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A MARTINGALE APPROACH TO THE POISSON
CONVERGENCE OF SIMPLE
POINT PROCESSES!

By TiMm BrROwWN
University of Cambridge

The paper concerns the Doob-Meyer increasing processes of simple
point processes on the positive half line. Itis shown that the weak conver-
gence of such point processes to a simple Poisson process is implied by the
pointwise weak convergence of their increasing processes, provided that
the increasing processes satisfy a mild regularity condition. Conditions
under which the regularity is satisfied are investigated. One condition is
that the increasing process is that of the point process with its generated
o-fields. The Poisson convergence theorem is applied to superpositions of
point processes.

1. Introduction, definitions and notation. The cumulative number of points
of a point process on the positive half-line is a positive local submartingale. Such
a process therefore has a Doob-Meyer increasing process associated with it and
this has been the subject of much work recently. Attention has focused on
showing that for simple point processes the increasing process determines the
distribution of the point process (e.g., [10], [11]), on obtaining representations
for martingales using it (e.g., [2], [3], [5], [7], [10]) and in its applications to
statistics (Aalen (1976)). In this paper it is shown that weak convergence of
simple point processes to a simple Poisson process is implied by the weak con-
vergence of their increasing processes to a continuous (deterministic) function
at each point of the positive half-line (Theorem 1, Section 2). Section 3 pres-
ents some information about the structure of increasing processes of simple point
processes. This information is needed to apply the convergence result to super-
positions of point processes (Section 4).

Define X to be the space of right continuous, increasing, step functions,
x: R* — N, with jumps of size one and x(0) = 0. Let <% be the least g-algebra
making coordinate projections from X measurable. Let (Q, %7, P) be a complete
probability space. A set, {4 (f)},5, Of sub-o-fields of " will always be in-
creasing, right continuous, with all null sets in . (0). Define a point process N
to be a measurable mapping N from (Q, .27, P) to (X, £#), and an associated set
of sub-g-fields, { & (t)},5,, Of %7 such that {N(t)},., (N(¢) is the rv whose value
at w( € Q) is N(w)’s value at #( € R*)) is adapted to {(t)},5,. We will often
write N = {N(1), & (t)},20-
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The Doob-Meyer process, A = {A(t)},;, associated with a point process, N, is
the natural increasing stochastic process such that {N(f) — A(1)},, is a local
martingale with respect to {#(t)},5,. We shall call A the compensator of N
(following Kabanov, Liptser and Shiraev (1974)). If N: @ — X is a fixed meas-
urable mapping and A, 4’ are compensators of {N(1), & (1)},z0o {N(1)s ()} 120
(respectively), then in general 4 and A4’ will differ. This is one reason why the
definition of a point process includes the associated o-fields.

If, for i = 1, z, is the time of the ith jump of N, then z, is a stopping time.
We shall frequently use the martingale facts relating to stopping times which
allow us to conclude, for instance, that {A(f A 7,)},5, is the compensator of
{N(t A 7))},20 (these facts may be found in, e.g., Meyer (1966), Chapters VI and
VII). )

We shall be interested in approximations to 4. For this purpose, if r < se RY,
we define a partition, Q, of (r, 5] to be a set of disjoint half-open intervals whose
union is (r, s]. An R-sequence of partitions, {Q,},s,, Will denote a sequence of
partitions such that

(1) if n = m then Q, is a refinement of Q,;
(2) max ,ieq, @t —1)—0.

If N is a point process and Q a partition of (r, 5] (r < se R"), then {N(t") —
N(1)}s.cr1¢ o is @ discrete submartingale difference sequence, and its increasing
process evaluated at s will be denoted a(Q). We will say that a(Q) is a discrete
approximation to A(s) — A(r) and we have

a(Q) = Xu.eq EIN(') — N(1)|.11)) -

We shall say that 4 is calculable if, for any s (= 0) and any R-sequence of par-
titions, {Q,}.21, of (0, s], we have

a(Q,) —p A(5) -
We shall call 4 locally calculable (L-calculable)if A*,the compensator of Nstopped
at 7, is calculable, for each i. Conditions under which this holds are given in
Section 3. _

The notation used above is a prototype for all the notation in this paper; for
example, if N, is a point process, its compensator will be A,and, forr < se R*
and Q,, a partition of (r, 5], then a,(Q,,) will be the discrete approximation to
A,(s) — A,(r) using Q,,.

