6) § PS(N)A(N) = § PS(@N) §%, f(N,) dx ,

where PS is the distribution on .#7 such that for fe &

™) § PEAN)AN) = SPT(dN)N(—{O—}) LT AN -

(In particular, if P is concentrated on the measures in .47, such that every atom



SPACING DISTRIBUTION 389

has measure 1, then PS = (P7)’.) Let N, be distributed according to P,*. Then
N, can be written as Ny(4) = 33, &, 1.4, Where {§,}>_, is a stationary sequence
of nonnegative random variables. Let U denote a random variable which is
independent of {§,}>,, and uniformly distributed on [0, 1] and let N be the random
measure on R determined by N(4) = 3}, 6,1,,,,c 4. Then N has distribution PS.
In particular, if P is the distribution of the Poisson process on R with parameter
4, then PS'and P,® are of the above form, where the £;’s are independent expo-
nential random variables with mean 2-*. That a stationary spacing sequence arises
naturally in connection with stationary integer valued random measures has been
shown by Ryll-Nardzewski (1961), Slivnjak (1962), and Port and Stone (1973).

For an example of a P ¢ & for whick P’ can be determined explicitly, consider
a stationary compound renewal process in which the arrival times {x,}>, cor-
respond to a spacing sequence {§,}*, consisting of i.i.d. nonnegative random
variables having finite positive mean and at each arrival time x, a mass 7, is put
down, where {7}, is another sequence of i.i.d. nonnegative random variables
having finite positive mean and {»,}>,, is independent of {x;}*,. Then N(A) =
2iiMilizeny. Let P denote the distribution of N. Then Pe & It is not hard to
show that PS is a stationary compound renewal process with the roles of {£,}
and {5} reversed. A sketch of the proof of this result will be given in Section
3. If P is the distribution of a Poisson process on R with parameter 4, it is of
the above form with the £’s exponentially distributed with mean 2-* and the
n;’s identically equal to one.

The definitions of P” and PS given above are desirable from several viewpoints.
Firstly, they are well defined even if a(P) = { P(AN)N = oo. Secondly, (2) holds.
Thirdly, (AP, + (1 — 2)P,)” = AP” + (1 — )P,7 for 0 < 2 < 1 and the same
equation holds with T replaced by S.

The usual definition of the tagged particle distribution (Palm measure) requires
that a(P) < oo and replaces N by a(P) in (1). Let P7* be the resulting distri-
bution. Then P7*(dN) = (N/a(P))P"(dN). In this context it is natural to define
PS* by P$*(dN) = (1/Na(P))P5(dN). Then P$* ¢ &, a(PS*) = 1/a(P), (PS*)5* = P,
(P¥*)™ = P’, and (PS*)! = PT*. Equation (4) holds with P$ and P” replaced by
P$* and PT* respectively. The same remark holds for equations (6) and (7)
when P e & is concentrated on .47,

2. Proof of Theorem 1. The following result is a straightforward consequence
of the ergodic theorem.

ProrosiTION 1. Let {X;}>,, be a statz"onary sequence of nonnegative random vari-
ables. Then X = lim, (X, 4 --- + X,)/n exists almost surely. If P(0 < X <
oo) = 1, then {X,/X}*,, determines a stationary sequence of nonnegative random
variables each having mean one.

PrROOF. Set X = X;,. Without loss of generality it can be assumed that
X(0) = X(T*0), @ € Q, where T is a measure preserving shift transformation
on Q. Let # denote the o-algebra of events in Q which are invariant under
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transformation by T. Set X = X1 ,_,, and E[X| ] = lim,_,, E[X"|_“].
It follows from the ergodic theorem and an easy truncation argument that X =
lim, (X, + --+ + X,)/n = oo almost surely on the event {E[X|_*] = o}. For
0K M coset Y™ = X1 5y 1< ThenEY™ < M < coand E[Y™ | ] =
E[X| W gix1 15+ Application of the ergodic theorem to Y“'(T'w) yields
the conclusion that X = lim, (X, + .- + X,)/n = E[X|_#] almost surely on
{E[X|#] £ M}. Consequently X = lim, (X, + .- + X,)/n = E[X|_*] al-
most surely. Suppose P(0 < X < o0) = 1. Set Y = X,/X. It is not hard to
show that E[Y|_#] = 1 almost surely and hence that EY = 1. This completes
the proof of the proposition.

Observe that if n e . then (n,), = n,,,, n,(y) = n(x +y) — n(x), and (n,)"! =
(" Y, for x,ye R. Also if g: R— R is a bounded Borel function, then
§ 9(y)na(dy) = § 9(y — x)n(dy).

