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THE SURVIVAL OF CONTACT PROCESSES!

By R. HoLLEY? AND T. M. LIGGETT?

University of Colorado and
University of California at Los Angeles

A new proof is given that a contact process on Z¢ has a nontrivial
stationary measure if the birth rate is sufficiently large. The proof is ele-
mentary and avoids the use of percolation processes, which played a key
role in earlier proofs. It yields upper bounds for the critical birth rate
which are significantly better than those available earlier. In one dimen-
sion, these bounds are no more than twice the actual value, and they are
no more than four times the actual critical value in any dimension. A
lower bound for the particle density of the largest stationary measure is
also obtained.

1. Introduction. A contact process on Z disa particular type of continuous
time Markov process whose state space is the set of all subsets of Z¢. In a con-
tact process, each element in the set which is the state of the process at a given
time is removed at a uniform rate independently of everything else, and each
point not in the set is added to it at a rate which is an increasing function of
the number of its neighbors which are in the set. Moreover, the rate at which
an element of Z¢ is added to the set is zero if none of its neighbors is already
in it. This guarantees that the empty set is absorbing for the process, and one of
the basic problems concerning a contact process is to determine when the point-
mass on the empty set is the only stationary measure for it.

It is the purpose of this paper to give a new proof of a theorem due to Harris
([1] and [3]) to the effect that certain contact processes have more than that
one stationary measure. This proof is more elementary than previous proofs in
that it does not require results concerning percolation processes, and in that it
is purely distributional in character. It also gives specific upper bounds for the
critical values which are several orders of magnitude better than those which
apparently can be deduced from the earlier proofs. The primary reason for the
improvement in these bounds is that our technique treats the continuous time
process directly, instead of comparing it to a discrete time process as was done
earlier.

In order to be more specific, we begin by describing the contact processes
with which we will be concerned. Let E, be the set of all subsets of Z¢. Ar-
bitrary elements of E; will be denoted by lower case Greek letters, and finite
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elements of E, will be denoted by capital Roman letters. For x e Z¢, y ¢ E,,
and a > 0, define ¢,*(7) to be one if x € 7 and to be a times the cardinality of
nNn{y:|y— x| =1}ifxe¢y. If fisacylinder function on E, (i.e., f(7) depends
only on 7 N A for some fixed finite set 4 C Z¢), put

L EOf() = Tieza SO0 & {x}) — fn)]
(1.1) = Zuey LSO0\x}) — fin)]
@) Dy-a= [V ) — f(0)]-

The d-dimensional linear contact process is defined to be the Markov process
on E, whose infinitesimal generator, when restricted to the cylinder functions,
is given by (1.1). Processes of this general type have been studied extensively
(see for example, [6] for a review and list of references). In particular, it is
known that there is a unique such process.

Our main result is the following.

(1.2) THEOREM. If a = 2/d, then the d-dimensional linear contact process with
parameter o has a stationary measure m which is invariant under translations in Z*
for which

1 \¢
m{n: 021—}-(1—_).
{n:n30} =% 1 2det

In particular, m is not concentrated on the empty set.

Harris has proved (see Theorem 7.7 in [1]) that if « < 1/(2d — 1), then the
d-dimensional linear contact process with parameter a has only the trivial sta-
tionary measure. Moreover, by standard monotonicity arguments (see [1]), it
can be shown that there is a number a, such that if @ < a,, then there is only
one stationary measure, while if @ > a,, there is more than one stationary
measure. Thus combining our Theorem 1.2 with Harris’ Theorem 7.7 in [1]
yields 1/(2d — 1) £ a, < 2/d.

Since a linear contact process is self-associate (see Section 7 of [2]), it also
follows from Theorem 1.2 that if @« > 2/d, then

4
P&(A(t) = @ forsome 1) < L — <% — ) ,

where P “® denotes the probability measure corresponding to the Markov
process with generator 27*® and initial state 7.