Since knowledge of the compensator of a point process (with respect to the
generated g-fields) determines the distribution of the process (e.g., [10], [11]), we
may define a Poisson process by specifying its compensator. Hence, a Poisson pro-
cess will mean a point process which has compensator (with respect to the o-fields
generated by the process), m: Rt — R*, which is (deterministic and) continu-
ous. Note that m will then be its mean function, and that this definition includes
all Poisson processes in the usual sense, which do not have multiple points.

If {N,},, is a sequence of point processes, then its paths are all in D[0, co).
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Skorohod J, weak convergence to a Poisson process, N, in this case reduces to
convergence in distribution of (N,(t,), - --, N,(t,)) to the appropriate Poisson
random vector, for all m(e N)and0 <1, < --- < t, < oo (Straf (1972) and
Lindvall (1973)). This will be denoted N, —;,; N and —, will also serve for
convergence in distribution of random variables and vectors. We note that
this is the same as viewing {N,},., as random measures and requiring weak
convergence (with respect to the vague topology) or “finite dimensional distri-
butions” convergence (Kallenberg (1973)).

For notational convenience (e.g., when taking complicated conditional ex-
pectations), if X, Y are random variables and 4 € %7, then X — Y: 4 will be
the rv (X — Y)I(4). The notation ||.X||, will denote the norm in probability of X
(i.e., E|X|/(1 + |X])). If {X,},», and {Y,},,, are sequences of random variables
then X, ~, Y, will denote ||.X, — Y,||, — 0.

A process, N = {N(f), F()},50, Will be called a counting process, if it satisfies
all the conditions of a point process, except that its jump sizes, {S,},,,, may be
positive integer random variables with ES; < co. A counting process is clearly
a positive local submartingale, and its compensator is defined as for that of a
point process. All concepts for point processes (e.g., calculability of the com-
pensator) are extended to counting processes. A sequence of counting processes,
{N,}az1 will be called an asymptotic point process sequence, if, for each s e R*,

(1.1) E(N,(s): N, has a jump of size > 1 on (0,5])—>0.
We shall write (1.1) as
E(N,(s): N, not simple on (0,s]) —0.

2. The Poisson convergence theorem. In this section the main theorem is
stated and proved.

THEOREM 1. Let {N,},., be a sequence of point processes with compensators
{Au}nz1- Suppose N is a Poisson process with (continuous) mean function, m: R* —
R*, and that either of the following conditions hold.

(a) Each A, (n = 1) is L-calculable and, for all t ¢ R*,
A, (t) =4 m(2) .

(b) For all te R*, and for any R-sequence of partitions, {Q,}.s: of (0, 1],
EN,(t) < oo and
a,(Q,) —a m(1) -
Then
N,—;N.

Theorem 1 is analogous to Theorem 5.2 of Kallenberg (1976). The main
differences are that Kallenberg’s theorem concerns a.s. diffuse conditional in-
tensity measures (which involve conditioning on two sides instead of one), it
presupposes L, convergence of the conditional intensity measures and it applies
to point processes on general spaces with their generated o-fields. Because of
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the order properties of the half-line, compensators are more natural. For in-
stance, they determine the distribution of the point process (e.g., [10], [11])
while Kallenberg (1976) shows that conditional measures do not.

The idea of the proof of Theorem 1 is to apply suitably the following lemma,
which is implied by Proposition 43 of Freedman (1974), and is also a straight-
forward consequence of Theorem 2 of Brown and Eagleson (1971).

LemMA 1. Suppose se R* and {Q,},, is an R-sequence of partitions of (0, s].
Let {D,(t")}.i1eq, be a double array of events and { (1)}, v1cq, of o-fields such
that D,(t" e F (V) forallt' (t,t'] e Q,n=1,2,...). If

(2.1) max, ,1eq, P(Da(t’) | F (1)) =5 0
and
(2.2) Deteq, PP | 4(1)) —p 4

then 33, 11eq, I(Da(t)) converges in distribution to the Poisson law with parameter A
The proof now proceeds via two technical lemmas.