PROPOSITION 2. Let Pe & let fe &, and let g: R — R be a bounded Borel
function. Then :

(8) § PT(dN) § f(N)g(x) dx = § PAN)(f(N)/N) § g(—x)N(dx)
and

©) lim,_, § PT(dN)(1/b) §z** f(N,) dx = § P(dN)f(N)
uniformly for a € R.

Proor. By (1)

§ P7(dN) § f(N,)9(x) dx = § P(@N)(1/N) §§ f(N,1)Li0,1/(X)9(y) dy N(dx)
= | P(@N)(1/N) §§ fIN)Lio,5(x)9(t — x) dt N(dx)
= § P@N)(f(N)/N) §§ 1io,1,(x)9(t — x) dt N_,(dx)
= § PAN)(fIN)/N) §§ Lo(x + 1) dt g(—x)N(dx)
= § PAN)(f(N)/N) § 9(—x)N(dx)
and hence (8) holds. It follows from (8) that

(10) § P(dN)(1/b) §5** f(N,) dx

= P(dN)f(N)(]/b)<N(—a) —Izvy(_a — b)) .

Let M be an upper bound to |f|. Then by (10)
|§ PT(dN)(1/b) §** f(N.) dx — § P(AN)f(N)|
< M3 P(dN)\ N(=a) —

]\{(-—a —b) ll
bN

=M§P(dN)\N_(b)b;N]y_(_O_) - 1‘.

Equation (9) now follows from Proposition 1 and the ergodic theorem.
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PROPOSITION 3. If Pe &, there is a PS € Fsatisfying (3).
Proor. Let fe &, a=0,and b = 0. Then by the stationarity of P
§ P(AN)(1/N) 3" f(NT),) dx = § PAN)(1/N) §5236 f((N-0)™)s) dx
= § PAN)(1/N) §XR=3 AN sswc-n) %
= { P@N)(1/N) §3'® f((N~").) dx .
Denote the last expression by g(a). Then g is a continuous function on [0, co)
and g(a 4 b) = g(a) + g(b). Thus g(a) = ca for some constant c. In other
words, the right side of (3) is independent of a for a > 0. Consequently, by
Proposition 1, there is a probability distribution PS on .4 satisfying (3). To
see that PS is stationary observe that for re R
§ PSEN)f(N) = § P@N)(1/al) {3 f(N-"),..) dx
— { P(@N)(1/aN) §:+7 f((N-),) dx
Thus
§ PSAN)/(N,) — § PS@N)f(N)
= | PN)(1/al) {25@ f((N-),) dx — § P@N)(1/aN) §§ f((N"").) dx
= § PN)(1/aN) §¢ f((N)).) dx — § PdN)(1/aN) { f((N-"),) dx
=0.
Therefore PS is stationary and hence PS € &, as desired.
Given Ne . ¢, set L(x) =sup[y: N(y) < x]. Then N-%(x) = L(x) — L(0).
Also (N7Y),)™ = N,,. Forb >0
PiLx) <y<Lx+bolc{y:x<Ly)=x+1b
c{y: L(x) =y < L(x + b)}.
Thus these three sets differ from each other only on a set having Lebesgue
measure zero.
PRrOPOSITION 4. If Pe &, then (PS)S = P.
Proor. Choose fe &, a > 0,and b > 0. Then
§ (PSP EN(N)
= § PS@N)(1/6N) S f((N-),) dy
= § PN)(1/ab) 131 dx(§"< fN).)™),) &)
= § P(AN)(1/ab) §3' dx S f(N,) dy
= § P(dN)(1/ab) §§ fIN) o, wian(¥)a,245:(N(y)) dx dy
= { P(dN)(1/ab)(f(N) §§ Lo,v_,an() a,asai(N-(y)) dx dy
= {§ PAN)f(N)(1/ab) §§ 1o wiamp-ni-n(¥)1ia,asi(—N(=)) dx dy .

To complete the proof of the proposition it suffices to show that

(11) §5 Lio,weatn-num () e z40:(—N(p)) dxdy = ab .
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The left side of (11) can be written as
V[Ma +y) A0 — N(y)y + (Ny) + b) A 0]* dy
= (l-s-a[N(@+y) A O — N(y) + (N(y) + ) A O] dy ,

where ¢ A d = min (¢, d) and ¢* = max (¢, 0). There are two cases to consider:
L(—b) = -—aand L(—b) < —a. Inthefirstcase L(—b)—a< —a < L(—b)<0
and the last integral can be written as

Vzto—a (M@ + ) + b)dy + b I dy — (3 N(y) dy = ab .

