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A SIGNED MEASURE ON PATH SPACE RELATED
TO WIENER MEASURE!

By KENNETH J. HOCHBERG

Carleton University

The connection between the heat equation and Brownian motion is
generalized to a process related to the equation gu/ot = (—1)n+1 §27u/5x",
n = 2. The associated measure is of unbounded variation and signed; the
process cannot be realized in the space of continuous functions. Stochastic
integrals {§ o(x(s))(dx)i(s), j = 1,2, - -+, 2n, are defined, and an analogue of
Itd’s lemma for the Brownian integral is proven. Specifically, one gets 2n
independent differentials (dx)7, with (dx)» = (—1)»+1(2n)! dt. Applications
include the derivation of the analogue of the Brownian exponential mar-
tingale exp{ax — a2#/2} and a class of orthogonal functions which gener-
alize the Hermite polynomials. These are followed by the Feynmann-Kac
formula, distribution of the maximum function, arc-sine law, and distri-
bution of eigenvalues. Finally, central limit theorems are proven for con-
vergence of sums of independent random variables identically distributed
by a signed measure, normalized to have first 2z — 1 moments equal to
zero and 2nth moment equal to (—1)»+1(2n)!.

1. Introduction. The well-known connections between the theory of Markov
stochastic processes and the study of second-order elliptic operators and as-
sociated parabolic equations are herein extended to relate some higher-order
elliptic operators to processes determined by signed measures defined on function
spaces. Specifically, the connection between the Brownian motion (Wiener)
process and the heat equation du/dt = () 0°x/dx* is generalized to a process cor-
responding to the even-order parabolic partial differential equation
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The fundamental solution p(¢, x) of the equation, which is the Fouriet transform
of exp{—&™t}, is taken to be the density of a measure which we associate with
the process. The major difficulties arise from the fact that this measure is of
unbounded variation and, unlike Wiener measure, is signed. Nevertheless, it
is shown that many Brownian results do have analogues in the general case,
though frequently with modified proofs. First, the fourth-order equation is
studied in much detail; the final section contains generalizations of these results
for arbitrary integral values of n.
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434 KENNETH J. HOCHBERG

Section 2 covers the construction of the signed measure P from the density
p(t, x). The total measure of the real line is one, and hence P resembles a prob-
ability measure; moreover, the Markov property is satisfied. The asymptotic
decay of p(t, x) in x is analyzed, and the function x(¢), distributed by the given
signed measure, is seen to satisfy certain inversion and scaling properties similar
to those of Brownian motion.

Section 3 covers the notions of weak convergence and stochastic integration.
We show that there are 2n independent stochastic differentials (dx)?, j = 1,
2, .-+, 2n,and, correspondingly, 2n types of stochastic integrals {§ ¢(x(s))(dx)(s).
The analogue of (dx)* = dt for the Brownian integral is (dx)* = (—1)"*(2n)! dt.
For elementary functions such as polynomials and exponentials, and for func-
tions of the Schwarz class C< of infinitely differentiable rapidly decreasing func-
tions, we prove a generalization of the It6 lemma which, in differential notation,
says that

df = s kl_' FE(dx)E 4 (— D)+ g
Several applications of the It lemma follow. In particular, we show that
k
HO) = exp { T (= 1 L 54 (d0¥(s) + (= 1)(2n — Dt}

satisfies the initial-value problem dy = aydx, y(0) = 1, and hence is the ana-
logue of the customary exponential e**. Similarly, formulas for the functions
defined by

huts x) = kU 5 dx(n) Y dx(n) - - S dx(,)

(the analogues of the customary powers [x(¢)]*) are derived, and the 4, are shown
to form a class of orthogonal functions in ¢, x, { (dx)?, and { (dx)®and are, there-
fore, generalizations of the Hermite polynomials, which play the same role in
the theory of the Brownian integral.

In Section 4, the purely combinatorial identity of Spitzer [14] and the
Feynmann-Kac formula [6, 8] are used to derive the distribution of the maxi-
mum function and to show that the arc-sine law [7, 14] holds. In particular,
for the process x(f) related to the fourth-order equation, we show that the
Laplace transform of the density of the maximum function is given by

1
(o e ai P{max,., x(s) < a} dT = 24u~? exp {_“Z_f‘} sin
(44

uta
2%
From these results we conclude that the trajectories of the signed process are
not continuous; i.e., the process cannot be realized in the space of continuous
functions. A heuristic approach is then used to obtain the asymptotic distri-
bution of the eigenvalues for the operator L = —A®.

The fifth section contains two central limit theorems for independent random
variables x,, identically distributed by a signed measure p and normalized to
have first 2n — 1 moments equal to zero and 2nth moment equal to (—1)"*}(2n)!,



A SIGNED MEASURE ON PATH SPACE 435

where the moments exist as absolutely convergent integrals. Under appropriate
conditions on ¢ and for appropriate functions ¢ € C7, we have

lim, ... £ {p (AR5 E 5O e o(p(1, ) d

kl/Zn

2. The density and signed measure for n = 2. We begin by considering the
initial value problem for the partial differential equation

ou dtu
(2.1) T_ﬁz—ﬁ, —o L x<L 00,0t 0
u(0, x) = f(x) .
Let
3(€) = (2m) §=.. e=¢g(x) dx
denote the Fourier transform of a function g(x). Then the solution of (2.1) for
reasonable initial functions f(x) is easily seen to be

(22) u(t, x) = {2 p(t x — Yf(y) dy
in which the fundamental solution p(¢, x) is expressed by
(2.3) Pt x) = [exp(—E0)]" = (2m) {=,, €t exp{— &'} d .

We note the following properties of p(z, x):

(2.4) (1) p(r, x) = p(1, i)t

(i) p(t, x) is symmetric in x,

(iii) p(¢, x) belongs to the Schwarz class C7 of infinitely differ-
entiable functions [ with limg_., x*(d’/dx/)f(x) = 0 for
each k,j=0.

To study the asymptotic behavior of p(1, x) for large x, let § = xts, so

{2, e exp{—&}dé = xt (=, exp{xi(is — s*)} ds .

The steepest descent and ascent curves for the resulting integral are those which
pass through the critical points of f(s) = is — s* and along which the imaginary
part of f(s) remains constant. The three critical points of f(s) are s = (4)~3e*,
where ¢ = #/6, 57/6, 37/2; for s = x + iy, Im f(5) = x(1 — 4x’y + 4)°) must be
a constant c. For the curve to pass through s, = (4)~#e"%, the constant ¢ must be
3.3%/8%¢; thus, y* — x’y = {(c/x — 1), from which we can conclude that y — 0
as x — +oo and y —» 400 as x — 0*. A similar asymptotic calculation for the
critical point s, = (4)73¢*® leads to the conclusion that the steepest descent
contour is that of Figure 1.