LEMMA 2. To prove Theorem 1 under condition (a), we may (and will hereafter)
assume that EN,(t) < oo (t > 0) and that each increasing process, A,, is calculable.

Proor. To prove Theorem 1, it is required to show that, for all fixed
0<t,< - o Kty <00, (Ny(1y), - +5 No(1,)) =a (N(1y), -+ -5 N(t)). Of course,
to show this, we shall only use the conditions on 4,() and its approximands,
fort < t,.. Foreachn, choose a jump time, g,, of N, such that N,(s,) = k, € R*
and P(s, < t,) — 0, n — co. The process N,/(t) = N,(t A ¢,) has compensator
A4,/(t) = A,(t A a,), so that A,/(1) -, m(t), for t < t,. Moreover, EN,/(f) =
EN,(a,) < oo, for all t > 0. For an R-sequence, {Q;}, of partitions of (0, 7],
we have a,/(Q;) —p A,/(s) (j — o), by the definition of L-calculability. Hence
A, is calculable, for each n. Finally, note (N,/(t,), - - -, N,/(t,)) ~p (Na(t1), - 5
Nn(tm))‘

LEMMA 3. Suppose the conditions of Theorem 1 hold. If se R*, there exists an
R-sequence of partitions, {Q,},z1, of (0, s] satisfying the following equations. If B,
(n=1,2, ---) is the event [max ;1. N (t") — N,(t) = 1], then

(2.3) P(B,) — 1.

(2.4) Max, ;e q, E(NL(1') — Nu(t)| (1)) =2 0 -
(2.5) a,(Q.) —p m(s) -

(2-6) Zit,ec o E(NA() — No(1): B,?) |

(provided that EN,(s) < o).

REMARK. Lemma 3 contains the technical information which will be needed
to apply Lemma 1. Although the proof of Lemma 3 appears complicated, the
idea is simple. Firstly, partitions are produced to satisfy (2.3). Secondly, these
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partitions are refined so that (2.4) and (2.5) hold. The fefinement uses the fact
that m is continuous and that, under condition (a) or (b) of Theorem 1, discrete
approximations to the compensator 4, can, for large n, be made close in prob-
ability to m.

Proof. Produce a sequence {Q,},>, of partitions which satisfy (2.3) and (2.6).
It is possible to do this because of our definition of point processes; for any
fixed n(= 1) and an R-sequence, {R,},,,, of partitions of (0,s], C, =
[max, ...z, Na(t') — N,(f) < 1] increases to [N, simple on (0, s]]. Hence
P(C,)— 1 and, because EN,(s) < oo, dominated convergence gives E(N,(s):
C,’) — 0, m — oo. Note that any refined sequence also satisfies (2.3) and (2.6).

Suppose condition (a) of Theorem 1 is satisfied. Fix je N. Find a partition,
R(j), of (0, 5] such that
2.7) Max, ;e pe (M) — m()] < 2777

Suppose R(j) has L( € N) elements in it. We may choose n(j) large enough so
that for n = n(j) and #( € R*), any end point of one of the intervals of R(j),

(2.8) P(AL(1) — m(0)] > 2757 < (L27*).

Since the compensators 4, (n = 1, 2, - - .) are all calculable, we may choose a
partition S,(j) (n = n(j), - --) including all the points of Q, and of R(j) such
that,

(29) P(|ay(Sa()) — Au(s)] > 2777 < (L27)7
and such that if (¢, #'] € R(j) and R(n, t) is the partition of (¢, #'] formed by the
points of S,(j) inside (¢, ¢'] then
(2.10) P(|A,(t") — A,(t) — a,(R(n, 1))] > 2797%) < (L2731,
Combining (2.7), (2.8) and (2.10) we see that
(2.11) P(la,(R(n, 1))] > 277) < (L2%)*.
Together (2.8) and (2.9) give
(2.12) P(lay(Su()) — m(s)] > 27771) < (L2*) 7 < 27771
Now let j vary and for n(j) < n < n(j + 1) redefine Q, to be S,(j) (for 1
n < n(1), Q, remains the same). This definition and (2.11) gives for n(j)
n<n(j+1)
P(max e q, E(N(') — N(1)| Z (1)) > 279)
< P (for some (1, 1] in R(j), |a,(R(n, 1))| > 2-4)
< 277,
Hence (2.4) is satisfied. Likewise, using (2.12), we see (2.5) is also satisfied.

