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UNIMODALITY OF INFINITELY DIVISIBLE
DISTRIBUTION FUNCTIONS OF CLASS L

By MAKOTO YAMAZATO
University of Tsukuba

It is shown that all infinitely divisible distribution functions of class
L are unimodal.

1. Introduction and results. A distribution function F(x) is said to belong to
the class L, or be an L distribution function, if there exists a sequence of inde-
pendent random variables {X,},, such that for suitably chosen constants B, > 0
and A, the distribution functions of the sums

Yn = Bn—l Z$=l Xk - An
converge to F(x) and the random variables
Xnksz/Bn lékén

are asymptotically constant (see Gnedenko-Kolmogorov (1954)). Obviously an
L distribution function F(x) is infinitely divisible and thus the logarithm of its
characteristic function F(f) is written in the Lévy-Khintchine formula. Lévy
(1937) found that, in order that a distribution function F(x) belongs to the class
L, it is necessary and sufficient that

log £(t) = iyt — o*1*2
(1) + §0 (e — 1 — itu/(1 + w?))|u|~"(u) du
+ e (e — 1 — itu)(1 + w?))u='k(u) du
where
k(u), l(u) 2 0, 07 |u|l(u) du + 5, uk(u)du < oo,
(¢ utk(u)du + §ZL |u|~"l(u) du < oo
and —I(u) and k(u) are nonincreasing.
A distribution function F(x) is said to be unimodal with mode m if F(x) is
convex for x < m and concave for x > m. F(x) is said to be unimodal if, for

some m, it is unimodal with mode m.
The purpose of this paper is to prove the following

THEOREM 1. All distribution functions of the class L are unimodal.

Gnedenko and Kolmogorov asserted this theorem in the original Russian
edition (1949) of their book. Their proof of this assertion depended on a theo-
rem of Lapin which stated that the convolution of two unimodal distribution
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functions with mode zero is unimodal with mode zero. But Chung (1953) pointed
out that Lapin’s theorem is incorrect, and constructed a counterexample (see
Chung’s translation of the Gnedenko-Kolmogorov book). After this, Ibragimov
(1957) asserted that there exist L distributions that are not unimodal. However,
Sun (1967) pointed out that Ibragimov’s examples are in fact unimodal. So it
has been unknown whether all distribution functions of the class L are unimodal
or not.

So far, some partial results have been obtained. Wintner (1956) showed that
every symmetric L distribution function is unimodal. Ibragimov and Chernin
(1959) asserted that the stable laws, which form a subclass of the class L, are
unimodal, but their proof contained an error (Kanter (1976)). Zolotarev (1963)
showed that an L distribution function is unimodal if ¢* = 0 and k(0+) +
I(0—) £ 1 in (1). Later, Wolfe (1971b) showed that an L distribution function
is unimodal if its Lévy measure is one-sided (that is, if either k(«) or /(x) identi-
cally vanishes). He showed also the unimodality in the case where [(0—) < 1
and k(0+) < 1. Yamazato (1975) showed the unimodality in the case where
[(0—)<land k(0+) < 2 (or [(0—) < 2 and k(0+) < 1).

On the other hand, Ibragimov (1956) introduced a concept of strong un-
imodality (he called a distribution function strongly unimodal if its convolution
with every unimodal distribution function is unimodal) and found a necessary
and sufficient condition for strong unimodality. His result is that a distribution
function is strongly unimodal if and only if it has a log concave density (that
is, the logarithm of the density is concave).

The proof of our Theorem 1 consists of two parts. The first part is to relax
the abovementioned condition of Ibragimov, under which the convolution of
two unimodal distribution functions is unimodal. We say that a function f{(x)
is log concave on an interval I if 0 < f(x) < oo on 7 and log f(x) is concave on
I. We consider two unimodal distributions, one of which is supported on [0,
o) and the other on (— oo, 0]. We will prove that, if they have densities that
are log concave on the intervals between the modes and 0, then their convo-
lution is unimodal under weak additional conditions (Lemma 1). The second
part is to check that a large class of one-sided L distribution functions satisfy
the condition of Lemma 1, and that every L distribution function is the limit of
convolutions of such distribution functions.