Using this contour, the leading term in the asymptotic expansion of the inte-
gral is obtained by evaluating the contribution about the saddle points s, and

s, Expanding f(s) about s, and s,, we get
3 1, 6 i
f(s;) = ) i 4—§e s — 5)°
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So S1q

Fic. 1.
and

f(sz) ~ 4% eimis 4% e"’”'/3(s _ 52)2 .

Thus, the contribution near s, is
Smi 3
ex e ’”/3x?} ,
P

(5) ) oo 3

T\t / 4\ i 3 st
(5) (5) exp {5+ gree}

Therefore, for large x,
(2.5) (1, x) = kx~% exp{—axt} cos (bx?)
+ lower order terms (k = constant)

where a = (§)(4)"% and b = 3ta.

and near s, it is

REMARK. The expression for the leading term of the asymptotic expansion
confirms the result of Poélya [11] that p(1, x) is an integral function of order 4
with infinitely many real zeros. Burwell [2] proved that these zeros are given
asymptotically by

(2.6) A = i4[2(3k — Iz

ul _T + O(k) .

Clearly, =, p(t, x) dx = 2zp(t, 0) = 1, so it might be conjectured that p(¢, x)
is a probability density like the Gauss kernel (277)~* exp{— x?/2¢} associated with
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the equation ou/dt = (4)(0’u/0x*). This, however, is not the case; p(r, x) changes
sign infinitely often, as the asymptotics show. Notice in this connection that

4
d &4t

2.7 e xtp(t, x)dx = —_ e = —24r< 0.
(2.7) p(t, x) g o <
Note also for future use that
(2.8) §=. xip(t, x)dx = 0 for j=1,2,3.

We now use the function p(t, x, y) = p(t, y — x) to construct a signed meas-
ure on path space satisfying the Markov property. For s > 0 and ¢ > 0, the
Chapman-Kolmogorov equation

(2.9) Pt + s, %, y) = §Za p(t, x, dX')p(s, X', y)

is satisfied; this is obvious from f(z, &) = exp{—¢&‘r}/2z. Also, we have seen
that p(z, x) resembles a “signed probability density.” Therefore, adapting the
language and techniques of the theory of Markov stochastic processes to our
situation, we treat p(t, x) as a “signed Markov transition density” (see, for ex-
ample, [3], page 255) with which we can build up a signed measure on the space
Q of real-valued measurable functions x: 7€ [0, oo) — x(7), called paths (see,
e.g., [10], page 52), in the usual way. Let C C Q by a cylinder set

C={xia, =x(t)<b,i=1,2,...,n}, 0<,<t,< - <t,.

Then, a signed finitely additive measure P may be consistently defined on Q by
the rule

(2.10) P(C) = §or v Um0 p(ts — tioys Xg — Xiy) dX,

‘where x, =0 and ¢, = 0. Clearly, P is countably additive on the field of sets
generated by x(#,) (i = 1,2, .-, n) for fixedt, < t, < --- < t,and n < co. (No
claim of countable additivity is made on the field generated by the class of all
cylinder sets.) E denotes the “‘expectation”: E(f) = { fdP, when the latter
makes sense.

THEOREM 2.1. P has unbounded total variation on paths x(t).

Proor. We divide the interval [0, 1] into n pieces, each of length 1/n. The
total variation of P on paths x(f): 0 < 7 < 1 is underestimated by

P\— > Xi — X
n

= lim,_,, [go_ow

dx;

1 n
P o))
= lim,_ [n* {=, |p(1, nix)| dx]*
= lim, . [{=.. |p(1, y)| dy]" .

But (=, p(¢, x) dx = 1, while p(t, x) assumes negative values for some values of
x; thus, (=, |p(1, y)|dy > 1, so the limit above is infinite. ]

lim,_, §=, - {2, [1i,
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P is Markovian in the following sense. Let P,(x¢€ E) = P(x 4+ a€ E) and let
. be the field of x(¢,) (i = 1,2, ---, n) withfixedn < 0cand 0 < ¢, < --- £
t,=T. Then

(2.11) Px(t + T) e dy| F} = Py{x(1) e dy}, b= x(T).

It would be nice to show that the signed measure P is concentrated on paths
which satisfy the Holder condition

(2.12) [x(t) — x(t)| < |6, — |+

for arbitrary positive ¢, by analogy with the Brownian case. Krylov [8] showed
that if one subdivides the interval 0 < ¢ < 1 into pieces of length 2-*, then the
total variation of the restriction of the signed measure P to the field of x(m2-")
(m=1,...,2"), computed over the set of functions with [x(z,) — x(t,) >
|t, — |4~ for some 1, = i/2* and ¢, = j/2" with |1, — t| sufficiently small, tends
to zero as n — oo. This is about as good as can be expected.

We now note the following proposition, which presents the analogues of the
transformations which carry Brownian motion into Brownian motion.

PROPOSITION 2.2. Each of these has the same distribution with respect to P.
(i) x(1),t=0

(i) —x(t), t = 0 (symmetry)

(iii) x(t 4+ s) — x(s), t = 0, s = O (additive property)

(iv) ttx(1/t), t > O (inversion)

(v) cx(t/c*), t = 0, ¢ > O (scaling).

The proof is elementary, making use of (2.3) and (2.4).

3. Stochastic integration.

3.1. Weak convergence; existence. We begin by introducing a notion of weak
convergence. A function is said to be tame if it is a Borel function of a finite
number of observations x(z;). A sequence of tame functions {f,} is said to have a
weak limit if lim, ., E(f, ¢) exists for every tame ¢ = ¢(x(t,), x(1,), - - -, x(t,,)) With
¢ € C7 and defines a function L(¢) on C3. In that case, we write L(¢) = E(f¢)
and say that f = lim, _, f,, though this is purely formal: we have no general way
of proving the existence of f as a bona fide measurable function of x.

Now we define the stochastic integrals ’

(3.1) 05 o(x(s))(dx)i(s),  j=1,2,3,4, 0<r=<1

as the weak limits of the Riemann sums

62 e (x(5) () (5]
oDl

where [ is the greatest integer less than or equal to nt.
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To simplify matters, we will at first let r = 1. In this case, demonstrating
the existence of a weak limit of the sums (3.2) is equivalent to proving that

09 s () (2) (Y]

X 9(x(), X(6), - Xt} = L(9)

exists as a functional of ¢ € C7; we then denote L(¢) by

E{§s p(x(0)(dx)’ (1) (x(8), x(8), - - - X(2m))} -

The existence proof is now carried out for integrands ¢ € C5.

