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DENSITY-PRESERVING STATISTICS AND DENSITIES
FOR SAMPLE MEANS

By P. E. Juprr! AND K. V. MARDIA
University of Leeds

Among functions between manifolds those which transform proba-
bility distributions with densities to probability distributions with densities
are characterised as almost submersions. As an application, conditions are
given on sample size for sample means of distributions with density on
Stiefel manifolds and Grassmannians to have densities.

1. Introduction and summary. Consider a probability distribution with a
density on an n-dimensional submanifold M of R? and suppose that M is not
contained in any proper affine subspace. A natural conjecture is that for samples
of size r the sample mean has a density if r is large enough. This is false and a
counterexample is given in Section 3. One might next conjecture instead that
if M is analytic then the sample mean has a density if r > p/n. This too is false
and counterexamples are given in Section 3.

An obvious question now is: which functions between manifolds transform
probability distributions with densities to probability distributions with densi-
ties? These functions are characterised as almost submersions in Section 2. In
Section 3 this result is applied to the case of sample means of probability dis-
tributions on Stiefel manifolds and on Grassmannians. In fact this work was
motivated by particular distributions of practical importance on these manifolds
in Khatri and Mardia (1977).

2. Almost submersions. Which functions from one manifold to another trans-
form probability distributions with densities to probability distributions with
densities? To make this question more precise, first recall that although a C=
manifold does not in general possess a distinguished probability measure, co-
ordinate charts transfer Lebesgue measure to each coordinate neighbourhood.
Further, as the coordinate transformations are C, the concept of null set (of
measure zero) is well defined.

DEFINITION. A probability distribution x on a manifold M has a density (resp.
a C density) if its restriction to each coordinate neighbourhood has a density
(resp. a Cr density) with respect to Lebesgue measure. p has a density which is
Cr a.e. if there is a closed null set Z in M with #(Z) = 0 and such that the
restriction of y to the manifold M\Z has a C~ density.
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DEFINITION. Let t: M — N be a function between manifolds. ¢ is density-
preserving (resp. C* density-preserving, resp. a.e. C" density preserving) if for every
probability distribution on M which has a density (resp. a C* density, resp. a
density which is C* a.e.), the transformed probability distribution on N has a
density (resp. a Cr density, resp. a density which is C” a.e.).

The simplest example of a density-preserving function is a projection R? X
R? — R? sending a probability distribution to its marginal distribution, so we
may reasonably expect the most complicated example to be “locally a projection,”
i.e., a submersion. Recall that r: M — N is a submersion if the derivative of ¢
has rank everywhere equal to the dimension of N. Brickell and Clark (1970)
give the basic facts about submersions which we shall need.

DEFINITION. Let r: M — N be a C* function, r = 1. A point of M at which
the derivative of ¢ has rank less than the dimension of N is a critical point of t.
C will denote the set of critical points of 7. t is an almost submersion if C is
null.

Now we can characterise the density-preserving functions. First recall that
t is proper if the inverse image of every compact set is compact.

THEOREM 1. Let t: M — N be a C* function. Then t is density-preserving if and
only if t is an almost submersion. If t is proper (so, in particular, if M is compact)
then t is a.e. C" density-preserving if and only if t is an almost submersion.

ProoF. By Sard’s theorem (Sternberg (1964), page 47), #(C) is null. If ¢ is
not an almost submersion, C is not null, so there is a probability distribution
on M which has a C= density giving C positive probability. The transformed
probability distribution then gives #(C) positive probability, so cannot have a
density. Thus ¢ is not density-preserving.

Conversely, suppose that ¢ is an almost submersion. We shall proceed by
“integration along the fibre.” An outline of this procedure in the setting of
differential topology is given by Bott (1972), pages 14, 15. Consider four cases
of increasing complexity.

Case 1. tisthe projection R"x R? — R". tis obviously density-preserving—
indeed ¢ is C” density-preserving for densities with compact support (by a standard
argument using uniform continuity and differentiation under the integral sign).

CASE 2. tis a submersion.

