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THE DISTORTION-RATE FUNCTION FOR NONERGODIC SOURCES
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The distortion rate function D(R) is defined as an infimum of distor-

tion with respect to a mutual information constraint. The usual coding
theorems assert that, for ergodic souces, D(R) is equal to 4(R), the least
distortion attainable by block codes of rate R. Ifa source has ergodic com-
ponents {#} with weighting measure dw(6), it has been shown by Gray and
Davisson that d(R) is the integral of the components d5(R) with respect to
dw(f). We show that D(R) is the infimum of the integrals of Dy(Rs) where
the integral of Ry is R. Our method of proof also gives a formula for the
d-distance in terms of ergodic components and shows that D(R) = D’(R),
which is defined as the infimum of distortion subject to an entropy con-
straint.

1. Introduction. For our purposes a source is a stationary process with a
finite alphabet 4 = {a,, a,, - - -, a,}. We define
Xt = (Xgy ++ 0y Xpo1) s A" = [x"|x;e 4,0 <i<n— 1}
and the distortion measures

da,a) =0 if i=j; dasa)=1 if i=#j;

1
d(x", y*) = . 1o d(xis y:) -

A source x = {X,} defines a measure y, on 4" by the formula
#(x") = Prob (X* = x*), x"eA".
This gives the entropy functions
H(X") = —E,(log 11,(X"))
H(x) = lim n~'H(X™)
where E, denotes conditional expectation with respect to s,.

If (x, y) = {X,, Y,} is a joint process with alphabet 4 x A then the conditional
entropy is

‘

X", Y™
H(Y*|X") = —E, <log <#___x,,,( ; >>
! (X"
and the mutual information is

I(X®, Y*) = H(Y") — H(Y"| X").
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The distortion rate function D,(R) is defined as
D,(R) = inf, inf,cp_(z,a E.(d(X", Y™))

where P,(R, n) is the class of all measures v on A" x A" such that p (x*) =
21 ¥(x™, "), x® € A and such that if y is the process defined by 3. v(x", "),
y" e A then (1/n)I(X™, Y™) < R. ,

If x and y are sources then the d-distance between them is defined by

J(x, y) = inf, E(d(X,, Yy))

zexVy
where x V y is the class of all stationary processes z with alphabet 4 x 4 which
have x and y as marginals. The function D,’(R) is defined by

D,(R) = infy,<p J(x, ) -

The ergodic decomposition of a source x is described as follows: there is a
probability space, (®,, Z,, w,) such that for each # € @, there is an ergodic source
x, such that for each x" e A" the function 6 — p,(x") is Z,-measurable (where

Lo = ﬂ“’ﬂ) and
a(x") = § ra(x") dw(6) .
The existence of such a decomposition is well known (see [4, 11]).
Our main theorems are

THEOREM 1. D (R) = D,/(R).

THEOREM 2. D, (R) = inf { D,(R,) dw,(0) where this infimum is taken over all Z -
measurable functions 6 — R, for which { R, dw,(6) < R.

THEOREM 3. d(x, y) = inf § d(x,, y,) dr (8, ¢), where this infimum is taken over
all measures r on the product space ®, x ®, which have w, and w, as marginals.

The proofs of these results will be accomplished by a sequence of lemmas.

LEMMA 1. If x is ergodic then D (R) = D,(R).

This was proved by Gray, Neuhoff and Omura [5].

Lemma 2. D (R) < D,(R).

This was also proved in [5].

LEMMA 3. D,(R) = inf { Dg(Re) dw,(0), where this infimum is over all measur-
able functions ® — Rq for which § Ry dw,(0) < R.

To prove this, replace D,(R) and Dg(R,) by their nth order approximations
D,"(R) and Dg"(Re) (see [5]). Choose ve P(R,n) so that E(d(X*, Y") <
D,"(R) + ¢, and define g(y"| x") = v(x", y")/p,(x"). Now define v by ve(x", y*) =
te(x")q(y"| x*) and put Re" = (1/n)I, (X", Y™). Then vg € P, (Ry", n) and

L(X™, Y") = § L (X", Y™)dw,(O)
since /,  is concave in yq (see [3, pages 39f.]). This gives

| Re"dw,(©) < R.
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We also have § vg(x™, y*) dw(©) = v(x", y) for (x*, y*) € A* x A" so that
§ De"(Rg") dw,(0) < | E, (d(X™, Y™)) dw,(O)
= E,(d(X", Y"))
< bx”(R) + €.
Now take the infimum on n,then let ¢ — o to obtain Lemma 3.
Our next lemma is a technical result about product spaces and makes use of
the following notation. (Q,, B,) and (Q,, B;) will denote copies of the unit interval
with Borel sets B;, m will be a regular Borel probability measure on (Q,, B,), g

will be a bounded Borel function on Q, and D a B, x B, measurable set. We
let F, denote the family of _orel measurable maps f: Q, — Q, such that

m{w,: (0, f(w,))g D} =0.
That is, the graph of f is m-a.e. contained in D. We also let D, , be the w,-cross
section, that is, D, = {®,: (®,, w,) € D}.

LEMMA 4. inffEFm § 9(f(w,)) dm(w,) = § infwzel,ml 9(w,) dm(w,).

This result is a simple consequence of Theorem 6.3 of [8].

We now make use of Lemma 4 to establish

LEMMA 5. If ® — Ry = 0 is measurable and § Ry dw,(©) < R then D/(R) <
§ Dy'(Ro) dw,(©).

