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ASYMPTOTIC BEHAVIOUR OF THE VARIANCE OF
RENEWAL PROCESSES AND RANDOM WALKS

By D. J. DALEY AND N. R. MoHAN!
Australian National University and University Mysore

For a sequence of independent identically distributed random varia-
bles {Xn}, n =1,2, ..., yielding the sums S, = X; + «-+ + X let N(x) =
#{n=1: S, = x}. Results of Stone and the general renewal equation as
treated by Feller are used to prove that under certain conditions on the
common distribution function of the X.’s, the variance of N(x) is asymp-
totically like Ax + B + o(1) as x — oo for specified constants 4 and B.

1. Introduction and statement of results. For independent identically dis-
tributed random variables (rv’s) X, X,, X, - .- with distribution function (df)
F, let

(1.1) S, =X, + -+ + X,
denote the nth partial sum, and define
(1.2) Nx)=#{n=1,2,...: 8, < x},

being the number of partial sums in the half-line (— oo, x]. N(x) is finite when
E|X| < oo and the mean step-length 2-! = EX of the random walk {S,} is posi-
tive. The so-called renewal function
(1.3) H(x) = EN(x) = Y7 Fm*(x)
(F** is the n-fold convolution of F) is asymptotically linear, i.e., H(x) =
Ax 4 o(x) (x — o0), provided that it is finite, which is the case provided
E(mm (0, X)) < co (Heyde, 1964). If it is further true that F is a nonlattice
(or nonarithmetic) df and EX? < oo, then (Smith, 1960) this property of asymp-
totic linearity can be refined further to assert that
(1.4) H(x) = 2x + K, + o(1) (x — o0)
(1.4a) K, =32 EX* — 1.

The main object of this note is to give sufficient conditions for an analogue
of (1.4) to be true for the variance Var N(x), that is, for the validity of

(1.5) V(x) = Var N(x) = AAx + B + o(1) (x — o0),
(1.5a) A=1+ 2K = ZEX* — 1 = Var (X/EX),
(1.5b) B=K(1 + K)) + 4K, — 22 \°, H(u) du
where

K, = (REX*2) — PEX?[6 .
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We also comment on the methods used, and indicate an analogue of (1.5) for
stationary random walk point processes for which N(x) is related to the cor-
responding Palm-Khintchine rv’s. The methods appear to be capable of exten-
sion to higher moment analogues of (1.5).

For the simpler case where N(+) is a renewal process (i.e., F(0—) = 0, and
hence H(x) = 0 for x < 0), Smith (1959) used Laplace-Stieltjes transform tech-
niques in a more general discussion of higher order moments. Equation (1.5)
simplifies, and can be found in a form involving central moments in Cox (1962,
Equation (17) on page 58).

2. Statement of result and preliminaries. The main results are given under
one of the following two sets of conditions.

CoNDITIONS 4,. F is a nonlattice df with positive mean, finite third absolute
moment, and for some ¢ > 0,

(2.1a) H(x) = 2x 4+ K| 4+ o(x™*¢) (x — o0),
(2.1b) = o([x[‘l“) (x._) _.oo) .

ConpITIONS B,. F is a strongly nonlattice df (i.e., ¢(§) = Ee'* = 1 for § + 0
and liminf, . |1 — ¢(6)| > 0) with positive mean and finite pth order absolute
moment for some p > 2.

THEOREM 1A. Under Conditions A,, (1.5) holds with the error term o(x~*)
(x — o).

THEOREM 1B. Under Conditions B,, with o = 3, (1.5) holds with the error term
equal to

(2.2) (B)3) §= (u — XP(2u — X) dF(u) + o(x**) (X — o0).

The preliminary results we need concern an expression for EN*(x), an asymp-
totic expansion for H based on Fourier techniques, and the general form of the
renewal theorem. First, elementary computation (for example, by expressing
N(x) as the sum of indicator rv’s) shows that

(2.3) EN¥(x) = H(x) + 2\, H(x — u)dH(u),

finite or infinite; an elementary argument in which the integrand is replaced by
linear bounds shows EN*(x) to be finite if and only if {°_ H(x) du < oo, which
is the case when E|min (0, X)|* < co. This condition is satisfied under the con-
ditions of Theorem 1, so we wish to study the asymptotic behaviour of

2.4 V(x) = H(X) + 2 % H(x — u) dH(u) — [H(X)]*-

In using (2.1) (and, as it happens, Conditions B, with o > 3), the main problem
in discussing (2.4) centres on the integral it contains.

