A WEAK CONVERGENCE THEOREM WITH APPLICATION TO THE ROBBINS-MONRO PROCESS

By Götz D. Kersting

University of Göttingen

In this paper the asymptotic distribution of a sequence of random variables $(X_n)_{n \in \mathbb{N}}$, given by the recursion

$$X_{n+1} = X_n(1 - a_n^2 g(X_n)) + a_n Y_n,$$

is considered, where (Y_n) is a sequence of independent identically distributed random variables, $g: \mathbb{R} \to \mathbb{R}$ is a positive continuous function, and (a_n) is a sequence of positive numbers, going to zero. One application to the Robbins-Monro process is discussed, in which the function g will not be constant. Here the asymptotic distribution is no longer normal.

1. Introduction. In this paper a new method for calculating limiting distributions of stochastic processes is introduced. Let Y_n , n = 1, 2, ... be a sequence of independent, identically distributed random variables with zero mean and finite variance. Define $X_n = n^{-\frac{1}{2}} \sum_{i=1}^n Y_i$. Then

$$X_{n+1} = X_n (1 - 1/2(n+1)^{-1} + 0(n^{-2})) + (n+1)^{-\frac{1}{2}} Y_{n+1}.$$

It is easily shown that the term $0(n^{-2})$ may be neglected if one is only interested in the limiting distribution of X_n . We shall more generally look at processes (X_n) which satisfy the recursion

$$X_{n+1} = X_n (1 - a_n^2 g(X_n)) + a_n Y_n$$

where g is a continuous positive function and (a_n) a sequence of positive numbers. We give a method for finding under some restrictions the limiting distribution of (X_n) , which in general will no longer be normal. An application to the Robbins-Monro process is discussed in which the function g is not constant. (We discuss a case where the right and left derivatives of the regression function M exist, but are not necessarily equal, at the unique point θ where $M(\theta) = 0$; θ is to be estimated. See Section 3.)

We shall need no heavy machinery like characteristic functions. Thus our method may serve as a new easy way to prove the central limit theorem for sums of independent, identically distributed random variables with finite variance.

2. The limit theorem. We start with

LEMMA 2.1. Let α_n , $\beta_n(n \ge 1)$ be nonnegative numbers such that $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and for large n

$$\beta_{n+1} \leq \beta_n (1 - c\alpha_n) + d\alpha_n$$

Received February 24, 1976; revised January 19, 1978.

AMS 1970 subject classifications. 60F05, 62L20.

Key words and phrases. Weak convergence, Robbins-Monro process.

with c, d > 0. Then

$$\lim\sup_{n\to\infty}\beta_n\leqslant d/c.$$

If
$$\beta_{n+1} \le \beta_n (1 - c\alpha_n) + o(\alpha_n)$$
 then $\lim_{n \to \infty} \beta_n = 0$.

PROOF. Choose $\varepsilon > 0$. If $\beta_n \ge (d + \varepsilon)/c$, then

(2.1)
$$\beta_{n+1} \leqslant \beta_n - \frac{d+\varepsilon}{c} c\alpha_n + d\alpha_n$$
$$= \beta_n - \varepsilon \alpha_n$$

for *n* large enough. Thus, if $\beta_n \ge (d + \varepsilon)/c$ for all $n \ge n_0$, then $\beta_n \to -\infty$, since $\sum_{n=1}^{\infty} \alpha_n = \infty$. This is a contradiction. Thus there is an increasing sequence (n_k) of natural numbers containing just those numbers *n* with the property $\beta_n \le (d + \varepsilon)/c$. For $n_k < n < n_{k+1}$ we get from (2.1)

$$\beta_n \leqslant \beta_{n-1} \leqslant \cdots \leqslant \beta_{n_k+1}$$

$$\leqslant \beta_{n_k} + d\alpha_{n_k} \leqslant (d+\varepsilon)/c + d\alpha_{n_k}.$$

Thus $\limsup_{n\to\infty} \beta_n \le (d+\varepsilon)/c$. Letting $\varepsilon\to 0$ we get the desired result. The second statement follows immediately from the first. \square

THEOREM 2.2. Let Y_1, Y_2, \ldots be a sequence of independent, identically distributed random variables with zero mean and finite variance σ^2 . Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function with bounded derivative g' such that

- (i) $g'(x) \ge 0$ for all x > 0, $g'(x) \le 0$ for all x < 0;
- (ii) $0 < d_1 \le g(x) \le d_2 < \infty$ for all $x \in \mathbb{R}$.