As an additional result, we show that all L distribution functions with one-
sided Lévy measures have the above mentioned property.

THEOREM 2. Let f(x) be the density of an L distribution function F(x). If 1 =0
and ¢* = 0 in (1), then F(x) has a mode a sich that f(x) is log concave on (c, a]
where ¢ = inf {x; f(x) > 0}. Similarly if k = 0 and ¢* = 0, then F(x) has a mode
a such that f(x) is log concave on [a, d) where d = sup {x; f(x) > O}.

2. Proof of Theorem 1. A distribution function F(x) is unimodal with mode
a if and only if F(x) is absolutely continuous on (—co, a) U (@, o) and the
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density has a version nondecreasing in (— oo, a) and nonincreasing in (a, ).
This follows easily from the definition. We always take this version of the
density.

LemMA 1. Let G(x) and H(x) be unimodal distribution functions such that G(0) =
0 and H(0) = 1, and let

F(x) = (G H)(x) = § G(x — y)dH(y) .
Let a and b be modes of G(x) and H(x), respectively. Suppose that G(x) and H(x)
are absolutely continuous with respective densities g(x) and h(x). If a >0, we
assume that g(x) is log concave on (0, al, g(a) = g(a—) = g(a+) and 9(0+) = 0.
If b < 0, we assume that h(x) is log concave on [b, 0), h(b) = h(b+) = h(b—) and
h(0—) = 0. Then F(x) is unimodal.

Proof. There are five cases: (1)a=5b=0,(2)a>0>banda 4 b= 0,
3)a>0>band a+b<0, (4) a>0=0b, (5) a=0>0b. Let flx) =
{e h(x — y)g(y)dy. This is a density of F(x). It is easy to prove that f(x) is
nondecreasing on (— oo, b) and nonincreasing on (a, ). Thus, in Case 1, F(x)
is clearly unimodal.

Case 2. We assume g(x) and h(x) are absolutely continuous on (0, co) and
(— oo, 0) respectively. Let g’(x) and #’(x) be their Radon-Nikodym derivatives.
Then f(x) has a continuous derivative f’(x). We will use the following expres-
sion of it:

2) f(x) =L (g(x — y)dy + B H()g(x — y) dy x>b.
We prove the following: (i) If f’(x) < O for some x in[0, a + b), then f'(y) < 0
forall y in (x, a + b). (ii) If f'(x) = O for some x in (b, a + b], then f'(y) = 0
for all y in [b, x).

Let
A(x) = g(x + ¢)/g(x)  if g(x) >0
=0 if gx)=0.

Since g(x) is continuous on [0, o), 4,(x) is continuous on (0, co). Since g(x) is
log concave on (0, a], A4,(x) is nonincreasing for 0 < x < a — ¢. Since g(x) is
nondecreasing on [0, a] and nonincreasing on [a, o), we see that A4,(x) is non-
increasing also on @ — ¢ < x < a and A4,(x) < 1 for x > a and 4,(x) = 1 for
x<La—e.

Let f'(x,) < O for x, in [0, @ + b). From (2), we have
3) [+ €) = (Lo K(9) Al — y)9(x — y) &y

+ B H () A% — )9 — y) dy -
Noting that 4,(x) is continuous and nonnegative on (0, o), that #’(x) has no

change of sign on each of (— oo, b) and (b, 0) and that #'(y)g(x, — ) is integra-
ble, we have, from (3)

4) f1(xo + &) = Axo — &) VP K (D)9(xo — ) dy
+ A%, — &) S K ()9(x — ) dy
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where x, < x, — §, < x, — b < aand x, — b < x, — &,. If we choose e > 0so
thata + b — x; > ¢, then x, — &, < @ — ¢ and thus A,(x, — &) = 1. If x, —
&, < a, we have

Ae(xo - 52) g Ae(xo - 51) )
since A4,(x) is nonincreasing on (0, a). If x, — & = a, we also have
A(x— &) =1 2= A(x, — &) .