Theorem 1.2 is proved first in case d = 1, from which the general case is
deduced in Section 3. In Section 2, we prove a somewhat more general result
in case d = 1. In order to state that theorem, let 3 >0 and 0 < p < 1, and
define d,*?(7) to be one if x € p and to be f(pl,(x — 1) + (1 — p)I(x + 1)) if
x ¢ n, where [, is the indicator function of 7.

(1.3) THEOREM. If 8 = 4, then the contact process on E, with generator Q#»
given by
QE2f) = Taez 5P (A7 & {x}) = A7)
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for cylinder functions f, has a translation invariant stationary measure m with m{y:
730} = + (3 — (1//)"

Since Q¢x» — 0o Theorem 1.2 in one dimension is a particular case of
Theorem 1.3. Also, since the contact process with generator Q## has the con-
tact process with generator Q'-# as an associate, as will as seen in Section 2,
it follows from Theorem 1.3 that if 8 > 4, then the contact process with genera-
tor Q» and probability measure Q,*» satisfies

Qi&»(A(f) = @ forsome 1) <} — <% _ _1_>& .

B
The totally asymmetric case obtained by taking p = 0 or 1 in Theorem 1.3 is
quite interesting in its own right, and plays an important role in the results of
[3], for example. '

2. Proof of Theorem 1.3. If A is a finite subset of Z and e E = E,, let

) =24 =1 if ynA=0
Fix 8 > 0 and p € [0, 1], and let T, be the semigroup on C{0, 1}* which corre-
sponds to the contact process with generator Q#» given in Theorem 1.3. The

idea of the proof is to find a nontrivial translation invariant measure p on E
with the property that for all finite 4 C Z,

§ Toxa(meldn) = § xa(0)(Te*p)(dn)

is a nonincreasing function of ¢. E is endowed with a compact metric topology
via the obvious identification with {0, 1}* with the product topology. Since
{x.: 4 C Z, A finite} is a convergence determining class for the topology of
weak convergence of measures on E, and since {T,: t > 0} is a Feller semigroup
(see [6]), it would then follow that T,*x converges weakly to a measure m which
is stationary for the semigroup. Moreover, since each T, *u is translation in-
variant, the same is true of m. Finally, the monotonicity of the convergence
would give

(2.1) m{n: 75 0}

lim, .. {1 — § 20T *#)(dn)}
=1 — § po(n)u(dn) .

Since y, is a cylinder function, and hence in the domain of Q- it follows
from the Hille-Yosida theorem that

S Tpn)adn) = § Q47T (pldy)

and thus it suffices to show that for all 7 > 0 and finite 4 C Z,

(2.2) § Q2T y (n)u(dy) < 0.
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Now one easily checks

QEPy (1) = Taey [aNXD) — 2]
+ B Daey [P(xa(n U {x + 1}) — x.4(n))
+ (1 = p)(xa(n U {x = 1}) — 2.(0))]
(2.3) = 2eea Xava(n) — 24(M)]
+ B 2eca [Paviz-1(n) — 24(7))
+ (1 - P)(XAU(z+1)(7]) - XA(”))]
— Q"""”xq(A) X

This equation shows that the contact process with generator Q*:» is the associ-
ate of (or dual to) the contact process with generator Q-». Thus for all
t = 0 and all finite 4 C Z,

(2.4) Toxa(n) = Zpcz Qu#7"(A(1) = B)ys(n) ,

where the summation is over all finite subsets of Z. For more information on as-
sociate processes and a proof of (2.4) see [2], [4], [5], or [6]. All that we need
from (2.4) is that T,y is a linear combination with positive coefficients of other
Xs’s, so that in order to prove (2.2), it suffices to prove

(2.5) {QE»y du <0
for all finite 4 C Z.