Let (a_n) be a sequence of nonnegative numbers such that

(iii)
$$\sum_{n=1}^{\infty} a_n^2 = \infty$$

(iv)
$$\sum_{n=1}^{\infty} a_n^3 < \infty$$
.

If X_1 is a random variable with finite second moment and independent of Y_n , $n \ge 1$, and if (X_n) for $n \ge 1$ is given by

$$X_{n+1} = X_n (1 - a_n^2 g(X_n)) + a_n Y_n,$$

then X_n has a limiting distribution function F on \mathbb{R} and its density (with respect to the Lebesgue measure) is

$$f(x) = C \exp(-h(x))$$

where $h(x) = 2\sigma^{-2} \int_0^x zg(z) dz$ and C is a normalizing constant.

(Note that from (ii) follows $h(x) \ge \sigma^{-2} d_1 x^2$. Thus all moments of F exist.)

PROOF. First suppose g'(x) = 0 for all x such that $|x| \ge D$ with a certain D > 0. We first show that there is an $N_1 \in \mathbb{N}$ such that for all $x, y \in \mathbb{R}$ and all $n \ge N_1$:

$$(2.2) |x(1-g(x)a_n^2)-y(1-g(y)a_n^2)| \leq |x-y|(1-d_1a_n^2).$$

Look at the function $s_n(x) = x(1 - g(x)a_n^2)$. Then

$$s'_n(x) = 1 - g(x)a_n^2 - a_n^2 x g'(x)$$

 $\ge 1 - d_2 a_n^2 - a_n^2 D \sup_x |g'(x)|.$

There is an N_1 such that $s_n'(x) > \frac{1}{2}$ and $(1 - g(x)a_n^2) > \frac{1}{2}$ for all $n \ge N_1$ and all $x \in \mathbb{R}$.

Now suppose $0 \le x \le y$. Because of condition (i) $g(x) \le g(y)$. Thus for $n \ge N_1$

$$x(1-g(x)a_n^2) \le y(1-g(y)a_n^2) \le y(1-g(x)a_n^2);$$

thus

$$|x(1-g(x)a_n^2) - y(1-g(y)a_n^2)| \le |x-y|(1-g(x)a_n^2) \le |x-y|(1-d_1a_n^2);$$

thus (2.2) is true. Essentially the same argument holds if $x \le y \le 0$. If $x \le 0 \le y$, we have for $n \ge N_1$

$$x(1 - d_1 a_n^2) \le x(1 - g(x)a_n^2) \le 0 \le y(1 - g(y)a_n^2)$$

 $\le y(1 - d_1 a_n^2),$

which again leads to (2.2).

We now define a new process X'_n , $n \ge N$, on the same probability space as X_n (by enlarging this space, if necessary), where $N \in \mathbb{N}$ is greater than N_1 , such that X'_N has the distribution function F given in the theorem statement and is independent of Y_n , $n \ge N$, and such that

$$X'_{n+1} = X'_n (1 - g(X'_n)a_n^2) + a_n Y_n$$

for $n \ge N$. By (2.2) we get for $n \ge N$

$$|X_{n+1} - X'_{n+1}| = |X_n (1 - g(X_n)a_n^2) - X'_n (1 - g(X'_n)a_n^2)|$$

$$\leq |X_n - X'_n| (1 - d_1 a_n^2).$$

Thus by condition (iii) and Lemma 2.1 $X_n - X_n' \to 0$ almost surely. Thus if the distribution of X_n' is near to F for large n, then the same will be true for X_n .