By a variant of the inverse function theorem, for each point x in M, there
are coordinate charts for M round x and N round #(x) with respect to which ¢
has the local form of projection on the first n = dim N coordinates, as in Case 1
(Brickell and Clark (1970), Lemma 6.1.1). Intuitively, we now sum over co-
ordinate neighbourhoods. More precisely, we cover M by such charts and take
a subordinate partition of unity {¢,} (Brickell and Clark (1970), Section 3.4).
Given a probability measure 2 on M with a density each ¢, ¢ has a density and
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is contained in one of the coordinate neighbourhoods. By Case 1, the trans-
formed measure 1,(¢, 1) = (@, ),t~* has a density. Thus t, p = t,(X, $att) =
o 14(P, 1) has a density. As there may be infinitely many terms in the sum,
nothing can be said about differentiability of this density.

CASE 3. tis an almost submersion.

Put U = M\C and let s be the restriction of t to U. Then s is a submersion
as in Case 2. Also, given a probability measure with density on M, the trans-
formed measure by ¢ is the transformed measure by s of the restriction to U.

CASE 4. 1 is a proper almost submersion. Let y be a probability measure on
M having a density which is C” a.e. Let Z be a closed null set with x(Z) =0
such that the restriction of 2 to M\Z has a C density. In the notation of Case 3,
t(H(C U Z)) = C U s(HC U Z)). As s is a submersion, the inverse image
under s of a null set is null (because this is true of projections). By hypothesis
C and Z are null, so t~(#(C U Z)) is null. Put V' = M\t=}(¢(C U Z)). As tis
proper and N is locally compact, ¥ is open and the restriction of 7 to V' is a proper
submersion. Now we can proceed as in Case 2. However, as the submersion
is proper, every point of #(¥) has a compact neighbourhood K with r7(K)
compact. Thus in the restriction of Y}, #,(¢, ) to K only finitely many terms
are nonzero. It follows that the density of the transformed probability measure
is C* on #(¥) and so C" a.e. on N.

REMARKS. (i) It is usually reasonably easy to test whether or not a given
function is an almost submersion.

(i) The proof of the theorem provides (at least in principle) a method of
calculating the density of the transformed measure.

(iii) The proof also provides restrictions on the possible singularities and
discontinuities of the density of the transformed measure. They must be in
H(C). -

(iv) With a little more work one can prove the result also for ¢ proper and
analytic and for densities analytic a.e.

ExAaMPLE. Sample means for distributions on the circle $* = {x ¢ R*: |x|| = 1}.
Take M = S* X S X S', N = R?, 1(X,, X,, X;) = §(X, + X, + X;). Thederivative
of t at (X, X,, X;) is (&, &5, &) — 4(6, + &, + &) where §,x/ =0, i=1,2,3.
This has rank less than 2 precisely when the tangent lines to S* at x,, X,, X, are
parallel. C = {(X,, X,, X;): X, = +X, = +X}. Thus if R = ||{(x,, X,, X,)|| and
we consider a probability distribution with C* density on the circle, the density
of the sample mean has its singularities, if any, where R = 1 or R = } (cf.
Mardia (1972), page 95).

As usual, if t is analytic we get an ‘“all or nothing” result.

PROPOSITION. If t: M — N is analytic and M is connected, either t is an almost
submersion (and so is density preserving) or every point of M is a critical point (and
no probability distribution with a density on M is transformed by t to a probability
distribution with a density on N).



DENSITY-PRESERVING STATISTICS 691

ProofF. C is the set of points of M at which the derivative of ¢ has rank less
than n = dim N. Thus C is the set of common zeros of the determinants of the
n X n minors of the derivative of . These determinants are analytic functions
as 1 is analytic. Therefore either Cis null or C = M. If C = M, (M) is null
by Sard’s theorem, so no probability distribution on M is transformed by ¢ to
a probability distribution with a density on N.

This proposition will greatly simplify the calculations in Section 3.

