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THE RANGE OF STOCHASTIC INTEGRATION

By D. J. H. GARLING
Cambridge University and The Ohio State University

Every measurable real-valued function fon the space of Wiener process
paths with E(| f|?) < oo (where 0 < p < 1) can be represented as a stochastic
integral = { o dX, where E({ o2(f) df)»/2 < oo. A similar result holds for
1 < p < o if and only if E(f) = 0.

Let Q@ = C[0, o) be the space of continuous functions on [0, co) which vanish
at 0, let W be the Wiener measure on Q, let X(7, ») be the Wiener process, let
F be the collection of W-measurable sets and let (F,),,, be the usual filtration
of F.

Let WL°(L?) denote the space of all real-valued well-measurable functions ¢
on R+ x Q for which {§ ¢%(t, ) dt < co almost surely. If ¢ € WL(L?) the sto-
chastic integral I(¢) = {§ ¢ dX can be defined in the usual way (cf. McKean
(1969)). Recently Dudley (1977) has shown that any W-measurable f can be
written as I(¢), for some ¢ € WL(L*). (In fact, Dudley worked with the time
interval [0, 1], but a (nonrandom) change of time scale shows that his result is
equivalent to the one stated above.)

What happens if we place some conditions on f? Can we impose correspond-
ing conditions on ¢? If the condition is that fe L?, we can (and indeed must)
do so if 1 < p < oo: we shall see that, if 0 < p < 1, similar conditions can be
placed on ¢; the ideas here are essentially those introduced by Dudley. We
shall not deal with the important and interesting case where p = 1.

There is some advantage in considering the indefinite stochastic integral. To
this end, let WL%(C,) denote the space of all real-valued well-measurable func-
tions fon [0, co] X Q for which the maps ¢ — f(t, ): [0, co] — R are continuous
and vanish at 0 for almost all w; if fe WLY(C,), let f*(w) = sup {|f(t, w)|: 0 <
1< oo} If0 < p < o0, let WLP(L?) = {¢p € WL (L?): E(({¢ ¢¥(t, ) dt)*’*) < oo},
and let WL?(C,) = {fe WLY(C,): E(f**) < o}. We give WL?(L*) and WL?*(C,)
their natural metrizable topologies (Banach space topologies, when p > 1). If
1 < p < o0, let ML?(C,) denote the closed linear subspace of WL?(C,) consisting
of all closed martingales in WL?(C,). Finally if 0 < t < oo, let &, be the co-
ordinate projection of WL?(C,) (or ML?(C,), if | < p < o0) into L* = L*(Q, W).
If 1 < p< o0, 7, is an isomorphism of ML?(C,) onto L,» = {fe L?: E(f) = 0}.

Now let /denote the indefinite stochastic integral: I(¢)(t, w)= {§ o(s, ©) X(ds, o).
Clearly I, = =,I. As I, is an isometry from WL*L?) into L* and =, is an iso-
morphism from ML*C,) into L?, it follows that I is an isomorphism of WL*L?)
into ML*C,). It now follows immediately from the continuous time version of
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the Burkholder-Davis-Gundy inequalities (cf. Meyer (1972), Appendix 2, but
note that the proof given there can be greatly simplified in the present case, as
there are no jumps, which are the major source of difficulties) that 7 is an iso-
morphism of WL?(L?) into WL?(C)) for 0 < p < oo. Finally the usual truncation
argument extends the result to the case p = 0. Summing up, we get

THEOREM 1. [ is an isomorphism of WL?(L?) into WL*(C)) for 0 < p < oo.

It is by now classical that I,(WL*L?)) = L, (see Meyer (1976), page 41 for
an elegant proof due to Dellacherie). As I, = = /is an isomorphism of WL?(L?)
into L? for 1 < p < oo, it follows easily (by restriction for p > 2, by approxi-
mation for 1 < p < 2) that

THEOREM 2. [ (WL?(L*) = Lp, for 1 < p < co.
We now turn to the case where 0 < p < 1. We shall prove
THEOREM 3. [ (WL?(L*) = L?, for0 < p < 1.

From the remarks above, I, is certainly continuous from WL?(L? into L?.
To show that it is onto it is sufficient to show that it has dense range and is a
homomorphism.

Let A4, denote the space of simple F, measurable functions, and let 4 =
Uosscwo 4,- A is a dense linear subspace of L?. Suppose now that a =
21 xp, € A,, Where the E; are disjoint sets in F,. Let r(w) = inf{r>s:
o(f) — w(s) = a}. 7 isa stopping time, and conditional on E;, r — s has Laplace
transform

L(u) — e—Cwdayl
Nowif 0 < r <1,
e~v 1 —e

—-u
- — pr (o — T
P du = v 3 W_du = C,v", say,

1
iy
so that if X is any nonnegative random variable with Laplace transform L(x),
Exy=Cig =t for 0<r<l.
ur

Applying this to the present situation,
E((r — 8)"| E) = 27+1C,1C,, |ay|™ for 0<r<i.
Thus if we set ¢(f) = 1 for s < ¢ < 7, and ¢(f) = 0 otherwise, then I (¢) = a
(so that I, has dense range) and
E(§7 (1) dr)r”) = 204 CHL C E(|a?) - for 0 <p < 1.

This shows that I, is a homomorphism, and completes the proof.
Let us conclude by remarking that the usual truncation argument now shows
that /, is a homomorphism of WL°(L?) onto L°, giving Dudley’s result.
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