For j = 1,2, 3, 4, to prove the existence of the limit (3.3), we first break up
the sum in the expectation into m blocks, with the ith block consisting of those
terms for which t,_ < kin< ¢, i=1,2,...,m, where t,= 0. For k such
that (k — 1)/n > t,,, the contribution to the expectation is zero by independence
of x(k/n) — x((k — 1)/n) and x(i/n): i < k. If (k — 1)/n < t,, < k/n, then the
contribution to the expectation is

Efe (x (D) [#(5) = x (D) Toexw. - 5w
- () 0 o o)

(3.4) = §§ - SdRdpdp, - dpy Gt s s fm)
x E{exp fiax (“= ) [ x(e) —x (21) T expli 2 mx(ul]

n n

= (=9 15 -+ 199 {exp {iG+px (D)) - expli mast xta)]

2o o - ()

m

X

where, say, £, < (k —1)n<t, <kn. (ft, ,<(k—-1)n<t, 0, p=
2, ..+, m, the adjustment is obvious.) But the last factor in (3.4) equals

Yo =) = o0,

so the entire term is o(1) as n — oo.
Thus, we need only consider the m blocks of the form

{2 (5 [ () -2 (5 ot )

If we now integrate this last expression over the future times #,,,, t;,,, -+, t,
conditional upon x(¢): ¢t < ¢t;, then the C7 function ¢(x(1,), x(1,), - - -, x(2,)) is
replaced by some other C¢ function of only the first ¢, observations; hence, we

991 k —
ey (—41’) <’m -
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can assume that i = m. Thus, we have reduced the problem to showing the
existence of the limit of functions of the form

£ Ewne s (s () [x(5) (5 )

=§§ - SdAdp dp, - - dpy GAP(s s 5 1) |
B e (D[« (2) - (Y]

X exp{i X, x(tz)}} .

Since ¢ and ¢ are both C<, so are ¢ and ¢. Therefore, this last integral will
converge if the expectation inside converges under a polynomial bound. The
term arising from the case (k — 1)/n < t,,_, < k/n is easily seen to be o(1).
(The computation is similar to that in (3.4).) The remaining expression can be
simplified by taking a preliminary expectation conditional upon x(¢): t < ¢,,_;,

E { Dt p—g<k-1)/n<k/nst,, CXP {ilx <k ; 1)} [x <%> —x (k ; 1>]j

X explip, x(t,) | x(t): t < tm_l} )

and it is enough to show that the latter converges under a polynomial bound.
Performing the conditional expectation leads to an expression of the form

[a fixed function of x(t,), - - -, x(2,,_;)]
X E{ 20k eXp{idx(se_y)}X(se) — X(si-y)) exp{ipx(1)}}

inwhich ¢ = p,,, t = ¢, — t,_,, and s, s;, - - -, 5, is a subdivision of the interval
[0, ]. Now

E{ 30 exp{iAx(s,_,)}[X(se) — x(s.-1)]’ exp{ipx(t)}}
= E{ 201 exp{i(4 + m)x(se_)Hx(s.) — X(s1-1)]’
X exp{ip[x(s,) — x(sp_,)]} exp{ip[x(1) — x(s,)]}}
= D lexpl =i + | (—1) 3 exp{— (s — se)p}]
7
X [exp{—(r — s;)#'}]
which converges to

41 (= Dy (igy

@—7 exp{—1¢'} {s exp{—s[(2 + p)* — p]} ds

— 4! (_ 1)j+l(inu)j 4 4
VRS Y7 ey prgnr [exp{—1#(2 + p)'} — exp{—1p'}]
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under the polynomial bounds

4|pft if j=1,
1247 + 16452 if j=2,
24|p|t + 144 |uP* + 64|y if j=3,

241 + 816pt + 115243 4 256 p 2 if j=4.

The calculation of the limit (3.3) in the case j = 4 is now presented for
¢ = ¢(x(t,), x(t,)), where, to cover a general type of situation, we let (k — 1)/n <
t, < k/n < t,. It should be clear that if ¢ is a function of any finite collection
of observations, the calculation would be totally analogous, with some obser-
vation times lying in the interval ((k — 1)/n, k/n) and others outside this interval.

For j = 4,

E{Zre (+ (55)) X (5) = () ot o]

= §§ dadp, dp, GG, 1) E {Zz=1 exp {”x (k A 1>}

(3.5) x| (£) = x (S ) exptitm () + mrean}

n
= {{§ dady, dp, 93('2)95(#17 )

« B o ifa () () ()]
ot |

The expectation in the last expression equals

exp {—(#l + i+ A <k_n—__1> o+ o+ ) (tl _ k%l>

()i )

whose fourth derivative with respect to u evaluated at ¢ = 0 is

(-0l )

X |:—2—4 + terms of order _1? or better] .
n n

#=0

When summed on k from 1 to n, this converges under polynomial domina-
tion to

—24 foexp{—(x + 12 + A)'s — ( + ﬂ2)4(t1 - s) — it — tl)} ds,
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and, therefore, (3.5) converges to

—24 §§§ dadp, dp, §(AP(1s 1)
X Soexp{—(m + t + A's — (1, + )t — 5) — mi(ty — 1)} ds
(3'6) =-24 §§§ d¢, d¢, dE; 95(51 - 52)&(52 — &5 &)
X §oexp{—&fs — &4(t, — 5) — &X(1, — 1)} ds
= =24 E{§5 ¢(x(5)) ds - $(x(1,), X(1,))} -
Note that here, for the first time, we are able to “evaluate” the weak limit

of the Riemann sums defining the integral, at least as another weak limit: from
(3.5) and (3.6) we have

(3.7) $o p(x(D))(@x)(r) = —24 §; o(x(v)) dr,
or, in the notation of stochastic differentials,
(3.8) (dx)(r) = —24 d:.

This result is the analogue of the relationship (dx)*(r) = dr for the Brownian
motion (Wiener) process.

Clearly, the integrals I(p) = §} (x(5))(dx)i(s), j = 1, 2, 3, 4, have all the usual
properties of Riemann integrals, e.g.,

(3.9) ¢y + @) = I(py) + 1(g,)
and
(3.10) (ko) = kI(p)

for constant k.

3.2. The It6 lemma. We are now able to state an analogue of Itd’s lemma
[4, 5] for stochastic integrals.

THEOREM 3.1. Let f be a function of class C5 or an elementary function such as
a polynomial or an exponential. Then,

G-11)  f(x(8)) — f(x(@)) = §& f'(x(1) ax(r) + § §& f"(x(1))(dx)*(r)
+ & L [ O)@x)¥(e) — §o f7(x(r)) dt
in the weak sense; i.e., for any tame ¢ ¢ C%,

(-12)  E{[f(x(6)) — f(x(@)]p(x(1), x(8)s - - -5 x(1,))}

= lim,_., E{approximating Riemann sums of right-hand side
X Px(t) X(1)s + -+ X(1n))} -
(3.13) NOTATION. df = f'dx + Lf"(dx)* + §f""(dx)* — f"" dt .