3. Sample means. Let M be a submanifold of R" not contained in any proper
affine subspace, and consider a probability distribution with a density on M.
It is very tempting to assume that, for large enough samples, the sample mean
has a density. This is too optimistic. Let M be a smooth 1-dimensional sub-
manifold of R? containing a straight line segment—rather like a letter D—and
let the density be positive on this line segment. Then for all sample sizes, the
sample mean is on the line segment with positive probability and so cannot have
a density.-

One would hope to forbid such nasty behavior by restricting attention to
analytic submanifolds. Certainly all is well for most Stiefel manifolds. The
Stiefel manifold V,(R?)[= O(n, p)] is the set of orthonormal n-frames in R?.
Considering this as the set of n X p matrices X satisfying XX’ = I, gives an
analytic embedding of ¥, (R?) as a compact submanifold of R(n, p), the vector
space of n X p matrices with real entries.

THEOREM 2. The sample mean function a: V, (R?)" — R(n, p) defined by
alX, X,, -+, X,) = %(XI_F S+ X))

is a.e. C* density-preserving if and only if
r=2 for n<p, .
r=3 for n=p=3.

If n = p = 2, a is not density-preserving.

ProoF. An immediate consequence of the definition of critical point is that
a necessary condition for a to be an almost submersion is that dim V,(IR?)" >
dim R(n, p). Asdim V,(R?) = np — n(n+ 1)/2and dim R(n, p) = np, a necessary
condition for « to be a.e. C* density-preserving is » = 2 for n < p, r = 3 for
n=pz=3.

To prove the condition sufficient we shall use the function 8: SO(p) x SO(p)—
R(p — 1, p) defined by (X, X,) = 3n(X, + X,), where 7 : R(p, p) > R(p — 1, p)
deletes the last row of a matrix. We shall show that j is an almost submersion.
The tangent space of O(p) at X, is the set of Y,[= dX,] satisfying X,Y,” +
Y, X, = 0,, and the derivative of 8 sends (Y,, Y,) to 4=(Y, + Y,). Let G e O(p)
be the permutation matrix with entries g,; =1 if i = j + 1modp, g,; = 0
otherwise. Put J = diag(1, ---, 1, —1) and define T'¢ SO(p) by T' = G for p
odd, T = JG for p even. The derivative of 8 at (I, T')sends (A, BT') to 3=(A, BI")
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where A and B are antisymmetric p X p matrices. Consider the associated linear
function y from antisymmetric p X p matrices to symmetric (p — 1) X (p — 1)
matrices defined by y(B) = po(BT' + (BT')’), where p deletes the last row and
column. IfBhasentries b,;, y(B) hasentries b, ;,, — b,,, ;. Take bases{E;; —E;;:
1 < i< j< p} of the antisymmetric p X p matrices and {E;; + E;;: 1 <i <
j < p — 1} of the symmetric (p — 1) X (p — 1) matrices, where E,; is the matrix
with (i, j)th entry 1 and other entries 0. If these bases are ordered lexicographi-
cally y is represented by a triangular matrix with nonzero diagonal entries. Thus
7 is invertible. It follows that the derivative of 8 at (I, T') is onto, so (L,, T) is
not a critical point of 8. As 8 is analytic and SO(p) is connected, § is an almost
submersion by the proposition.

Now for n < p there are functions =, : SO(p) — V,(R?), #,: R(p — 1, p) —
R(n, p) which delete all but the first n rows of a matrix. =, is onto and 7, is a
submersion. Also a(r,(X,), 7,(X,)) = #,(8(X,, X,)). It follows that a is an almost
submersion for r = 2 and hence for r = 2. As V,(R?) is compact, Theorem 1
shows that « is a.e. C* density preserving.

Ifn=pz=3, put
I
0 R

K e O
R=1(0 0 1
e —k O

where 2¢* = 1. Then H e SO(p).