Next, Smith (1967) (in his Corollary 5.1 and below his equation (A.10)) has
strengthened results of Stone (1965) (his equation (16)), both of them using
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Fourier techniques, in showing that when F satisfies Conditions B,

(2.5a) H(x) — Ax — K, + 2S5,(x) = o(x*7*) (x> o0),
(2.5b) H(—x) — #S_(x) = o(jx]\~7) (x— o),
where

(2.6a) Su(x) = 12 du §3 (1 — F(v)) dv = § §7 (u — x)* dF(u),

(2.6b) S (—x)=§z2duf*, F(v)dv =% 2% (u + x)*dF(u) .
Consequently, under Conditions B, with p = 3, the conditions A, are satisfied
with e = p — 3; however, the form o(|x|*~¢) of the error term at equations (2.1)
is weaker than the explicit expressions given at equations (2.5).

Finally, we recall that for nonlattice df’s F with finite absolute first moment
and positive mean 17, the solution Z of the general renewal equation

(2:7) Zx) = 2(x) + (2. Z(x — y) dF(y)
in which we speak of z as the generator, satisfies
(2:8) lim, ... Z(x) = lim, .o, {2, 2(x — y) dU(y) = 2 (2. 2(y) dy ,

where U(y) = X5 F**(y) = H(y) + I(y)and I(y) = O or 1 as y < or = 0, pro-
vided that the generator z is directly Riemann integrable. This result, at (2.8),
is the general renewal theorem, a proof for the case where F(0—) = 0 being
given in Chapter XI of Feller (1966); the more general result, established by
ladder variable techniques, is alluded to in the “Problems” at the end of that
Chapter XI. (It is worth noting that a probabilistic proof of the Blackwell
_renewal theorem, which underlies (2.8), has recently been given by Lindvall
( 1977). The referee draws attention to the first statement and proof of (2.8)
under the assumption of direct Riemann integrability being in Smith (1961).)

We use (2.8) in attempting to evaluate the integral in (2.4) which, in view of
(1.4), is presumably like

(2.9) 2 §%, [A(x — u) + K] dH(u)
= 2K, H(x) + 24 §*,, H(u) du
(2.10) = 2K, H(x) + °x* 4 2K, 2x + 24 \* [H(u) — AL(u) — K, I(u)] du
where () is as below (2.8) and
(2.11) L(x) = max (0, x) = {& I(u) du .

Now it can be checked that the functions H, AL, and K,I are solutions of the
renewal equation (2.7) with generators F,

(2.12) G(x) = 2§=.. [l(u) — F(u)] du ,

and K (I — F) respectively, so H — AL — K, I is the solution corresponding to
the generator I — G — (K, + 1)(I — F). Also, for the solution Z with generator
z, the solution (*, Z(u)du = \§ Z(x — u)du = (Z x L)(x) corresponds to the
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generator
(2.13) $0 Z(x —u)ydu — (>, dF(y) \¢ Z(x —y — u)du

= {0 z(x — u)ydu = \*, 2(u) du = (z x L)(x) ,
provided of course that this last expression is integrable on the half line (— co, x].
Whenz=1—G— (K, + 1)I — F) =1— G — 12EX*(I — F), {=., z(u)du = 0,
and when F has a finite third absolute moment, {=_ |§%., z(#) du| dx is finite, so
the integrand is directly Riemann integrable at required at (2.13) and as needed
for application of (2.8). Thus,

lim,_, 2 §*. [H(u) — AL(u) — K,I(u)] du

= 22, dx > z(u) du
(2.14) =2 dx\*, z(u)du — 2* \7 dx {7 z(u) du

= — 2\, uz(u) du

= (PEX?2)* — PEX?[6 = K,

It is worth noting that the argument above is a special case of the following

result for which the proof is straightforward and is omitted.

THEOREM 2. Suppose the general renewal equation (2.7) for which EX® =
{®o X*dF(x) < oo has a generator z for which both it and its tail integral
% z(4) du — CI(x) are directly Riemann integrable (C = (=, z(u) du). Then in
addition to Z(x) — AC (x — o), we also have
(2.15) (Yo {Z(x) — 2CI(x)} dx — 3ACEX* — A\, uz(u)ydu (y — o).

Lemma 5.3.5 of Jagers (1975) states a result similar to the above for the case

“that x > 0 a.s., with the direct Riemann integrability condition on z replaced
by z being of locally bounded variation and z(f) — 0 for  — oo.