Proor. Without loss of generality, we may assume that ¢ = 0 and b = 1.
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Letting A, x = x(k/n) — x((k — 1)/n)and using Taylor’s theorem with remainder,
we have

F) = 10 = T | £ (x(5)) = 1(x (=)
-z () o (5 o
3 (e () x4 e (2 (K5)) @y
k

+ e Vm | % (5) = x] roco axf

n

For fe C7, we multiply by any C¢ function ¢ of finitely many observations,
take expectations, and let n — co. Using (3.7) we get

E{[f(x(1)) — f(ON]P(x(1)> X(2), - - > X(tw))}
= E{[$ f'(x(2)) dx(1) + & §o /" (x()))(dx)*(?)
+ & o S () dx)¥(1) = §o f"(x(2)) d)p(x(1), X(8a), - - -5 X(1w))}

+ lim, . ﬁE{z;k L (et m,[ (ﬁ) - xT FO(x) dx - ¢} ,

and to complete the proof we must show that this last limit is zero. Since neither

the number nor the relative positions of the observation times ¢; affect the weak

limit itself, we will assume, without loss of generality, that ¢ = ¢(x(z))), 1, > 1.
For fe C7 we may take Fourier transforms of f and its derivatives, so

E{ Zia 2w | x (5) - x]" Fo0 dx - glx(n)}

(k/n) 122 oL [x(k/n)—%]) pipa(ty)
E{Zk L Sel6 my dx €t27etts Jetrattv}

= §§ dupdA[fO] (D) = 3C4 oo

Since the last expectation equals

— Sy i(h — 7 exp{— (s + ¥(kfn) — (s, — ki)
—exp{—(u+ Dk = D) — (u + O — (v = E)}]

*
n
= (A — C)‘leXP{ (r+ 2>“< — ) < >}

X [exp {—(/1 + 1)4%} — exp{ (e + ) H
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its fourth derivative with respect to { evaluated at { = 0 equals

n

1724 96 1442 96
X {—;[2—5(/1 (v + Y + ; + 3/1 + ﬂ + i|e“‘4/”

+ terms of order % or better} s
h

which converges under a polynomial bound as n — oo to zero. Thus, the entire
remainder converges to zero as claimed.

For polynomial functions f(x) = x', where [ is a positive integer, existence of
the limits as n becomes infinite of expressions of the form

E{Zi‘:l x! <k 1>(Alc3‘)’"¢(x(t1), -..,x(t,,,))} (j=1,2,3,41=0,1,2,...)
. (F+1 b l aj
=79 S dp, e dp Py s ) == Fya aé’

1

X Ttor £ {exp {itx (“= ) explis(d, ) exp(i T mx(t} |
=0,6=
follows from the convergence under polynomial domination of
07 Lo (k—1 . .
Ttor g gy E{exp {2 (S5 explisdu ) expli 1 x|
analogous to the proof for fe C5. For I > 5 we must also show that the re-

mainder term vanishes in the limit. Convergence of that term to zero follows
exactly as it does for fe C, with the exception that we write

®) L o ! A

b
=0,6=0

(7%

2=0
instead of
f(5)(x) — s eux[f(s)]/\(z) d] .

To carry out the proof for an exponential function f, say f = e**, instead
of introducing exponentials through the use of transforms or derivatives we
leave f as is, and the only change from the previous cases is the calculation
Efe®} = e~**. To see this, note that in (2.5) we showed that p(¢, x) behaves
asymptotically like |x|~* exp(—a|x|!), which decays more rapidly than e**, thus
assuring the analyticity of { e***p(t, x) dx in @ and permitting an analytic con-
tinuation to imaginary values of . Now existence of the limits

£ {Biorexp {or ()} @ugiate), - 50

= (77§ Blot -+ 1) 2 i E foxp fex (S2)  explig(am)

X exp{i I #zx(tt)}}L:o dp, --- dp, j=12,3,4
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follows as before. To see that the remainder vanishes in the limit, note that
k 4
E{ St Sattthm | () — x[ avenr - g(x(a)}
_ n 7 64 4 k k—1 .
= Dt § d fa) 5 E {oct| exp fax ()} — exp fax (“0)} explipex(a}}
& 0! k k
= i Ve d(e) - {a‘[exp {——(a + )t — (a - —) ﬂ‘}
o n n
—exp{—k_ l(a-}—)u)‘——(tl—]i__._l_)#*ﬂ}, t
n n

which converges under polynomial domination to zero. []

[\%

The basic feature of our stochastic calculus is the existence of four inde-
pendent infinitesimals (dx)i(t), j = 1, 2, 3, 4, with (dx)*(r) = —24dr. Letting
A, x = x(k/n) — x((k — 1)/n), one gets the following related calculation:

BTEs (8] = (=) Ttn - Eloxplisul)|

= (—iy Xt a—i— exp{— p/n)

= 37,0 if j#4p, p=1,2,3, .-
(3.14) =Y, -4 if j=4

1 o
:z;ﬂo(ﬁ) if j=4p, p=12,3,4,...

=0

— 0 if j+£4 as n—>oo
— —4! if j=4 as n—>oo.

The differentials dx, (dx)?, and (dx)* have some interesting properties. For
example,

(3.15) El{exp{ia {; dx(1)}} = E{exp{iax(1)}} = exp{—a?’}
while
(3.16)  Efexp{if {3 (dx)'()}} = lim,_.. Elexp{i Ti_, (A.x))},

which, by independence of the A, x, is
lim, .. [E{exp{if(8, xy}}]* = lim, ., [E{exp{igx*(1)/n})]"

= lim, . [E(1 + igx(1)n~t — p(1)/2n + ---)]"
= lim,_ [1 + 128*/n]" = exp{128%},

and

E{exp{ir (4 (dx)¥#)}} = lim, ., E{exp{ir 2 i, (A, x)%}}
(3.17) = lim, ., [E{exp{ir(d, x)*}]"
= lim,_, [E{exp{irx*(1)/ni}}]* = 1,
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Especially curious is the following:
Efexp{ia §3dx(r) + i8 i (dx)(t) + ir §s (4)¥(1)}}
= lim, .. E{fexp{ia Tioi (8u%) + if Tioa (8" + iy Zia (AX))

(3.18) = lim, ., [E{exp{iax(1)/nt 4 ifx*(1)/nt + iyx*(1)/n}}]"

= lim,‘_,mlil + 24 <ar — 52% + _ia_;@_ + .‘[;)/n}n

= exp {24 <ar — g—; + ia22,8 + %2—» .

Note the presence of the 7 in this last result, despite (3.17). Note as well that
in (3.18), when a« =0 the effect of the y vanishes. Clearly, the behavior of
these differentials is quite strange.