Thus (11) holds if L(—b) = —a. The proof that (11) holds if L(—b) < —a is
similar. This completes the proof of (11) and hence also that of Proposition 4.

PROPOSITION 5. If Pe &, then PT = (PS)" and PT = (PS)’.
Proor. Choose fe . and a > 0. Then
§ PI(AN)f(N) = § (PF)(dN)A(N"Y)
= § PSN)(1/aN) {3 f(((N").)7") dx
= { PS(dN)(1/aN) {¥® f(N,,,) dx
- = [ PS(@N)(1/aN) §§ f(N.)N(dx)
= { (P)"dN)f(N),
so that P* = (P%)”. Thus (P%)’ = ((P%)%)” = P7, which completes the proof of
the proposition.

PROPOSITION 6. If Pe ., then PS is the spacing process associated with P.

Proor. This result follows immediately from Propositions 2 and 5.
ProrosITION 7. If Pe &, then (4) holds.
Proof. Set A = (0, 1]in (1). Then the right side of (4) can be written as

§ PAN)(1/N) o N(dx)[luvzuo)»o) N({O}) 2y ((onf(((N) ")) dt
+ 1(N,<<o)>=oxf((Nz)_l)] |
= § PENY(U/R) § 0 M@ Liwciasor e VHEL, SN),)

N({x})
+ 1(N((¢))=o)f((N_l)N(z))] .

To complete the proof of the proposit'ion, it suffices to prove that the last quantity
equals the right side of (3) with @ = 1. To do this it is enough to show that if
g is a bounded Borel function on [0, co), then

(12) §0,0N@)[ iy an>ar ]_V%X}S SNEL, 9() dt + 1 y(ay=09(N(X))]

= (¥ g(r) dt .

In proving (12) it is enough to consider functions g of the form g = 1y, where
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b > 0. If b > N(1), then (12) is obvious for such a function. Suppose 0 < b <
N(1). Set ¢ = L(b). Then N(c—) < b < N(c). The right side of (12) equals

§0.00 NAX)1 yapys0p + (B — N(e—)) + §0,6 N(@X) 1 (i) =)
= $0,0 Mdx) + (b — N(c—)) = b,

which equals the right side of (12), as desired.
Theorem 1 follows from Propositions 3—7.

3. Compound renewal process. Let P correspond to the compound renewal
process as described in the introduction. Let R € & correspond to the compound
renewal process obtained by reversing the roles of {§,} and {»;}. The proof that
PS$ = R will be sketched in the nonlattice case. A similar proof works in the
lattice case.

Suppose then that the distribution of 7, is nonlattice, i.e., that there is no
proper closed subgroup (under addition) of R containing the support of the dis-
tribution of »,. It is sufficient to show that for fe &

(13) lim, ... § PIdN) {2+ f(N,) dx = § RAN)f(N) .

Set ¢ = Ex,. In order to verify (13), it is enough to verify the following re-
sult: Let X, be independent of {»,}>,, and have an absolutely continuous distri-
bution. Set T, = min[k = 1: X,+ 9+ - -+, =aland Z, = Xy + 79+ --- +
77, — a. Then as a — 4-co the distribution of Z, converges in total variation
to the distribution having density p='P(», = x), —oo < x < co.

This result in turn is implied by the following result: Let H denote the
renewal measure associated with {5}, and let g be an absolutely integrable
function on R having compact support. Then

(14) lim,_. " | 9(y — 2)H(dz) — p7 § 9(2) dz| = 0.
To prove (14) choose M > 0 such that g(y) = 0 for |y| > M. Set
C = sup, {,_sigus1 H(dz) < oo .

Choose ¢ > 0. Let & be a continuous function on R supported on [ — M, M]
and such that § A(y)dy = § g(y)dy and § |a(y) — g9(y)| dy < ¢. It follows from
the renewal theorem in the nonlattice case that

(15) lim,_, . § A(x — z)H(dz) = p' § k(y)dy .
Also
(16) Pl 9(y — 2)H(dz) — § k(y — 2)H(dz)]

= (Vie-asurrs H(d2)) § 19(y) — R(y)| dy =< <C.
By (15) and (16), )
limsup,_,. $2" dy|$=, 9(y — 2)H(dz) — p~' § g(z) dz| < <C .

Since ¢ can be made arbitrarily small, (14) holds as desired.
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