It appears to be difficult to compute efficiently the expression on the left side
of (2.5) unless p is particularly simple. It is easy to check that there is no trans-
lation invariant product measure on {0, 1} with positive particle density which
satisfies (2.5) for all finite 4. In view of the results in [7], it is natural then to
look among the renewal measures for one which will satisfy (2.5). In order to
simplify the notation, lety, = I,(k)forye Eandke Z. If{f(k): k =0, 1,2,...}
is a probability density with

a7t =14 ZP kfk) < oo,
then the renewal measure v, determined by f is the probability measure on E with

(2.6) v AL, k) = a Tlio, flke — 1),
where A’,ﬁl,,.,,kj =MeE: g =My, = -+ = Ththytobh; = 1 and 7, = 0 for all
otherie[k,k + k, + --- + k;]}, ke Z, and k; = 1. Note that v, is translation
invariant and v /{»: 730} = a.

In order to find a good candidate for a renewal measure which will satisfy
(2.5), consider finding a density f such that for all n > 1,

(2.7) §QEPy iy dr, = 0.
By (2.3), (2.7) is equivalent to
220 § Dot n—tniey — Xio,1,0+,n—ny] @5
(2.8) = B{(1 — p) S (oo on-1y — Xio,eeeom] @5
+ 2§ Dtio,on-1y — Limryeem-n] @5} -
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Letting F(n) = Y7, f(k), (2.8) becomes
(2.9) BF(n) = Y3 F(k)F(n — 1 — k), n>1 and F0)=1.
To solve this for F, let o(x) = X} 7_, x"F(n) and conclude from (2.9) that

(2.10) o(x) = [6 — (8" — 48x)}]/2x .
Thus F(n) = (2n)¥(n! (n + 1)!)g=", which is a decreasing summable sequence
for 3 = 4. In fact, if § = 4, then

(2.11) at = Zi F(k) = o(1) = [ — (B — 4p)!)/2.
Now let f(n) = F(n) — F(n + 1) for this choice of F, and z = v,. Then by
construction, (2.5) holds with equality for 4 of the form {k, k + 1, ---, k + n},

and it remains to prove (2.5) for arbitrary finite 4. The first step is contained
in the following lemma.

(2.12) LeEMMA. Let B(n,0) = {y: 9, = 1, 9,,, = O}and B(n, j; k,, - - -, k;) =
=17 = Tntreky = Tntrdkgthy, = ° 70 = Dndlikyteoth; — 0} for j=1,
kyz1,.-.,k; = 1. Then p{B(n,j; k,, ---, k;)|n, = 1} is a nondecreasing func-
tion of n.

ProoF. The proof is in two steps, using induction in each one. The first case
is j = 0, and we will prove by induction on n that

1
(2.13) HBL O |70 = 1) = - Tt FR).
which will give the required result. From (2.6) and (2.9),
1
#(B(0, 0) |9, = 1} = F(1) = N F(0),

so that (2.13) holds for n = 0. Assuming (2.13) for n < N — 1, and using the
translation invariance of x and (2.9) gives

HB(N, 0) |7, = 1} = F(N + 1) + X33 fk)u{ BN — 1 — k, 0)| 7, = 1}
% S, FOF(N — k) + 2 f(k)-};— SI-k F(j)
% S, FU)E(N — k) + S35 f()] =

1
B

and therefore (2.13) holds for n = N as well. We now do an induction on j.
The lemma has just been proved for j = 0, so assume now that it is true for
j=J—1. Then
B, Sy kyy <o k) g =1} = p{B(n + ki J — Liky, -, k) |7, = 1}
= ey = o = BBk, — 1, T — Ly ky, - oo k) [ 9y = 1}
= WB(n + kyd — Liky k) m = 1)
— [1 — p{B(n, 0) |70 = 1}]p{B(ky — 1,7 — Liky, -+, k) [ = 1},

i~ F(K)
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which is nondecreasing in n by the inductive hypothesis, thus completing the
proof of the lemma.