We claim that (I,, G, H) is not a critical point of @ for p > 4. To see this,
first note that if X = (x,;) is of the form A + BG with A, B antisymmetric
p X pmatrices, then for 1 < r < p, ¢(X) = X, ,-, X;; = 0 where all subscripts
are taken mod p. As 7 (in the calculation for n = p — 1) is invertible, X is of
the form A + BG if and only if ¢ (X) = 0,1 < r < p. A brief calculation now
shows that the function taking the antisymmetric matrix C to (¢,(CH), - - -,
¢,(CH)) maps onto R?. Thus the function (A, B, C) - A 4+ BG + CH is onto,
and so (I, G, H) is not a critical point of @. If p = 3, (I;, G, H?) is not a critical
point of a. Similarly (I,, T, H) is not a critical point of a. (Use ¢(X) =
DivjerXij — DerjepirXije) Thus(xI,, £G, +H)for podd(p = 5), (£L, +G,
+H?) for p = 3, (I, G, H), (I, T, H), (J, T, HJ) etc. for p even are noncritical
points of a in each component of O(p) X O(p) X O(p). Also « is analytic, so
by the proposition « is an almost submersion for = 3 and so for r = 3. Thus
a is a.e. C* density-preserving.

Finally, recall that SO(p) C O(p) = V,(R?) and that normalised Haar measure
on V,(R?) assigns to SO(p) measure . Now dim R(2, 2) = 4, but SO(2) is con-
tained in the two-dimensional subspace of matrices of the form (_: ?). Thus if
n = p = 2, for any r the image under a of normalised Haar measure gives positive
measure to a proper subspace, so « is not density-preserving.

with
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The above results lead to the conjecture that for a connected compact analytic
submanifold M of R? which is not contained in a proper affine subspace the sam-
ple mean function for sample size r is a.e. C* density-preserving if r - dim M = p.
However, Theorem 3 below shows that for projective spaces this is too optimistic.
The condition in the conjecture reduces to r = (p + 2)/2. This is not a sufficient
condition. The true necessary and sufficient condition is » > p. '

Consider the Grassmann manifold G,(IR?) of n-dimensional subspaces of R?.
Identifying each subspace with the orthogonal projection onto it we get an
analytic embedding of G,(R?) onto R(p, p) with image the set of matrices X
satisfying X = X’ = X? and tr X = n. Thus if S,(p) denotes the affine space of
symmetric p X p matrices with trace n, G,(R?) is a compact connected analytic
submanifold of S,(p).

THEOREM 3. Define the sample mean function a: G, (R?)" — S,(p) by
1
a(xl’ ”"Xr):'_r_(xl_*_ e +xr)’

Then forr = p, 1 < n < p, a is a.e. C* density-preserving. If n =1 (so G (R?)
is real projective p-space), a is density-preserving if and only if r = p.

Proor. Consider the function =: V,(R?) — G,(R?) defined by n(X) = X'X.
(The geometrical interpretation of « is that it maps each frame to the orthogonal
projection onto the subspace it spans.) The tangent space to V,(R?)"at (X,, - - -,
X,)istheset of (Y,, - - -, Y,) satisfying X, Y,/ + Y, X, = 0,, 1 < i < r; the tangent
space to S,(p) at any point is Sy(p); and the derivative of a,7" at (X,, ---, X,)
sends (Y, ---, Y, )to1/r 37 (Y,/X, + X/'Y,). Let{e,, ---,e,} beanorthonormal
base of R?. Then {e/e; — e/e,, j = 2;e/e; + e;'e,, i < j} is a base of Sy(p).

Define X,, - - -, X, € V,(R?) by

X = (e e, X/ =(C+e) e, - e, j=2.

Then a brief calculation shows that (X,, - - -, X,) is not a critical point of a,r?,
so (n(X,), - --, m(X,)) is not a critical point of @. By the proposition a is an
almost submersion for r = p and so for r = p. Thus by Theorem 1 « is a.e. C?
density-preserving.

If n =1, V(R?) = §*-*. Given (X,, ---, X,)e (5?7, let {f,, ---, f,} be an
orthonormal base of the space spanned by X, ---, X, and extend it to an
orthonormal base {f,, - - -, f,} of R?. The image under the derivative of a,z"
of the tangent space at (X, - - -, X,) is contained in the span of the f/f; + f/f,
withi < sorj < 5. Ass < p,f/f, — f/f isnotin thisimage. Thus(X,, ---,X,)
is a critical point of a,7", so a,z" is not an almost submersion. As r is a sub-
mersion it follows that « is not an almost submersion, so is not density-preserving.
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