Now suppose condition (b) of Theorem 1 is satisfied. Start again with the
R-sequence of partitions of (0, s], {Q,}.2,» Which satisfy (2.3) and (2.6). Again

<
=
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fix j € N and follow the procedure of (2.7). Define partitions S,(j) (n = 1,2, ---)
to include Q, and R(j) so that there exists n(j) for which n = n(j) implies

P(la (S\(j)) — m(s)| > 277) < 277
and, letting R(n, t) and L be as before,
P(Im(t') — m(t) — a(R(n, 0)] > 2777 < (L2777
Redefining {Q,},», as previously, the same reasoning shows that (2.4) and (2.5)

are also satisfied under the hypothesis of condition (b) of Theorem 1.

LEMMA 4. Suppose the conditions of Theorem 1 hold. If se R*, then N,(s) —
Poisson law with parameter m(s).

PrROOF. Let {Q,},., be an R-sequence of partitions satisfying the requirements
of Lemma 3. For (1,#]€Q, (n=1,2, ---), let D (t') = [N(t) — N(1) = 1]
and recall that B,, as in Lemma 3, is the event that all intervals of Q, have <
one jump in them. Then from (2.3),

(2.13) Do, IPu(1) = Dwinea, N, (") — N.() on B, ~pN,(s).
Hence Y}, 11eq, /(Da(t')) has a limit distribution iff N,(s) does and, in this case,
the two coincide. Now
(2.14) l[2(Q0) — X ce.e1e 0 PPA() | Z W)

< Ttee, E(NL(1) — No(1): ByY) .
Together (2.5), (2.6) and (2.14) produce

(2 15) Z(t,t’]eQ,, P(Dn(t’) I yn(t)) —p m(s) .
Also from (2.4)
(2.16)  max,neq, P(OW() |7 (1))

< maxeq, E(N() — N(0)| F (1) = 0.
Using (2.13), (2.15) and (2.16) in Lemma 1 concludes the proof.
ProoF oF THEOREM 1. We must show, for each k( € N), that
(2.17) 0<S5<55< - <5< 00
= (Na(8)s =5 Na(54)) =2 (N(59)5 -+ - N(sy) -

For k = 1 Lemma 4 proves (2.17). Suppose (2.17) is true for some k > 1. We
prove (2.17) in general, by induction. It suffices to show that for 0 < s, < - -
< 5,4, and arbitrary m; < - - < my, (2 0)
(2.18) P(N,(5;) = My« = o5 No(Si41) = Misa)

’ - P(N(sl) =my -, N(sk+1) = mk+1) .
Let F, be the event [N,(s;) = m,, - - -, N,(s,) = m,]. Since P(F,) converges to
a number greater than zero, P(F,) > 0 for all n sufficiently large. Without loss
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of generality we assume P(F,) > O for all n. To prove (2.18) is equivalent to
proving
(2.19) P(No(Sk41) — Na(s) = My — my | F,)

— P(N(5.41) — N(s;) = my,; — m,| F)

in view of the induction assumption (here F is the event [N(s) =m,, - - -,
N(s;) = m,]). To prove this we shall use the following lemma.

LEMMA 5. Let N be a point process with compensator A. Let Fe F(s),
FC [N(s)y=m] (meN,s>0) and P(F) > 0. Define the probability space
(F, & N F, P,) where % N F={ANF: Ac % } and P, is the probability on
" conditional on F. Define NF to be the point process on F where, fort = 0, NF(t)
is the restriction of N(s + t) — N(s) to F and FF(t) ={AN F: Ae F (s + 1)}
If the compensator of NF is denoted AF, then, for t > 0, AF(t) is the restriction
of A(s + t) — A(s) to F. Moreover, if A is calculable, then so is AF. Finally, if
Q is a partition of (0, t] (t = 0), then aF(Q) is the restriction of a(Q’) to F, where
Q' ={s+2zs5+2]: (2 2]€Q}.