Now fix a finite subset 4 = %, 4, of Z, where 4,, - --, 4, are the ordered
maximal connected components of 4, so that there are integers /; and r; such
that 4, =[l; + 1,r, — 1]land r, < I,,, < r;y, — 1 for all i. Define

p(x) = p{n:n =10 on 40N (x, )|y, =1}
and
Ax)=p{p:p=0 on AN (—o0,x)|n, =1}

for x ¢ A. By the translation invariance of z and Lemma 2.12, p(x) is a non-
increasing function on each connected component of 4°, and since p is invariant
under reflection about the origin, A(x) is a nondecreasing function on each con-
nected component of A4°.

Applying (2.3) to the set 4 under consideration gives

§ QP dp
(2.14) = {1 = W Zaea Lysescicscs X —y — Dfiz = x = 1)
— B8 Zia{po(l)A(l) + (1 — ple(r)a(r)}] -

The monotonicity of p gives

(2'15) ZzeA Zy,zeA"‘;y<z<z P(Z)Z(}’)f(x —-)y - l)f(z - X — 1)
= Zi“=1 ZzeAi Z?m p(rj)F(rj - X 1) ZyeA“;y<x 'l(y)f(x -V 1) ’
while the monotonicity of 4 gives
(2.16)  Xieu Dyseacwescs DA —y = Dz — x = 1)
S Bk Daeay Zimt AFx — 1, = 1) Ticseiere (2 — x = 1) .
Substituting (2.15) and (2.16) into (2.14) yields
(e = 1] § Q#2y, dpe
< PR Daes, D= AF(x — 1 = 1) Ticseiea 022 = x = 1)
(2.17) — B8 Zi=p(l)A(l)}
+ (1 = pUEE Daea, Zi-cp(r)E(r; — k = 1)
X Zue A%y<z Z(y)f(x B 1) -8 21’2‘=1 P(ri)'z(ri)} :
In order to complete the proof of (2.5), it then suffices to show that
(2’18) ‘B‘O(l]) = erA;zeAc;lj<z<z F(x - lj - l)p(z)f(z — X = 1) ’
and
(2.19)  BA(r;) = e aeseeecr; Flr; = X = DAYfx —y = 1)

We will prove (2.18) only, since the proof of (2.19) is similar. The proof of
(2.18) is based on the identity

(2’20) p()C) = ZzeAc;z>z f(Z - X = l)p(Z) ’
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which holds for all x € 4°and is an immediate consequence of definition of o(+)-
It follows from (2.9) that

(2.21) Bf(n) = Xizs F(k)f(n — k — 1) — F(n), n
Thus, since z € A°and z < [; imply that z — [, — 1 > 1, (2.20) and (2.21) yield

(222) ﬁto(ly) = ZzeA‘:z>lj p(z)[21j<z<z F(X - Ij - l)f(Z - X — 1)
— Rz -1~ 1)].

1.

v

Identity (2.20) also gives
(2.23) Dseasest; M(O)F(z — 1; — 1)
= Zx,zeAc;lj<x<z F(x - IJ' - l)f(z - X — l)p(Z) ’

and (2.22) and (2.23) together imply (2.18). The proof of Theorem 1.3 is now
completed by using (2.1) and (2.11).

3. Proof of Theorem 1.2. A computation similar to that in (2.3) shows that
the d-dimensional linear contact process with parameter «a is self-associate, which
means that

3.1) E“Olea(m(D))] = E,4x,(A(1))]

for all » € E, and all finite 4 in E,. Setting 7 = Z¢ and noting that y,4(4) = 0
unless 4 = @, one sees from (3.1) that

Ea®[ra(n()] = P, “{A(1) = @} — P,¢={4(t) = @ for some 1} .
Thus there is a translation invariant stationary measure m such that
(3.2) { xodm = P, *{4(t) = @ for some 1}.