For a simple example of It6’s lemma, we apply (3.11) to the functions x4,
j=2,3,4, and obtain, in differential notation,

(3.19) d(xi) = jritdx 4 3 — DA + - (d0)
which, combined with { dx = x, yields the formula

(3.20) § (dx)i = xi — § [(x + dx)! — xI — (dx)7], j=12,3,4,
or, equivalently,

(3.21) xi = § [(x + dx)} — x]

for the stochastic integrals {§ (dx)i(s), j= 1,2, 3, 4.
For example,
d(x*) = 4x*dx + 6x*(dx)’ + 4x(dx)’ + (dx)*,
and
§ (dx)? = x* — 3§ x*dx — 3§ x(dx)*.

For ¢ € C5 and ¢ a C5 function or an elementary function such as a poly-
nomial, we may alternatively expand ¢(x()) and ¢(x(¢)) in Taylor series. If
x(0) = 0, we get
(3.22)  E(p - ¢) = E{p(0)¢(0) — ¢(0).§ ¢"" — $(0) § ¢ — 4§ ¢'¢™

— 41 g'p" — 6§ "9},
where by ¢ we mean ¢(x(#)) and § ¢ means {5 o(x(s5)) ds. Similarly, approxi-
mating §¢ ¢(x(s))(dx)i(s) by its Riemann sum and expanding ¢(x(t)) in a Taylor
series yields
(3.23) Efg - § p(dxy} = —4E{(§ ¢"'¢},  j=1
(3.24) —12E{§ ¢"¢}, =2
(3.25) —24E(§ ¢'¢}, j=3
(3.26) = —24E{¢(0)§ ¢}, j=4.
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This procedure is equivalent to applying It6’s lemma directly. For example,
from (3.22), (3.25), (3.23), and (3.24), one gets
E{x*. ¢} = E{—24 § ¢’ — 12§ ¢"'x* — 36 § ¢''x}
= E{¢ - § (dx)* + 3¢ - § x*dx + 3¢ - § x(dx)*},
which agrees with (3.19) for j = 3.

3.3. Elementary functions. Analogous to the appearance of the Hermite poly-
nomials in the theory of the Brownian integral, let us introduce the iterated
integrals
(3.27) h,(t) = n! §idx(t) S dx(t,) - - - §in-1dx(2,), 01

where, for example, {}dx(t,) (& dx(1,) (i dx(t,) is defined as the weak limit as n
becomes infinite of

v [5(£) <+ (5
) -~ -+ (5]

The demonstration of the existence of this limit is just like that of the existence
of the stochastic integrals { f(x(7))(dx)¥(¢) and hence will not be repeated here.
Clearly, the 4, are the counterparts of the customary powers [x(7)]*. Direct

application of Itdé’s lemma to polynomial functions leads to explicit formulas
for the 4, the first few of which are:

hy=1
hy=§dx =x
(3.28) = —§ () + (§ dxf = —§ (dx)? +
= 2§ (dx)® — 3x { (dx)* 4 x?
hy = 144t 4 8x § (dx)® 4 3{§ (dx)*}* — 6x* § (dx)* + x*.

>
©

For example, applying It6’s lemma to x* gives
hy = 2 §§dx(t) (5 dx(,) = 2 §§ x(s) dx(s) = x*(t) — §&(dx)X(s) .
THEOREM 3.2. The functions h,(t) form an orthogonal set in the sense that
E{hy(1) - hy()} = O for L = m. Also, E{h,} =0 forn =1,2, ...
ExampLE. Before proceeding with the proof, we illustrate the result for
Elh, - h;}. We have
(i) E{x 2§ (dx)}} = lim,_,, 7., E{A;x - 2(A;x)%
= 2E{( (dx)'} (from i=j),
(ii) E{x - (=3)x § (dx)’} = lim,_,, 337 o0y E{A;x - (=3)(A,; x)(A, %)%}
= —3E{§ (dx)*} (from i=j=k)
—3E{S (dx)’ § (dx)’} (from i=j+ k),
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(iii) E{x - X} = lim,_, 337, 0o E{A,x « (8, %) (8, X)(4,x)}
= E{{ (dx)'} (from i=j=k =1)
+ E([§ ()T} (from i=j# k=)
+ E{[§ (dx) ']} (from i=Fk +#j=1)
. + E{[§ ()]} (from i=1%j=k).
Thus,
Efh, - b} = E{x - [2§ (dx) — 3x | (dx)? + x7])
= (i) 4 (ii) + (iii) = 0.
Proor oF THEOREM 3.2. Without loss of generality, let t = 1. From (3.27),

h(1) = I §5dx(n) §gdx(sy) - -+ §i-1dx(t),
(1) = m! §3dx(r) S dx(t) - - - §im-rdx(t,) .

Each term of the approximating Riemann sum for 4, is a product of / non-
overlapping increments Ax. Similarly, each term of the Riemann approximation
for &, is a product of m such increments. Now take the product of the Riemann
sums and consider its expectation. Since no two different increments overlap,
and since each increment is independent of all previous increments, for the
expectation of a product of terms of the Riemann sums to be nonzero it is
necessary that no increment appear only once in that product. Clearly, for this
to occur, each increment in the term from the Riemann sum for 4, must agree
with an increment in the term from the sum for 4, so ! must equal m. Thus
E{h, - h,} = 0 for | += m. The fact that E{h,} = O for any integer n > 1 is now
obvious as well. []

For a stochastic integral 4, we define the exponential e4 or exp{A} as the
formal power series }; (4"/n!). From the definition it is clear that e“e® = e4+2.
Now consider the function

(329)  y(0) = exp fa fidx(s) — 5§ (@) + & (@) — & (o))}
= exp(é(n) = £ FOT.

A formal application of the It6 lemma leads to
dy = ydf + §y(dé) + §¥(dE)" + Jap(d€)’
- {[a dx — % ey + C (dxyp — & (dx){l
=7 2 3 4

(3.30) + (@ — ey + Ha'(d)]
+ (@) — Ja(d)] + frai(dy]
= aydx;

also, y(0) = 1, showing that y is an analogue of the customary exponential
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eV, As is the case with the Brownian exponential exp{ax(t) — a’/2}, y is a
martingale, since for any tame ¢ e C7 and 1, < ¢, E{y(t)¢(x(t;), - - -, x(t,))} =
E{y(t)p(x(t,), - - -, x(2,))}-
Note that if we consider the differential equation
dy =aydx, 3 =y0)=1,

and formally iterate toward a solution, we obtain

Yalt) = Yooy + a® §gax(t) g dx(t,) - - (i1 dx(2,) ;
thus it appears that %, should agree with the nth derivative of y with respect to
a evaluated at « = 0. But the solution y is the analogue of the customary ex-
ponential exp{ax(t)} given in (3.29). Equating the formal power series (3.29)
in a with the formal power series ), (a®/n!)h,, we get
ah,

n!