3. Proof of Theorems 1A and 1B. We suppose now that Conditions A4, hold,
and write A(x) = H(x) — AL(x) — K, I(x), so A(x) = o(|x|7*"¢) for x —» c0. We
then write the integral in (2.4) as

§*w H(x — u)dH(u) = (2, {A(x — u) + K,} dH(u) + >, A(x — u) dH(u)
(3.1 = K, H(x) 4+ 2§, H(u) du + §*%, A(x — u) dH(u)
+ 2§ A(x — u)du + \§, A(x — u)dA(u) .
The last integral here equals
(3.2) §a/2 A(x — u) dA(u) 4+ A(x)A(0) — (A(x/2))* + (5/* A(x — u) dA(u),
which is o(x~¢) because A(+), being the difference of two monotonic functions
whose variation on (0, x) is O(x) (x — o), is itself of bounded variation on a finite
interval with total variation at most O(x) for x — co. Also, (%, A(x —u) dH(u) =
o(x7). The remaining two integrals equal
(3.3) A8 (Au + K))du + 22 §>, A(u)du — 22 3 A(u)du — 2 §°,, A(u)du
= $2x* 4 K Ax + 2K, — 2§\° H(u) du + o(x7) .
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Substituting for H and H? in (2.4) from (2.1) and for the integral from (3.3)
now yields the result asserted in Theorem 1A concerning (1.5).

The proof of Theorem 1B is similar to the above, except that the error term
is more explicit. We omit the algebraic detail.

4. Analogues for the stationary random walk. Suppose that a point process
Ny(-) is generated by a random walk: if the so-called counting function
Ny(¢, t 4 x], the number of points in the half-open interval (¢, r + x], has joint
distributions (for sets of values of x) that are independent of ¢, it may be called
a stationary random walk point process (Daley and Oakes, 1974); the counting
function N,(.) for the corresponding Palm-Khintchine distribution in which a
point of the process occurs at 0 is not stationary, realizations of N,(+) being in
1-1 correspondence with realizations {S,:n =0, +1, ...} ofa two-sided ran-
dom walk that visits the origin. If this random walk has a nonlattice df, then
we may expect to be able to obtain an asymptotically linear expression for
Var Ny(¢, t + X) (x — oo) which for ¢t — oo should agree with that of

Var Ny(t, t + x] = Var Ny(0, x]
(4.1) = 2§z {1 + 2(H(u) — H(—u) — Au)}du
= (1 4+ 2K)ax + 2K, — 42 (°, H(u) du + o(x™°)

when Conditions 4, hold.
An expression with a more complicated error term than (4.1) can be found

when Conditions B, hold.

5. Concluding remarks. A drawback to equation (1.5b) is the presence there
_of the integral which we have not been able to evaluate. It arises from the
integral in (2.4) which, it should be noted, is not the convolution of H with
itself: if it were, it would equal {=,, H(x — u)dH(u), and an explicit asymptotic
evaluation of this expression (with error o(1)) can be found as at the end of
Section 2 above. Also, since (=, H(x — u)dH(u) = Y7 (n — 1)F™¥(x), results
of Smith (1967) could then be used.

The treatment of the integral of (2.4) in Section 3 should be noted with care:
it is not enough to approximate dH(x) by 2 dx, as the renewal theorem suggests,
even when the order of the error term is known.

In his first edition Feller (1966) has the comments: “this method [of using the
general renewal equation to establish that H(x) — 2x — K] can be used for better
estimates when higher moments exist” (page 372); and “the asymptotic expan-
sion of U [equivalently, of H] may be further refined if F*has moments of higher
order” (page 357). We have not been able to find a method of using the renewal
equation to study x?[H(x) — AL(x) — K] = x?A(x) as x — co for any nonzero
p, and it may be pertinent to note that these comments are omitted from the
second edition (1971) of Feller’s Volume II. What we have been able to do at
and above Theorem 2 is to show that the general renewal equation can be
used to study the asymptotic behaviour of the convolution product of A(x) and
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x, but in the absence of any knowledge such as ultimate monotonic behaviour
of A(x) we cannot then infer anything about H itself.

It appears to remain an open problem as to how to use real variable methods
to derive any refinements of the asymptotic behaviour of H(.) analogous to the
results of Stone (1965) and Smith (1967) who used Fourier methods.
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encouragement.
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