Therefore, comparing (4) with the expression (2) of f(x,), we obtain f'(x, + ¢) <
Ofor0<e<a+ b— x,. Thus (i) is true.
Let f"(x,) = O for some x, in (b, a + b]. For ¢ < x, — b, we have from (2)

(5) /(% — &) = Afx, — ¢ — &) L H(Y)g(x, — y)dy
+ Axg — & — &) 5 M (y)g(x, — y) dy

where 0 <x,— &, —e<x,—b—e¢<x,—& —cand x,—b—c < a—e.
Thus, by a similar argument, we have f’(x, — ¢) > 0 for 0 < ¢ < x, — b and this
proves (ii).

Since the assumptions are symmetric, we obtain from (ii) the following: (iii)
If f'(x;) < O for some x, in [a + b, a), then f'(x, 4+ ¢) < 0 for e > 0. (We did
not use @ + b = 0 in proving (ii).) The unimodality of F(x) is easily shown by
(i), (ii) and (iii).

Now, drop the assumption of absolute continuity of g(x) and A(x). g(x) is
absolutely continuous on (0, a], since g(x) is log concave on (0, a]. Thus using
g(a—) = g(a+), we can find a sequence {G,(x)} of absolutely continuous dis-
tribution functions with mode a and density g,(x) such that G,(x) converges to
G(x) as n — oo, g,(x) coincides with g(x) on (0, a], g,(x) is a nonincreasing step
function on [a, o) and g,(a—) = g,(a) = g.(a+). For each G,(x), we can
choose a sequence {G,,(x)} of absolutely continuous unimodal distribution
functions with mode a and density g,,(x) so that G,,(x) converges to G,(x) as
m — oo and g,,(x) is absolutely continuous on (0, o) and coincides with g(x)
on (0, a]. Similarly we can choose a sequence of absolutely continuous uni-
modal distribution functions {H,,(x)} with mode b and density #,,(x) so that
lim,_, lim,,_, H,,(x) = H(x) and 4,,(x) is absolutely continuous on (— oo, 0)
and coincides with A(x) on [b, 0). We see that (G,,, * H,,)(x) is unimodal and
converges to F(x) = (G x H)(x) as m — oo and then n — co. Since the limit
distribution function of a sequence of unimodal distribution functions is uni-
modal, F(x) is unimodal.

Case 3. Obvious from the argument of Case 2.

Case 4. We assume g(x) and A(x) are absolutely continuous on (0, co0) and
(—o0,0), respectively and #(0—) < co. Then f(x) has a continuous derivative
and

['(x) = VLo M(p)g(x — y)dy — h(0—)g(x) .
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If there is some x, in [0, @) such that f(x,) < 0, then we have for ¢ > 0
[0+ &) = Ax — €) 12a H()9(x0 — y) dy — ALx0)h(0—)g(xo)

where x, < x, — &, and hence f'(x, + ¢) < 0for0 < e < a — x,. Here we used
A(x,) = Ax, — &), which follows from the same argument as in Case 2. Hence
F(x) is unimodal.

When g(x) and A(x) do not satisfy the above assumption, we choose sequences
{Gm(¥)} and {H,,(x)} as in Case 2 with £,,(0—) < oo, and get the unimodality
of F(x).

Casge 5. Obvious from 4. This completes the proof of Lemma 1.

REMARK. We can drop the condition in Lemma 1 that g(0+) = 0 (ifa > 0)
and h(0—) =0 (if 5 < 0). In this case, we use f'(0+) =f"(0—) —~(0—)9(0+) =
f'(0—). The reason why we assumed the above condition is that one-sided L
distribution functions that we will consider satisfy the condition, and if we
drop it, then the proof of Lemma 1 becomes more complicated.

To prove Theorem 1, we need the following results on L distribution
functions.