Proor. Straightforward, e.g., AF is natural if, for each jump time z, (i > m)
of N and for any positive bounded right-continuous martingale {Y(#)},,, (W.r.t.
{FF(1)},30), We have '

(2.20) E(V5i~°* Y(t) dAF(t)) = Ep({5i~* Y(t—) dAF(2)) ,

where E is expectation with respect to P, (Meyer (1966), Theorem 19, VII).
But the left-hand side of (2.20) equals (PF)~'E({:: Z(r) dA(r)), where Z(t) (t = s)
is defined to be Y(f) on F and zero outside F.

A similar computation applies to the right-hand side of (2.20). However
{Z(?)},5, is a martingale (w.r.t. {&(r)},;,). Hence the fact that A is natural
gives the validity of (2.20) and thus the naturalness of AF.

Returning to the proof of Theorem 1, the notation of Lemma 5 will be directly
transferred to the point process N,. Suppose condition (a) of Theorem 1 holds.
Lemma 5 informs us that each A4, F, (n e N) is calculable. In addition, for any
teRtand ¢ > 0,

Pe (|4 Fo(0) — (m(t + 5) — m(s)] > <)
= (P(1ue + 9 = m(e + 91 > 2) + P(14,(9) = m(9)] > 5-)) [P(F)

and the latter — 0. Hence 4, F, (1) — m(t 4 s) — m(s), for all € R*, and thus
condition (a) of Theorem 1 holds for {4, F,},,, and m(+ + s) — m(s). Similarly,
if condition (b) of Theorem 1 holds, then for any R-sequence of partitions,
{Q.}nz1 Of (0, 1] (t € RY), a,(Q,) — m(t + 5s) — m(s). Applying Lemma 4 to the
processes {N,F,},., gives equation (2.21), and the proof of Theorem 1 is com-
plete.

ReMARK. Notice that the proof of Theorem 1 applies to arbitrary counting



622 ' TIM BROWN

processes, except for the first paragraph of the proof of Lemma 3. This argu-
ment is easily seen to be valid if we assume that {N,},., is an asymptotic se-
quence of point processes, and hence so is Theorem 1.

3. Compensators which are L-calculable. To satisfy Theorem 1 condition (a)
all the compensators must be L-calculable. This section is devoted to demon-
strating processes which have L-calculable compensators. Murali-Rao (1969)
showed that if the compensator is continuous, then it is also L-calculable. How-
ever, Dellacherie and Doleans-Dade (1970) gave a counterexample to the con-
jecture that a compensator is always L-calculable. We need the following two
technical lemmas, the first of which is easy to check.

LemMA 6. If & and 57 are sub o-fields of 57, B is an arbitrary event, Ce &
and

3.1) nNnC=#ncC

then

(3.2) P(BnC]?):P(BnC]%)/P(C]%) on C
=0 on C°

where P(C|5%") is a version for which P(C| ") + 0 on C.

If N is a point process, recall that {r;},, is the sequence of jump times of N.
Write T, for the random vector (¢, ---,7) (i = 1,2, ---).

LEMMA 7. Suppose that {N(t), & (t)} is a point process such that _7(t) =
o(N(2),z £ 1), foreach t 2 0. Foralli(=1,2,.--)andt' >t =0 we have

Plr; <t <7y S V| F()) = PO < 1oy S V| TY[P(t < 701 [ T)
on [, <t< 1,4]
=0 outside [t, <t < 7,.]
where P(t < .| T,) is a version which is nonzero on [t; < t < 7;,,]

ProoF. Let & be (1), 2 beo(T;), B = [r,,; < ¥]and C = [7, < t < 7,,].
It is easily seen that C ¢ ¥ and that (3.1) holds (by checking it on generating sets
of ¥ and 2#°). The conclusion of the lemma is obtained by applying Lemma 6
and noting that [z, < t] € o(T).