D =1 afdr = 0§ (e + O (dxp — & ()’

3| @y dxp — 0§ dx § (@97 + O (5 (e

4
+ 220 e (| + (S P — Fa(§ df? § ()
+ J;a!{§ dx}* + terms involving a*, k=35,6,....

Comparing coefficients of corresponding powers of a leads to a reproduction of
the explicit formulas (3.28) for the functions #,.

4. Some special distributions; continuity of the sample paths.

4.1. The maximum function. We now study the distribution of the maximum
function for x(¢), which is defined as

o(a, T) = lim,__, P{max,g,_; <7 X(t) < a},

where x(0) = 0. It is assumed that the limit exists. Clearly, replacing x(¢) by
x*(t) = max [x(¢), 0] makes no difference, since the process starts at zero. For
fixed n, we let

o (@ T) = Plmax,g,_yngr X*(1) < a}
and

04 T) = {7 e d,0,(a, T).

Following the technique of Baxter and Donsker [1], we now apply an identity
of Spitzer [14] to the double Laplace transform of ¢,(a, T). Note that Spitzer’s
identity is applicable here, for it is a purely combinatorial result which applies
to any symmetric distribution, positive or not, as long as the total measure is
one. If {x,} is a sequence of independent, identically distributed quantities with
partial sums s, = x; + x, + .-+ + x,, and if

oa(2) = {7 e~** dP{max,, s,* < a}
$u(d) = (7 e dPls,* < a},
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then Spitzer’s identity states that

o n — oo tﬂ
(*.1) T () = exp | D £ 9,0}
Multiplying both sides by exp{— >»_, t"/n} = 1 — t we get
(42 (1= 0 Zired) = exp { = T3 L (1 - 9.}
i.e.,

(4-3) (1 — 1) X7 "E{exp{— A max, g, 5,*}}
— exp {_ Z:;l%(l - E(exp{—-ls,ﬁ}))} .
Applying this formula with
x, = x(k/n) — x((k — 1)/n), k=1,2,.,
t = exp(—u/n),

and
WA, T) = (e d,Px*(T) < a},
we have, for u > 0,
lim,_, u ¢ §¢ e*"~**d o,(a, T)dT
= lim,_,u {F e 7o, (4, T)dT
(4.4) = lim,_.. {1 — e*"} 35, 0u(2, k/n)e= "4/
= exp {lim,,_m 2. (@4 k[m) — 1) k/:) —1D exp{—uk/n}}

— exp{§3 {7 e~T(9(, T) — 1) dT ds}

1 A (—¢% }
=exp{— {7 (% . df dsy .
p{27r Ve T s
(For details of the last equality, see Baxter and Donsker [1], pages 78-79.)
Using the technique of contour integration with contour bounded by the real
axis from —n to n and the lower half of the semicircle |z| = n, a simple residue
calculation yields

| A (=8 e — 5 i dz,(s)
2% UEE— ) (s + € ) — 7] ds

bl
where

z,(s) = exp {—%l} st and  z(s) = exp {—377”.} st

Integration with respect to s yields

_217 1% EE i i2) s((s_-fz**) deds = —log {{1 B %} {1 h zz:) }} ’
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and hence
\¢ {¢ exp{—uT — Za}d,o(a, T)dT

(4.5) = 2,(u)z,(¥)
uz(u) — i2][2,(u) — i2]
= ut(ut 4 200t + )71

P iyt -1 P iut -1
Al (e o
“ [“r{zé T ﬂ [ZJF{zi 2 ﬂ

Upon inversion of the Laplace transform with respect to @ we get

Il

4.6)  (peT % P{max,., x(s) < a} dT = 24u-% exp{—uta/2) sin (uta/2t) ,
assuming the existence of ¢ = lim ¢, and the interchange of this limit and the
Laplace transform.

Since we do not know that x(¢) distributed by P is almost surely continuous,
we cannot assert that the first passage time of x(r) to any point a will be finite.
If we could, however, we would be able to apply the reflection principle of D.
André, as is done in the case of the Wiener process, to obtain

P{max,,., x(s) < a} = 1 — 2P{x(¢t) = a}

Il

1 (& §=, exp{ixt — &%} d dx .
T

Then the density of the distribution of the maximum would be
9 {i \& §=. exp{ixé — &%) dE dxl» = L (= expliac — &) ae,
T

da (m

whose Laplace transform in ¢ is

(= ev7 {L = expliaf — &%) ds} dT ©>0
T
1 . 1
4.7 = = d
4.7) - (>, exp{ia} T £
__exp{—aut/2%} aut . aut
= TR eos G+ sin )

This result is very close to, though not identical with, the actual transform
in ¢ of the density of the maximum function, which was shown in (4.6) to be

2t exp{—aui/2t} . ula
ut 2

Hence, it seems reasonable to conclude that the sample paths of x(¢) are not
continuous as Brownian paths are, but are perhaps not terribly discontinuous
either. We will return to this matter shortly.

4.2. Feynmann-Kac formula. Note that if we let T, f = E,{ f(x())}, then T, is
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a semigroup operator, whose infinitesimal generator is 4 = —d*/dx*. This is
the setup required for the next theorem, whose proof will not be repeated here;
see, for example, [6] and [8].

THEOREM 4.1 (Feynmann-Kac formula). Let V(x) be a bounded piecewise con-
tinuous function, and let f(x) € C*. Then the solution to

du d*u
(4.8) = = ST V(x)u
u(0, x) = f(x)
is given by
(4.9) u(t, x) = Efexp{—{§ V(x(a)) do} f(x(£))} »

where the expectation is computed by replacing \} V do by a Riemann sum and pass-
ing to the limit outside, the existence of the limit being part of the assertion.

We now use the Feynmann-Kac formula to verify equation (4.6) for the
Laplace transform of the density of the distribution ¢(a, T) of the maximum
function. Letting

Vix)=1, x>a
X a

Il
o

we should have
o(a, T) = lim,_,, P{max,.,_;.<r X(t) < a}
= lim,_,, E{exp{—2 {J V(x(s)) ds}} .