Let k(u) be a function of the form

K@) =4 + -+, 0Zu<p
=22+"'+2n P1§”<Pz

(6) :

= 2” Pn—l é u < Pn

=0 paSu
where 4, ---, 2, > 0, and let G(x) be the distribution function of class L for
which

log G(t) = §&, (e — 1)uk(u) du .
Let A=A + - + 4,

(@) G(x) is absolutely continuous. G(x) has a density g(x) which is continuous
except at x = 0. g(x) is 0 for x < 0 and positive for x > 0. It satisfies the equation

7)) = (= Dax) — ho(x — p) — -+ — 29(x — p,)

except at x = 0, py, - - -, p, (Wolfe (1971 b), page 913).
(b) If 2 < 1, then g(x) is nonincreasing for x > 0 (Wolfe (1971b), page 913).
(c) If 2> 1, then G(x) is unimodal with mode a > 0 and g(0+) = 0 (Wolfe
(1971b), pages 914-915).
(d) If 1 < 4 £ 2, then g(x) is concave on (0, a] (Yamazato (1975), page 133).

We prove (d) for completeness. By (7) and g(0+) = 0, ¢’(x) is continuous
for x > 0. Hence g”'(x) exists except at x = 0, p,, - - -, p, and satisfies

(8)  x0"(x) = (A= Q@) — Ag(x —p) — -+ — Mng'(x = pu).-
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Since g’(x) = 0 for x in (0, a), (8) shows that g”(x) < 0 for x < a except possi-
bly at x =0, p,, - -+, p,. Therefore g(x) is concave on (0, a].

PROOF OF THEOREM 1. Let G(x) be as above. We claim that G(x) has all the
properties required in Lemma 1. By virtue of (a), (b), (c), it remains only to
check that g(x) is log concave on (0, a] in case 2 > 1. If 1 < 2 < 2, this log
concavity follows from (d) since concave functions are log concave. Suppose
4> 2. Since g(x) = cx*~! (¢ > 0) for 0 < x < p,, ¢(x) is continuous on the
whole line. Hence we have (8) for all x > 0, and ¢"’(x) is continuous for x > 0.
From (7) and (8), we have

X(g'(x)" — 9(x)g"(x))
©) = 9(0)9'(x) + A(9(x)g'(x — p)) — F()9(x — py)) + -+
+ A(9(0)9'(x — pu) — F'(X)9(x — pn)) -

Let B(x) = ¢'(x)* — g(x)g”(x). Obviously B(x) is continuous on (0, co) and
B(x) >0 for 0 < x < p;. Let us prove B(x) > 0 for p, < x < a. Suppose
B(x) < 0 for some x in (0, a). Let B(x,) = 0and B(x) > 0for0 < x < x,. We
have p, < x, < a and ¢’(x,)g(x,) = 0. Let us consider two cases.

CaSE 1. g(x0)9'(xy — p:) — 9'(x)9(x, — p;) < O for some i.

CASE 2. g(x0)9'(x, — pi) — 9'(x0)9(x, — p;) = O for all 7.

In Case 1, we have x, > p, and g(x, — p;) > 0 and hence

9'(xo — P)/9(x0 — pi) — 9'(x0)/9(x;) <O
By the mean value theorem, we have for some x, in (x, — p;, X,)
(£) @y >o0,
g
that is, B(x,) < 0. This contradicts the choice of x,. In Case 2, it follows from
(9) that
9(x)9'(xe — pi) — 9'(X0)9(xo — p;) = 0 for all i.
Since p, < x,, we have g(x, — p,) > 0 and thus
9'(xe = P)I9(x0 — 1) — 9'(Xo)/9(x0) = 0.

Using the mean value theorem again, we get B(x,) = 0 for some x, in (x, — p;,
x,), which contradicts the choice of x,. This completes the proof that g(x) is
log concave on (0, a].