Much of the following proposition appears in the literature already. However
it seems that the elementary proof given here is new and that the L-calculability
of compensators of point processes (wW.r.t. their generated o-fields) has not ap-
peared elsewhere. Papangelou (1972) gives a.s. calculability for a stationary
point process N, with EN(f) < oo, t = 0. Kallenberg (1976) has an analogous
result for conditional intensity measures of point processes in general spaces. The
representation (3.3)—(3.6) of a compensator is well known (e.g., [10], [11]).

PROPOSITION 1. Let {N(f), Z (t)},5, be a point process such that & (t) = o(N(2),
z < t) foreacht = 0. Then its compensator A is L-calculable. Moreover, if s e R*,
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a version of A(s) has the representation

(3-3) A(S) = Ay(s) + -+ + Ay(s)
where, fori = 1,2, ..., A,(s) satisfies
(3-4) A~i(s) = iepanepyy (I — Filu—, <)) tdFy(u, ).

In (3.4), the mapping F,: [0, o) X Q — [0, 1] is a regular conditional distribution
function for t,,, given t,, ..., T, such that

(3.5) F(u—, 0) <1 if (o) =u.
The random variable A(s) is defined to be zero on [F(t,) = 1] and otherwise
(3.6) AS) = Siounep (1 — F(u—))~ dF(u) .

In (3.6), F: [0, co) — [0, 1], is the distribution function of t,.
ProoF. Define, fori = 0,
Ni(s) = N(s Atyp) — N(s A Ty), (ro = 0) .
This has compensator
As) = A(s A Ty) — A(s A T)

It is easily seen that (3.3) holds with 4;(s) (i = 0, 1, - - -) thus defined. Fixi > 1.
We will now show that, if {Q,},., is an R-sequence of partitions of (0, s], then
a,(Q,) converges in probability to the right-hand side of (3.4).

Note that, for ¢, ' ¢ R*,

(3.7 Ni(t’) - Ni(t) =t <7, 7]
and
(3'8) ”Z(t,t']eq,, EIt £ 7, < 754y £ V]| j(’))”l

= Z(t,t']eq,, Pt <7, 1]
The right-hand side of (3.8) converges to zero because it is dominated by the
probability that there are two or more jumps of the process in one of the sub-

intervals of Q,. The limit of this is the probability that the path of N does not
lie in X. Hence, using (3.7),

(3.9) a(Q,) ~p ZLt,ee Qn Pr, <t <t S| F(1).
Now we use the special form of the o-fields of N. That form allows us to
apply Lemma 7 to evaluate the terms of the right-hand side of (3.9). Use the

version of P(z,,, > t|T,) in this lemma to construct F,, a regular conditional
distribution function of z,,, given T satisfying (3.5). We then have

(3.100 a,(Q.) ~p Dteneq, Xl ')

where X,(t, t') is the rv whose value is (F,(t', w) — F(t, w))/(1 — F(t, »)) for
wel[r; <t< 7,,]andO0forw¢[r, < t < 7;,,]. Fix w,€[r; < s], and recognize
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the sum on the right-hand side of (3.10) as, for each n, the integral of a step
function w.r.t. the measure on the half-line generated by F;(., w,). Apply domi-
nated convergence to these step functions, for each w,€ [7; < 5], and obtain

(3.11) 3,(Q0) =p Sccponcyyn (1 — Fil—, ) dF(u, ) .

Here, of course, the integral is interpreted as zero outside [r, < s]. Similar
considerations yield the analogue for i = 0.

Since N, (i = 0) is bounded by 1 and is a point process, it is a submartingale
of class D. It can be decomposed into a martingale and a potential of class D
(Meyer (1966), Theorem 11, VI). By applying Murali-Rao’s (1969) proof of the
Meyer decomposition theorem we see that 4,(Q,) — 4,(s) in the weak L, topology.
Hence {@,(Q,)},s: is uniformly integrable. This and (3.11) imply that a,(Q,) —
in the weak L, topology to the right-hand side of (3.11). The a.s. uniqueness
of weak L, limits then gives (3.4), (3.6) and the calculability of 4, (i = 0).