Let
&di(s, x) = (& uy(T, x)e=*T dT
where
u(T, x) = Efexp{—2 {7 V(x(s)) ds}} -

The latter is the solution of du/dt = —o*u/ox* — AV(x)u with initial function
f(x) =1, so ¢ = ¢, satisfies

P4 A+ =1, xX>a
(4.10) P4+ sp =1, x<Z a

¢  continuous at a, n=20,1,2,3

¢ bounded as x — + oo .
Thus, ¢, is of the form )
(4.11) D5, X) = (A + )™ + aexp{(2 + s)tw,x}
+ bexp{(2 + s)tw,x}, x> a
= s7! + cexp{sto, x} + dexp{stw,x}, x <L a,

where 0, = e™*, w, = e~*"*, w, = e~**4 and 0, = €****. Solving for a, b, cand d,
evaluating ¢(s, 0) for « > 0, and letting 2 — oo, we get, after some computation,

i 1 t st :
im0~ 1= oo o]
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which is the Laplace transform of ¢(a, T') in T. Differentiating this with respect
to a, we get the transform of the density of the maximum distribution:

sta
28

%
(o eT 9 P{max, , x(t) < a}dT = 2}s~texp {——ﬂ} sin
oa - 2%

This agrees with result (4.6) obtained earlier using Spitzer’s identity.

4.3. The arc-sine law. The arc-sine law for Brownian motion particles says
that the measure of the set of continuous paths starting at the origin and staying
on the positive half-line for a proportion of time less than or equal to a is given by

(4.12)  P{3 V[l +sgnx(1)]dt < a} =0, a<0

= .2~arcsina‘l, 0<agl.
T

Spitzer [14] proved the arc-sine law as a consequence of his identity (4.1). We
have already pointed out that Spitzer’s identity is a purely combinatorial result
applying to any symmetric distribution whose total measure is one, so that deri-
vation of the arc-sine law applies here as well.

An alternative method is to apply the Feynmann-Kac formula with V(x) =
A((1 + sgn x)/2) for 2 > 0 and f(x) = 1, similar to what was done by Krylov
[8]. Then, the solution u(z, x) in (4.9) evaluated at x = 0 is

E{exp {_é 1611 + sgn x(o)] do}} = {reied,P{} §§[1 + sgn x(0)] do < a} .

With this ¥, the Laplace transform ¢(s, x) = {5 u(¢, x)e~** dt of the solution
u(t, x) in (4.9) satisfies the ordinary differential equation (4.10) with @ = 0,
whose solution is of the form (4.11). Solving for the constants ¢ and d we
find that

¢(s,0) = s~ {1 y A 2@+ s) A s A sy }
A+ 5 202+ s)t + sTP[(A + s)F + st]sH(A + s)?
= (s(4 + s))°t.
The desired result (4.12) now follows upon inversion of the Laplace transforms
and evaluating at 7 = 1.

4.4. Distribution of the eigenvalues. ,Following the lead of Kac [7], Rosenblatt
[13], and Ray [12], who used probabilistic techniques to prove Weyl’s classical
result on the distribution of the eigenvalues 2, of the Laplace operator A, we
would like to prove the generalization of this result for higher-order operators
using properties of the related processes. For the heat equation, the argument
goes essentially as follows. A Brownian particle starting at time zero at point
x in an N-dimensional bounded region Q will, as + — 0, have had no time to
“feel” the boundary by time ¢. Thus, the probability of starting at x,e Q and
returning at time ¢ to x € Q, is, as r — 0, well approximated by the unrestricted
fundamental solution of the heat equation, from which one easily gets the
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desired result via the Hardy-Littlewood Tauberian theorem. The proof is in-
herently based upon the almost sure continuity of the Brownian paths.

We now show that, at least heuristically, one can use the same approach to
obtain, correctly, the asymptotic behavior of the eigenvalues of the operator
L = — A% From the Holder continuity condition (2.12), as well as from the
transform (4.6) of the distribution of the maximum function, it appears that
the absorbing barrier problem in one dimension should be described by the
boundary value problem for u, = —u,,,, with u = &’ = 0 at the endpoints of
the one-dimensional interval. We now generalize to a bounded N-dimensional
region with sufficiently regular boundary I', and let 2; and g, be the discrete
eigenvalues and normalized eigenfunctions corresponding to the eigenvalue
problem Lu + Au = 0 in Q with ¥ = ou/on = O on I'. Then,

Pt x,y) = Zexp{—2,8u(x)u(y),  xyeQ >0,
is the fundamental solution to
u, = Lu in Q
u=0ulon =0 on I
u(0, x) = da(x — y).
If we now imitate the Brownian argument and approximate p,(z, x,y) by
p(t, x,y) = p(t, y — x), where p(t, x) is the fundamental solution to the un-
restricted problem, we get
25 exp{—4;1ju’(x) ~ [(27)™" [ pw exp{— |7} @7€]
1 I'(N/4)

= 5 t— 0 .
2N+1n.N/2tN/4 I‘(N/z)

Integrating over Q yields, as t — 0,
Q 4
Siexp{—2;} = (P d{T, 1} ~ 1] T(N/4)

2N+1n.N/2tN/4 F(N/2)

where |Q| denotes the measure of the region Q, from which, via the Hardy-
Littlewood Tauberian theorem, we obtain
— ~ 12 /4
(4.13) N2) = Zial P ANT(N]2) AN A— 00,
This result can be obtained using the classical methods of operator theory;
in particular, for the I-dimensional case Q = {x: 0 < x < L} with »(0) =
u(L) = w'(0) = w'(L) = 0, the eigenvalues 2, satisfy the equation 1 =

J

cos A;AL - cosh 2;#L, and thus 2; ~ [(2j + 1)z/2L]* as 2; becomes infinite, so

N(2) = 2ia,<2 1 ~ number of integers that are less than or equal to L 3
T

~ L
T

which agrees with (4.13) for N = 1.
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Earlier, when discussing the distribution of the maximum function, we argued
that the sample paths were not a.s. continuous as Brownian paths are. What
we might conjecture from the results of this action is that the paths are “locally
continuous with a high ‘probability’” in the sense that we may invoke the prob-
abilistic principle that an interior particle will not “feel the boundary” as ¢ — 0.

5. Central limit theorem. In this section we prove two versions of a central
limit theorem for independent random variables, identically distributed by a
signed measure, whose first five moments exist as absolutely convergent inte-
grals and which are normalized to have first three moments equal to zero and
fourth moment equal to (—4!).

THEOREM 5.1 (central limit theorem). Ler x;, i =1,2, ..., be independent
random variables, identically distributed by a signed measure p, such that

fmdyzl, waxjd/j: 0 lf ]:1,2,3
. |xfldu] < oo

Lets, = x, + X, + - - -x,. Then, for any function ¢ € C% whose Fourier transform
¢ has compact support, we have

(5.2) lim, ., E {go (s_>} = =, o(x)p(1, x) dx .

nt

ProoF. Let x;, = x. Then
Efexp{ics,[ni}} = [E{exp {iéx/nt}}]" .
Upon expanding exp{i¢x/nt} about x = 0 and taking expectations, we get
Elexp(igs,/nt}] = (Efexpliexintjly = | 1 - £ 4 o [EE}T",
n n

For ¢ € C7 whose Fourier transform ¢ has compact support,

Elo (%)} = 1= ¢()Eexp g, )} d

e " Eé £156 n
= gm0 £ o )]
— §Z. @(§) exp{—§&1} dé
= {2 o(x)p(1, x) dx . 0

REMARK 5.1. The eligible functions ¢ for this central limit theorem are en-
tire functions of finite exponential type, i.e., functions ¢ such that lo(x)] <
constant X e’ for some finite T and any complex x.