Now assume that Y_n takes on only finitely many values. Thus there are numbers r_i , i = 1, ..., m such that for $p_i = P(Y_n = r_i)$

$$\sum_{i=1}^{m} p_i = 1, \qquad \sum_{i=1}^{m} p_i r_i = 0, \qquad \sum_{i=1}^{m} p_i r_i^2 = \sigma^2.$$

Take a fixed $n \ge N$ and choose $\varepsilon > 0$ such that

(2.3)
$$P(X'_n < x) \le F(x) + \varepsilon \quad \text{for all } x \in R.$$

We shall show that there is a constant A (not depending on N or n) such that

$$(2.4) P(X'_{n+1} < x) \le F(x) + \varepsilon + Aa_n^3.$$

By definition of X'_{n+1} we get

$$P(X'_{n+1} < x) = \sum_{i=1}^{m} p_i P(X'_n(1 - g(X'_n)a_n^2) < x - a_n r_i).$$

Since $s_n(x)$, as defined above, is continuous and strictly increasing for $n \ge N_1$, and since $s_n \to \pm \infty$ as $x \to \pm \infty$, there is exactly one α_i , $i = 1, \dots, m$, such that

$$\alpha_i (1 - g(\alpha_i) a_n^2) = x - a_n r_i.$$

Then by (2.3)

$$P(X'_{n+1} < x) = \sum_{i=1}^{m} p_i P(X'_n < \alpha_i)$$

$$\leq \sum_{i=1}^{m} p_i F(\alpha_i) + \varepsilon$$

$$= F(x) + \varepsilon + \sum_{i=1}^{m} p_i \int_{\gamma}^{\alpha_i} f(y) dy.$$

Now by a Taylor expansion

$$f(y) = C \exp(-h(y))$$
= $C \exp(-h(x)) - 2C\sigma^{-2}xg(x)\exp(-h(x))(y - x)$
 $+f''(x + \delta_y(y - x))\frac{(y - x)^2}{2}$

with $0 < \delta_{\nu} < 1$. Thus

(2.6)
$$\int_{x}^{\alpha_{i}} f(y) \, dy \leq C \exp(-h(x))(\alpha_{i} - x) \\ - C\sigma^{-2}xg(x)\exp(-h(x))(\alpha_{i} - x)^{2} \\ + \sup_{|y-x| \leq |\alpha_{i} - x|} |f''(y)| \frac{|\alpha_{i} - x|^{3}}{6}.$$

Now from (2.5),

$$\alpha_i = (x - r_i a_n) (1 - g(\alpha_i) a_n^2)^{-1}$$

= $(x - r_i a_n) [1 + g(\alpha_i) a_n^2 + (g(\alpha_i))^2 a_n^4 (1 - g(\alpha_i) a_n^2)^{-1}].$

Thus there is an $A_1 > 0$ (note in the following that the constants A_V will not depend on N or n) such that

$$|(\alpha_i - x) - (xg(\alpha_i)a_n^2 - r_i a_n)| \le A_1(1 + |x|)a_n^3.$$

This implies

$$|(\alpha_i - x)| \le A_2(1 + |x|)a_n.$$

By the mean value theorem, since g' is bounded,

$$|g(\alpha_i) - g(x)| \leq A_3(1+|x|)a_n.$$

Thus from (2.7)

$$(2.9) |(\alpha_i - x) - (xg(x)a_n^2 - r_i a_n)| \le A_4(1 + x^2)a_n^3.$$

From (2.7) we see that

$$|(\alpha_i - x) + r_i a_n| \le A_5 (1 + |x|) a_n^2$$

Using this and (2.8) we obtain

$$|(\alpha_{i} - x)^{2} - r_{i}^{2}a_{n}^{2}|$$

$$= |(\alpha_{i} - x) + r_{i}a_{n}| \cdot |(\alpha_{i} - x) - r_{i}a_{n}|$$

$$\leq A_{5}(1 + |x|)a_{n}^{2}[A_{2}(1 + |x|)a_{n} + |r_{i}|a_{n}]$$

$$\leq A_{6}(1 + x^{2})a_{n}^{3}.$$

From (2.6) we get by means of (2.8), (2.9) and the last inequality

$$\int_{y}^{\alpha} f(y) dy$$

$$\leq C \exp(-h(x)) \left(xg(x)a_n^2 - r_i a_n + A_4(1+x^2)a_n^3 \right)$$

$$- C\sigma^{-2}xg(x) \exp(-h(x)) \left(r_i^2 a_n^2 - A_6(1+x^2)a_n^3 \right)$$

$$+ \sup_{|y-x| \leq |\alpha_i - x|} |f''(y)| A_2^3 (1+|x|)^3 a_n^3 / 6.$$

Now $\exp(-h(x))|x|^2$ is bounded and $\sup_{|y-x| \le |\alpha,-x|} |f''(y)| |x|^3$ is bounded (in x), thus

$$\int_{x}^{\alpha} f(y) dy \leq C \exp(-h(x)) \left(xg(x) a_n^2 - r_i a_n \right)$$
$$- C \sigma^{-2} xg(x) \exp(-h(x)) r_i^2 a_n^2$$
$$+ A a_n^3.$$