Let M = 1 and N¥ the process, N, stopped at r,,. Then, from above,

a"(Q.) = Xi%' a(Qy)
—p LI AYS)
= AY(s) .
An advantage of the proof of Proposition 1 is that the same technique can be

used, in conjunction with the proposition, to show that the compensators of a
wider class of point processes are calculable.

COROLLARY 1. Suppose that {Ny(1), & (D)}zr i = 1,2, - -+, 1, is a sequence of
independent point processes and that 5 (1) = o(Ny(z), z < 1) for each t ¢ R* and
i=1,2, ..., r. Further suppose that {N(t), F (t)},z, is a point process where

N = M) + - + N(0),
) = (), - FD) -

Then the compensator, A, of N is L-calculable. For each s,
(3.12) A(s) = Ay(s) + --- + A(5) a.s.,
where A, is the compensator of N, (i = 1,2, ..., r).

ReMaRrks. 1. The structure of 4, is given by Proposition 1. Hence Propo-
sition 1 and Corollary 1 give us a good idea of the structure of 4.

2. Since the paths of an increasing process are defined to be right continuous,
there is a set of probability zero, outside of which any version of the compen-
sator will satisfy (3.12) for each se R*. Likewise in equations (3.3)—(3.6) of
Proposition 1.

3. If r = 1, then Corollary 1 asserts the calculability part of Proposition 1.

4. Suppose .F (1) = a(F (1), - - -, F (1), A(1)), where {_#(1)},;, is a set of
sub-o-fields of . which is independent of N. Corollary 1 is still true, since
the argument is unchanged.
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5. It is an assumption (from the definition of a point process) that the o-fields
{&#(#)},5, in Corollary 1 (and, also, Proposition 1 and Theorem 1) are right con-
tinuous. Take (2, %) to be a product of  copies of X with the product s-field.
An argument, similar to that of Lemma 1 of Kabanov, Liptser and Shiraev
(1974), shows that in this case the {_57(t)},,, are right continuous. Hence we
may always apply Corollary 1 by changing to the canonical space.

Proor. Let {Q,} be an R-sequence of partitions of (0, s].
For M =1,2, ... we have

(3-13) @"(Qn) = Xi-1 aw(Qn)

where N* is N stopped at z,, the Mth jump of N and N, is N, stopped at z,,.
Fixie{l, ---,r}. Leto,be 7, if r, = s, and otherwise the first endpoint of
Q, which is > 7. Define X, tobe 3, ,1.q, E(Ny(t' A 74* A a,) — Nt Ayt A
0,| F(t)), where 7, is the Mth jump of N,. Now

(3-14) A 1Ye — @u(@a)lh = E(Noa A 7y') — Ni(7y))

-0,
as n — oo, since |Ny(a, A 7,°) — Ny(t,)| < M and N0, A 74°) — N(z,). How-

ever ) )
Yo = 2 E(N(t' A 7y') — Nt A 7,') | F (1))

where the summation is over (¢, '] in Q, for which #' < ¢,. From the proof of
the previous proposition it can now be seen that

(3.15) Y, op A(s ATt ATy
= A(s NTy).
From (3.13), (3.14) and (3.15) we see that
a"(Q,) —p LI A(S AN Ty) .

Hence, from the argument at the end of the last proof, the proof of the corollary
is complete.

ReMARK. Corollary 1 is true if N is a counting process and {N,}; are point
processes, as the same proof applies.

4. Application. Throughout this section we will consider a triangular array
of counting processes, N,, = {N,,(1), F ,.()}20o n€N and i =1, ..., k, It
will be assumed that {N,}¢», is an independent sequence, and that . () =
0(N,u(2), 2 £ 1), (t Z 0, ne N). The point process, N, will be a Poisson process
with continuous mean function, m: R* — R*. Define, for each n and ¢ =0,
(4‘1) N,,(t) = Xt Nni(t) 5
(“2) T = ATl s F (1)

The combination of Theorem 1 and Corollary 1 immediately produces
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COROLLARY 2. Suppose N, = {N,(1), F ,(t)},z, is a sequence of point processes.
If, for each se R*,

211 Apy(5) —q m(s)
Nn = ngl Nm‘. 4 N.

REMARK. The remarks after the proofs of Theorem 1 and Corollary 1 show
that Corollary 2 is true if each N, (neN,i=1, ..., k,) isa point process and
{N.}.z: is asymptotically a point process sequence.