THEOREM 5.2 (central limit theorem). Letx, (i = 1,2, .. *)s Sn, and p be as in
Theorem 5.1, and let the signed measure y. have a density f(x) with Fourier transform



456 KENNETH J. HOCHBERG

f such that |f| < (27)~'. Then, for any ¢ € C%, we have
(5.2) lim, ., E {90 <£{>} = {=. o(x)p(1, x) dx .
n

PROOF. Since |f| < (27)7,
|E{exp{i€x/nt}}| = [(2. exp{ifx/ni}f(x) dx|
= 2alf(en ) < 1,
S0
|E{exp{i€s./ni}}| = |E{exp{ix/nt}}|"
= |1 — &n + O(IEP/mt)" < 1
for all £, thus assuring the convergence
V2o G(§)Efexp{i€s,/ni}} d€ — (2. §(S) exp{—£T}dl . O
REMARK 5.2. There are many such functions; for example,
f(x) = (k/m)H[(— 12k + 15) + (48k® — 5k/2)x* 4 (—16k* 4 k?/2)x*] exp{—kx’}
satisfies conditions (5.1) where k is any positive constant, and its Fourier
transform

f(8) = Qu)7[1 + &/4k + (F5k* — 1)&*] exp{—&7/4k}
has modulus at most (27)~* as long as k lies between zero and }-2%.

6. The general even-order equation. We now present the analogues of for-
mulas contained in Sections 2 through 5, generalized to the process related to
the partial differential equation

, du wpy 02U
(2.1) E—:(_I)HW’ —0<x< 0,05t 0.

Their demonstrations are, of course, similar to those already presented. The
number to the left of each formula is the same (modulo a “prime” symbol) as
the number of the corresponding formula found in the previous sections.

(23) Pt x) = [exp{—Enn)]" = (2m)7 §=. e exp{—&} d .
(2.4y p(t, x) = p(1, ¢V mx)g=m
2.5y p(1, x) = kx-m/@n-b exp{_ gx/(3n=D} cos (Hx*n/En=D)
+ lower order terms.
(2.6) A, = c(n)k*=22n 4 O{k=V2n}
where ¢(n) isa constant dependingon n.

2n

Q.Y §xmp(n, x)dx = (— 1) 552"

2.8y § xip(t, x)dx = 0, j=1,2,...,2n— 1.

exp(—m)| = (=1
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In Proposition 2.2, (i), (ii), and (iii) remain unchanged, while (iv) and (v)
become

@ivy tnx(1/t) ,

vy cx(tfc*) .
3.7y $o p(X()(dx)y™(r) = (=1)"*(2n)! §5 ¢(x(r)) dt .
(3.8) (dxy(t) = (= 1)***(2n)! dr .
(3.11y f(x(8)) = f(x(a)) = i";ﬁ% §a fR () (dx) ()

+ (=1 e e (x(n)) dt -
(3.13y df = Z,i";,‘zl!_ [@(dxyr + (= 1)m1fem gy,
™ k k— I\}
szl G) - (5]
(3.14y -0, Jj# 2n
—(=D*"'(2n)!, j=2n as m-— co.

(3.29)y w) = exp{ ey (— l)kHi—k Y (dx)"(s)} = exp{é(1)} = 3] [Sflt')]n

satisfies dy = ay dx, y(0) = 1.
(4.5) (o (e eTe*d,o(a, T)dT

D G z,(u) [ L —
~ e~ T 1

where z,(s) = [exp{—(2k — Dzi}s]***, k = 1,2, ..., n.

4.6y  (pe 5‘% P{max,., x(s) < a} dT

exp{—(2k — 1)mi/2n}
[2 + iz(u)]

= LTt exp(—(2k — tyzij2n) | exp{—2,(u)a} .

= ITk=1ks [20(0) — 2;(w)]
The conditions (5.1) for the central limit theorem become

{dp=1, (§xidp=0, j=1,2,.-,2n—1,
(5.1y = (=1)""'2n)!, j=2n,
§ [xldp] < oo,

and the conclusion is that
(5.2 lim, ., E {go (%)} = §=. p(x)p(1, x) dx .

Acknowledgment. The author wishes to take this opportunity to thank



458 KENNETH J. HOCHBERG

Professor H. P. McKean, Jr., for his most valuable suggestions and comments
throughout the course of this research.

REFERENCES

[1] BaXTER, G. and DONsKER, M. D. (1957). On the distribution of the supremum functional
for processes with stationary independent increments. Trans. Amer. Math. Soc. 85
73-87.

[2] BurweLL, W. R. (1923). Asymptotic expansions of generalized hypergeometric functions.
Proc. London Math. Soc. (2) 22 57-72.

[3] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

[4] It6, K. (1951). On a formula concerning stochastic differentials. Nagoya Math. J. 3 55-65.

[5] Ir6, K. (1961). On stochastic differential equations. Mem. Amer. Math. Soc. No. 4.

[6] KAc, M. (1949). On distributions of certain Wiener functionals. Trans. Amer. Math. Soc.
65 1-13.

[7] Kac, M. (1951). On some connections between probability theory and differential and in-
tegral equations. Proc. Second Berkeley Symp. Math. Stat. and Prob. 189-215, Univ.
of California Press.

[8] KryLOV, V. YU. (1960). Some properties of the distribution corresponding to the equation
ou/at = (—1)9+132eu/ox2e. Soviet Math. Dokl. 1 760-763.

[9] McKEAN, H. P. (1969). Stochastic Integrals. Probability and Math. Stat. No. 5, Academic
Press, New York.

[10] MEYER, P. A. (1966). Probability and Potentials. Blaisdell, Waltham, Mass.
[11] PéLyA, G. (1923). On the zeros of an integral function represented by Fourier’s integral.
Messenger of Math. 52 185-188.
[12] RAy, D. (1954). On spectra of second-order differential operators. Trans. Amer. Math. Soc.
77 299-321.
[13] ROSENBLATT, M. (1951). On a class of Markov processes. Trans. Amer. Math. Soc. 71
120-135.
[14] SpiTzER, F. (1956). A combinatorial lemma and its applications to probability theory.
Trans. Amer. Math. Soc. 82 323-339.
DEPARTMENT OF MATHEMATICS
CARLETON UNIVERSITY
OtTAWA, CANADA KIS 5B6



