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BESSEL FUNCTIONS AND THE INFINITE DIVISIBILITY
OF THE STUDENT ¢DISTRIBUTION!

By MouraDp E. H. IsMAIL
McMaster University

Using the representation theorem and inversion formula for Stieltjes
transforms, we give a simple proof of the infinite divisibility of the
student ¢-distribution for all degrees of freedom by showing that
x—%K,(x4)/K, +1(x}) is completely monotonic for v = —1. Our approach
proves the stronger and new result, that x—K,(x4)/K, +1(x?) is a completely
monotonic function of x for all real v. We also derive a new integral
representation.

1. Introduction. A function f(x) is completely monotonic if and only if
(—1)™(d"f(x)/dx*) = 0 for x e (0, co0). Itis clear that the Laplace transform of
an L, function is completely monotonic. We follow Watson’s [8] notations for
the Bessel functions.

Ismail and Kelker [6] proved that the infinite divisibility of the student ¢-distri-
bution of 2v 4 2 degrees of freedom is equivalent to the complete monotonicity

Offy(x) b
(1.1) i) = XK () K, ()

They obtained partial results and conjectured that f,(x) is completely monotonic
forv = —1. Grosswald [3] established this conjecture by proving that

(1.2) L[ 2 ey + v} | = 2101,

&, &1 being the Laplace transform and its inverse respectively. The obser-
vation

i 70 7 () de = 55 P

means that a two fold Laplace transform is a Stieltjes transform and that
Grosswald’s result (1.2) is nothing but

(1.3) x7 K, (XK, o

2a(th)ytde,
x>0, v=-—1,

:

which obviously implies that both f,(x) and its inverse Laplace transforms are
completely monotonic functions of x for v = —1. This note contains a very
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simple proof of (1.3) based on the representation and inversion theory of the
Stieltjes transform. As a matter of fact our proof shows that (1.3) holds for
complex x, that is

(1.4) K (H)K, (7)) = 57 (L) + Y@} dt,

T z4+t

2 !
ey

larg z| < m, y=> —1.

Furthermore we shall establish the following natural companion to (1.4)

(1.5) z—i_'_Kﬁ_l_(z_%)_zgg—{—%S?

¢! 2 . i
K(z)  z S + Y (Y 1dr,

z +
larg z| < =, v=0.

The relationship (1.5) is a natural companion to (1.4) because (1.5), owing to
the fact K,(z) = K_,(2), is really (1.4) for » < — 1. It.is plain that (1.4) and
(1.5) establish the complete monotonicity of f,(x) for all real v.

2. Proofs of (1.4) and (1.5). Our proof of (1.3) is based on the following
lemmas.

LEMMA 2.1. A function F(z) has the representation
du(t
@.1) @) = 17 20 el < oo
z+t

if and only if

(i) F(2) is analytic for larg z| < ,

(ii) F(z) = o(l) as |z| — oo and F(z) = o(|z|™) as |z] — O,
uniformly in every sector larg z| < = — ¢, ¢ > 0.

ProoOF. See Hirschman and Widder ([4], pages 235 and 238).

LEMMA 2.2. If F(2) has the representation (2.1) and (t) is normalized by pr (0) = 0
and p(f) = ${p(t+) + p(1—)} then

@2)  p(t) — plt) = Hlim, L SE (=t — i) — F(—t + in)}dr.

Proor. See Stone [7].
We now prove (1.4) and (1.5).

Proor oF (1.4). Condition (i) of Lemma 2.1 is satisfied since K,(z*) has no
zeros in |arg z| < =, Watson ([8], page 511) and K_,(z) = K,(2), (here F(z) =
f.(2)). As|z| — oo, from Erdélyi ([1], page 23) K,(2) ~ (n/2z)te™*, |arg z| < 3w/2.
Hence f,(z) = o(l) as |z] » oo for |argz| =7 —e. As |z| — 0, lim,_, 2K (2)
exists and is not zero, for i > 0, as can be seen from (13) page 5 and (37) page 9
in Erdélyi et al. [1]. Furthermore lim, (K,(2)/log z) exists and is not zero. All
these limits are uniform for |arg z| < n/2 — ¢/2. Therefore zf,(2) = o(l),» =0,
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as |z| — 0 and is uniform for larg z| < = — e. Consider next the range —1 <
v < 0, and use K_,(x) = K,(x) to obtain zf(z) = o(1) in a similar way. Thus
Lemma 2.1 implies that £,(z) is a Stieltjes transform. We now use Lemma 2.2
to invert it. Clearly for 1 > 7 >0, —r 4 ip= (1 — ip)e’™ while —t — ip =
(¢ + in)e~**. This implies

(2.3) K (=1 + in)t = K (et — in)t) = __zﬂ e~ H Ot — i),

and

@8 Kbt — it = Ky (e 4 in)?) = T etmrb o 4 iy

by (16) page 6 of Eredélyi et al. [1]. Therefore by (2.2) p(7) is absolutely con-
tinuous and

2.5) wy =1

{H,‘l’(ﬁ)Hﬂl(ﬁ) — Hum)(t%)H,ﬁﬂl](ﬁ)}
2ri .

H5 (e HZy (1)
The Hankel functions H,™(z) and H,*(z) are related to the Bessel functions
J,(2) and Y,(z), by Eredélyi et al. ([1], page 4).

(2.6) H,%(2) = J,(2) + iY,(2)
and
2.7) H,%(z) = J(2) — iY,(2) .

New (2.5), (2.6), and (2.7) yield

#E) = L OY0) — VLN + V2,0
2t ’

al) + Ya@),

by (35) page 80 of [1]. This completes the proof.

Formula (1.5) can be proved by showing that z-¥(K, (2)/K,(28)) — 2v/z is a
Stieltjes transform, then invert it. The proof is similar to that of (1.4) and is
omitted.

3. Remarks. Using special properties of the Bessel polynomials Grosswald
[2] established the complete monotonicity of f,(x), for v = —41, 1, 2,..-, by
expressing its inverse Stieltjes transform in terms of its poles. In [3]he compared
(1.2) with his earlier result in [2] and obtained

G R+ Vi) = 2w 6 ey, n=o0,12, ...
T

where a,, - - -, @, are the zeros of K, +3(2). We now show that (3. 1) is an im-
mediate consequence of (2.3), (2.4), (2.6), and (2.7). Clearly

2

(G2) () + Yig(x) = HY(0)HS,(x) = ni we3(€7X)K, (67 2x) .
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The function xte~*K,,,(x) is a polynomial of degree n in x~*, see (40) page 10 of
[1]. Therefore

-9 Ko = (5) @i Tl (e — @)

It is clear now that (3.2) and (3.3) imply (3.1).

Added in proof. In a forthcoming paper entitled Special functions, Stieltjes
transform and infinite divisibility, Ismail and Kelker used the methods of the pres-
ent paper, i.e., Stieltjes transform and special function methods, to establish the
infinite divisibility of an F distribution for any degree of freedom, including
fractional degrees of freedom.  This solves a problem of F. W. Steutel. Further
results on monotonicity of quotients of Bessel functions have also been obtained
in the abovementioned paper of Ismail and Kelker, and in [5].
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