Classically it was just assumed that each N, was a counting process. How-
ever, a uniform asymptotic negligibility condition was imposed—(4.4) in the
following corollary—and a condition to ensure that with large probability each
process contributes only one jump (cf. (4.5)). Define, for each r e R*,

(4.3) Fo(t) = P(Noi(t) 2 1)

so that F; is the distribution of the time to the first jump of N,;. We can obtain
the classical conditions (cf. Grigelionis (1963)) from Corollary 2, quite easily.

then

CoroLLARY 3 (Grigelionis and Franken). Suppose, for each s R*,

(4.4) max, ;o Foi(s) -0,
(4.5) Ste P(Vu(9) 2 2) 0
and
(4.6) St Ful9) = m(s)
Then

N,—,N.

ProoF. Define forneN,i=1,...,k,s=0
N:si(s) = Nni(s) Al 4
so that V7, is a point process. For the rest of the proof the range of summation
of all sums will be {1, ..., k,} and they will be sums over i, unless otherwise
stated. Define the counting processes,
N =2 Ny
so that from (4.5),
P(Nn,(s) + Nn(s)) —0.
It is therefore clear that N,’ and N, have the same limit distribution, if any.
We have

P(N,’ not simple on (0, s]) < Y., § Fa;(4) — F, (u—) dF,(u)

= 2 S0 25 Faj() — 20 Fj(u—) dF,(u) .
Since 3] F,; is bounded, monotonic on (0, s] and m is bounded, continuous on
(0, 5], the convergence of 3 F,; to m is uniform on (0, s]. Hence P(N,’ not
simple on (0, s]) — 0. By looking at the sets [N,’ — N, simple on (0, s]], it can
be seen that E(N,'(s): N,’ not simple on (0, s]) < right-hand side of the last
inequality + 3} F,,(s) X P(N,’ not simple on (0, s]). Hence E(N,/(s): N,’ not
simple on (0, 5]) also — 0.
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Now, note from Proposition 1,
Z A:n(s) = Z S(O:““'ni] (1 - Fm‘(u_))_l Fni(u)

where A, is the compensator of N/,; and g,, is the time of the jump of N;,. Sup-
pose F is an arbitrary distribution function, with F(0) = 0, and ¢ R*. Since

(S0 (1 — Flu—))""dF(u) — F(t)] = S0 Fu—)/(1 — F(u—)) dF(x)
< F(n)/(1 — F(1)
and, from (4.4) and (4.6),

2 F(s N o)1 — Fo(s A o,y) < MaXgqy, l—gﬂf(,s—)(s—) % Fals)

-0,
2 A(S) ~p X2 Fu(s N agy) .

|23 Fu(s A 0,5) — 2 Fa(8)] £ N,/(s) maxyg,g,, F,y(s)

—0,

we have

But

on [N,/(s) £ 1], for any /e N. Indeed,
PIN/() 2 1) S ()7 Dgmmsy 1 Faz(8) X -+ X Foy(9)
= (I(Z Fuls))'>

which is small for large /, uniformly in n, by (4.6).
Hence, combining the last three statements and (4.6),

2 An(s) ~p X Fail9)

— m(s) .

The remark after Corollary 2 yields Corollary 3.

Finally we note that Corollary 2 applies to more situations than that where
{N,} is a uniformly asymptotically negligible array. Suppose {N,},, is asymp-
totically a sequence of point processes. Let N, be a Poisson process with mean
function m for each n, and suppose ¥ %, A,,(s) —, m'(s), for each se R*. Then
ik, A,(s) —4 m(s) + m'(s) (so Corollary 2 applies) but {N,},., is not uniformly
asymptotically negligible. However if the situation is analogous to normal
convergence of random variables, then, to have Poisson convergence of {N,},
N, would decompose into iz, N,; and 3 t2; ., N,;. The processes in the first
sum would be individually close to Poisson and those in the second would be
infinitesimal (cf. Zolotarev (1967)). A discussion of this is not possible here as
Theorem 1 has no necessary condition for Poisson process convergence.
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