In order to prove Theorem (1.2), it therefore suffices to show that if a > 2/d,
then

(3.3) PAmIA®) = @ for some 1} < 4 — (4 - _1_>* .
2da

Firstsetd = 1 and a > 2 and let m be the stationary measure obtained in Theo-
rem 1.3 (take f = 2a > 4 and p = } in that theorem). Integrating both sides
of (2.4) with respect to m gives

Vaadm = §Tox,dm = 3, P, 20 A(t) = B} § ypdm 2 P, {A(1) = @} .

Setting 4 = {0}, it then follows from Theorem 1.3 that if « = 2, then

(3.4) Pi*{A(1) = @ for some 1} < — <;} — _2_1_>* .
a

We will prove (3.3) by showing that
(3.5) Pigi{A() = @ for some 1} < P*{A4() = @ for some 1}.
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Define n,: Z¢ — Z by

Ty(Xp oo Xg) = X+ oo+ Xy,
and let m (&) = {my(x): xe &} e E, for é € E,.

The quickest way to see that (3.5) is true is via a coupling argument. The
idea is to couple A4,(¢) and A4,(?) together in such a way that 4,(¢) and A4,(7) are
separately Markovian with laws PG and P{§® respectively, and so that
A(1) C my(Ay(t)) with probability one for each . While this makes (3.5) clear,
the coupling is somewhat difficult to write out formally, so we will give an ana-
lytic proof instead. Let F, = {4 ¢ E,, A finite}, and note that for any bounded
function fon F,, (1.1) defines a function . fon F, such that | 4*f(4)| <
2|A4]||fll-(1 + 2ad). A function ¢ on F, is said to be increasing if 4 C B im-
plies that ¢(A4) < ¢(B). Let H be the mapping from functions on F, to functions
on F, defined by H¢(A) = ¢(m,(A)). Note that H maps bounded functions to
bounded functions, and that |¢)(A4)| < constant |4| implies |H¢(A)| < constant |4],
since |7,(A4)| < |4|. The proof of the following lemma is a straightforward
computation, which is left to the reader.

LemMMA 3.6. Let ¢ be a bounded increasing function on F,. Then for all Ae F,,
=g(d,a)]{gb(/i) ; Hg(l,ad)sb(A) .

Let T,%* be the semigroup on C(E,) corresponding to the linear contact
process. Note that T,*® extends naturally to functions on F, which satisfy
|¢(A)| < const (1 + |A|), since E, 4| A(f)| < o for A€ F,.

LeEMMA 3.7. Let ¢ be a bounded increasing function on F,. Then T,*®H¢ >
HT, ¢ on F,.

Proor. This follows immediately from Lemma 3.6 and
(3.8) Tt(d,a)Hgb —_ HTt(l,ad)¢ — Sé ng_,sc()(g(d,a)H — Hg(l,ad))T‘(l,ad)gb dS

on F,, since T,*%® maps bounded increasing functions into bounded increasing
functions ([1]) and T\*® maps nonnegative functions into nonnegativefunc-
tions. Observe that the derivative with respect to s of T\¢PHT, e ¢(A) is
—T@a(F 4ol — HF hed)T Gadig( 4), so that (3.8) is obtained by integra-
tion. In justifying the differentiation, E,>*|A(f)] < oo for A€ F, is used.

To complete the proof of (3.5), apply Lemma 3.7 to the monotone function
¢(n) = 1 — xu(n) and let B 1 Z to obtain

PGofA(n) = @) < Pa{A() = 0}
for all # > 0. Now use the fact that » is absorbing for the contact process.

REMARK. If @, isas in the introduction, then Lemma 3.7 shows that da, < a;.
The proof can be easily modified to show that mna,, < ma,, for all positive
integers m and n. Using this, together with the easily obtained fact that «a, is
nonincreasing in 4, it is not hard to show that lim,_, da, exists. It would be
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interesting to know the value of this limit. Our results show that it is between
$and 2.
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