To prove this we let @(4) be the family of all stationary processes with alphabet
A. This is a complete separable metric space, hence Borel isomorphic to the
unit interval. Here we take the metric on ®(A)to be d(x, y) = 3] a,d, (X", Y*),
where a, is a suitable convergence factor and d, = Yancan |ta(@) — p (a”)|-
We then put Q, =@, Q =0, x O(4), m=w,, ¢(0,y)=dx,y), D=
(@, (0, )| M(y) < Ry}, F, =F,, ={y: 0 —(0, y,)| 1(ys) < Ry, a.e.-w,}. Lemma
4 then gives

§ D,/(Ry) dw,(0) = § infy, <r, d-(xm y)aw,(0) = infueFl § a7(x(,, Vo) aw,(0) .
Fix yeF, and put Q, =@, Q, =04 x A), D={(0,2): zex, V yo} and
F, = F,, then apply Lemma 4 to obtain
inf,cp § d(Xes Yo) AW,(0) = infyep §inf,c.qy g Ed(X,, Y7)) dw,(O)
inf,cp inf,cp § E,0)(d(Xy, Yy)) dw,(0)
infh(y)sf Rgdw 4(8) (infze zvy Ez(d(Xos Yo)))
D,/(§ Ro dw,(9)) .

v

Il

This proves Lemma 5.
Theorems 1 and 2 are now consequences of these lemmas. We have

(1) ()
D (R) < D,/)(R) = me'Redw,(ng § Dy'(Re) dw,(0)
(3) 4

(4)
= infipoq,, 05 § Do(Ro) dw,(8) < Dy(R) .
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Here (1) uses Lemma 2, (2) uses Lemma 5, (3) uses Lemma 1 and (4) uses Lemma
3. This proves both Theorem 1 and Theorem 2. '

To prove Theorem 3 we make use of another property of the Rohlin ergodic
decomposition, along with Lemma 4. Suppose x and y are stationary processes
with respective ergodic decompositions and weight measures, {xo, ,(0)} and
{ygs» w,(9)}. LetzexV y. Then thereisa measure re¢w, V w, and a measurable
mapping (0, ¢) — Z, , € xg V y,, r-a.e., so that for each nand any set B ¢ 4™ x A"

t(B) = § 1t (B) dr (©, ¢) .
Here we use w, v w, to denote the class of measures on ®, x ®, with w, and w,
as marginals. For fixed rew, V w, we let F, be the set of measurable mappings
z: (0, ¢) — z,, , for which z, ;e x, V y,, r-a.e. We therefore have
d(x, y) = inf,c.., E(d(X,, Yy))

(%) = inf,, .y, (inf,cp, J E,, (d(X,, Y,))dr (6, 9))

= inf,ewxwy §infle,,.,, E(d(X,, Y,))dr (6, ¢)

= infrwxwy § d(x5,y,)dr (6, ¢) .
This proves Theorem 3. The equality (5) is obtained by using Lemma 4 with
Q=0,x0,m=r,Q =04x A),D={(0,9¢),2): zex, Vv y}and g(z) =
E (d(X,, Yy))-

REeMARK 1. If §,(R) is the optimal performance achievable by block codes of

rate R, then Gray and Davisson [4] have established the result

(6) 04(R) = § G4(R) dw(0) .
Since D,(R) < d,(R) with equality for ergodic sources x it follows that
D,(R) < | Dy(R) dw(6) .
Our results show that in general this inequality is strict. Kieffer [7] has also
established (6) by a more direct argument than used in [4].

If 9,'(R) is the optimal performance achievable by sliding block codes of rate
R, then Gray, Neuhoff and Ornstein [6] have shown that

d./(R) = D/(R)

holds for aperiodic sources. Furthermore, in [6] it has been shown that for
ergodic sources 4,'(R) = 0,(R). (See also [12].) Our results show, therefore,
that for aperiodic sources

0./(R) = D(R).

REMARK 2. Theorem 3 allows one to give a proof that the class of all Markov
chains with alphabet A is separable in the d-metric. First note that the Fried-
man-Ornstein proof [2] that mixing Markov chains are finitely determined shows
that such chains with rational transition probabilities are d-dense in the class
of mixing chains. If x is an ergodic but nonmixing chain with matrix P and
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periodic classes {C,, C,, - -+, C;} then we define x¥ as the chain with states

C,x Cx ... x C, and transition probabilities.
P(il,i2,"',id),(il,j2,"',fd) = Pidjlpjlfg e de—'ljd *

The obvious coding from % sequences to x-sequences is not stationary but does
map typical strings into typical strings so that if y has the same periodic classes
then ) .

d(x,y) < d(%, ) -
Since % is mixing this shows that the class of ergodic chains with rational entries
is d-dense in the class of all ergodic chains.

Suppose now that x and y are nonergodic chains with the same ergodic classes
{G,, G,, ---,G}}. Let p(G,) and p,(G,) denote the respective probabilities that
a state belongs to G, and let x* and y* denote the respective restrictions to G,.
Obviously d(x?, y’) = 1 if i # j so for any weighting w which has z, and ¢, as
marginals we have according to Theorem 3,

d(x,y) < D d(X' Y Wi + Ziws Wi -
Thus if the entries in the matrix of x are close enough to the entries in the matrix
of y then by our above argument for the ergodic case, we know that each J(xi, ¥
will be small. If furthermore each p,(G,) is close to P,(G;) we conclude that
d(x, y) will be small. This completes the proof that the class of all Markov chains

with a given finite alphabet A is d-separable. This d-separability enables one to
establish various universal coding results for the class of all chains [10, 13].

REMARK 3. Our basic results, Theorems 1, 2 and 3, were first announced by
the second author for the case of finite ergodic decompositions [9]. The first
and second author worked out lengthy proofs of these results. The third and
fourth authors provided the much simpler proofs contained in this paper.
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