Let [(u) be a function of the form

wy=m+ - +pn <u=s0
=+t te GL<UESG

= lm Gn < U= Gy
=0 U= G
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where y,, - -+, p,, > 0 and let H(x) be the distribution function for which
log A(t) = §°%, (€% — 1)|u|"l(u) du .
Then, by an analogous argument, we see that H(x) has all the properties re-

quired in Lemma 1. Hence, by Lemma 1, (G « H)(x) is unimodal. It follows
that, if F(x) is the L distribution function for which

log £(r) = ("%, (e — 1 — ituf(1 + w?))|u|~"(u) du
+ (e — 1 — (1 + wyu~tk(u) du,

then F(x) is unimodal. If F(x) is a general L distribution function with 7 = 0

and ¢* = 0 in (1), we can choose sequences of monotone step functions k()
and [,(x) in such a way that F,(x) with

log £,(1) = {°u (e" — 1 — itu/(1 + w?))|u|7l,(u) du
+ (e (e — 1 — ituf(1 + w¥))uk,(u) du

converges to F(x) asn — oco. It follows that F(x) is unimodal. Since the normal
distribution is strongly unimodal, this proves Theorem 1.

3. Proof of Theorem 2. For simplicity we use the notation

A; f(x) = flx + 0) — f(x) -

LEMMA 2. Let F(x) be unimodal distribution function with mode a. We assume
that F(x) is twice continuously differentiable on (c d) where ¢ = inf {x; F(x) > 0}
and d = sup {x; F(x) < 1}. Then, F'(x) is log concave on (c, a) if and only if
(10) A A, F(x) S+ A, F(f)dr = A A, F(y) §3+ A, F(r) dt
for all x, y and ¢, § > O which satisfy

ct+i<x+o0<y<a-—120
where @ = ¢ + 0.

Proor. If F'(x) is log concave on (c, a), then F''(x)/F'(x) is nonmcreasmg
on (¢, a). Thus, we have

(11) F'(s)F'(t) = F"(t)F'(s) for c<s<t<a.

Letc+0<x+0<y<a—0Gandletu +d<v<a—3a. Integrating both
sides of (11) with respect to s and ¢ on [, u + 4] and [v, v + 9] respectively,
we get "

(12) A, F'(u)A, F(v) = A, F'(v)A, F(u) .

Also integrating both sides of (12) with respect to # and v on [x, x + €] and
[y, y + €] respectively, we have (10).

Conversely, let (10) hold for ¢ + 6 < x + 6 < y < a — 6. Multiplying both
sides of (10) by (¢4)~2 and letting ¢ — 0 and then § — 0, we have (11) fors = x
and ¢ = y. This completes the proof. '
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Proor oF THEOREM 2. Note that all one-sided L distribution functions have
the properties (b)and (d) in 2. Thus we have nothing to proveif 2 = k(0+) < 2.
Let 2 > 2. Then F(x) is twice continuously differentiable (Wolfe (1971a), page
2070). Let k,(x) be a function of the form (6) and let F,(x) be an L distribution
function for which

log £, (1) = (& (e — 1 — iruf(1 + w?))u~'k,(u)du .

We choose k,(u) so that F,(x) converges to F(x) as n — oo. F,(x) is unimodal
with mode a, and has a density f,(x) log concave on (c,, a,) where ¢, = inf {x;
F,(x) > 0}. We have limsup,_, ¢, < c. Letliminf, _a, = aand let{n(k)} be

a subsequence such that a,,, — a as k — co. Obviously, a is a mode of F(x).
Let x, y and ¢, 6 > 0 be numbers for which

cHOI<x+0<y<a-—26

where 6 = ¢ 4+ 0. We can choose N large enough so that ¢,,, < x and y <
A, — 0 for n(k) > N. Then, F,, (x) satisfies (10) if n(k) > N. Since F,,,(x)
converges to F(x) at every point, we have by the bounded convergence theorem
(ute A, F, o (2) dt — v+ A, F(1) dt
and
(2t A, F () dt — {2+ A F(1) dt

as k — oco. Thus, F(x) satisfies (10) whenever ¢ + 0 < x + 0 < y < a — 4.
By Lemma 2 we have the log concavity of f(x) on (c, a).

EXAMPLE. Let f(x) = C(27)~tx~% exp(—C?/2x) for x > 0 where C > 0. Then
f(x) is the density of a one-sided stable distribution function of exponent }.
The distribution function has a mode at x = C?/3 and f(x) is log concave on
(0, 2C*/3).
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