Thus

$$\begin{split} \sum_{i=1}^{m} p_{i} \int_{x}^{\alpha_{i}} f(y) \ dy &\leq C \exp(-h(x)) x g(x) a_{n}^{2} \sum_{i=1}^{m} p_{i} \\ &- C \exp(-h(x)) a_{n} \sum_{i=1}^{m} r_{i} p_{i} \\ &- C \sigma^{-2} x g(x) \exp(-h(x)) a_{n}^{2} \sum_{i=1}^{m} r_{i}^{2} p_{i} \\ &+ A a_{n}^{3} = A a_{n}^{3}. \end{split}$$

This proves (2.4). Since $P(X'_N < x) = F(x)$, we get from (2.3) and (2.4) by induction

$$\lim \sup_{n \to \infty} P(X'_n < x) \le F(x) + A \sum_{n=N}^{\infty} a_n^3.$$

Thus, since $X_n - X_n' \to 0$ a.s., for any $\delta > 0$

$$\lim \sup_{n \to \infty} P(X_n < x) \le F(x + \delta) + A \sum_{n=N}^{\infty} a_n^3.$$

Letting $N \to \infty$, $\delta \to 0$

$$\lim \sup_{n \to \infty} P(X_n < x) \le F(x).$$

Similarly

$$\lim \inf_{n \to \infty} P(X_n < x) \geqslant F(x).$$

This proves the theorem under the restrictions in the proof.

We now proceed to the general case where Y_i is not longer discrete and g'(x) need not vanish for large |x|. Choose $\eta > 0$. Construct identically distributed random variables Y_i' which are Y_i -measurable and thus independent, which assume only finitely many values, and which satisfy

$$E(Y_i') = 0, \qquad E((Y_i' - Y_i)^2) \le \eta.$$

Further choose $\bar{g}: R \to R$ satisfying the conditions of the theorem and such that for some D > 0

$$\bar{g}'(x) = 0$$
 for all $|x| \ge D$
 $|g(x) - \bar{g}(x)| \le \eta$ for all $x \in R$.

Define $X_1' = X_1$,

$$X'_{n+1} = X'_n (1 - \bar{g}(X'_n)a_n^2) + a_n Y'_n$$

Then $E(X_{n+1}^{\prime 2}) \le E(X_n^{\prime 2})(1 - d_1 a_n^2) + \sigma^{\prime 2} a_n^2$, with $\sigma^{\prime 2} = E(Y_i^{\prime 2})$. Thus by Lemma 2.1 $\limsup_{n \to \infty} E(X_n^{\prime 2}) \le \sigma^{\prime 2}/d_1$.

Similarly

$$\lim\sup_{n\to\infty} E(X_n^2) \le \sigma^2/d_1.$$

Now by independence and (2.2), if n is large enough that $1 - \bar{g}(X_n)a_n^2 \ge 0$ and $1 - \bar{g}(X_n')a_n^2 \ge 0$,

$$\begin{split} E\Big((X_{n+1} - X_{n+1}')^2\Big) \\ &= E\Big[\big(X_n\big(1 - \bar{g}(X_n)a_n^2\big) - X_n'\big(1 - \bar{g}(X_n')a_n^2\big)\big)^2\Big] \\ &- 2E\Big[X_na_n^2\big(g(X_n) - \bar{g}(X_n)\big)\Big]\Big[X_n\big(1 - \bar{g}(X_n)a_n^2\big) - X_n'\big(1 - \bar{g}(X_n')a_n^2\big)\Big] \\ &+ E\Big[X_n^2a_n^4\big(g(X_n) - \bar{g}(X_n)\big)^2\Big] + a_n^2E\Big((Y_n - Y_n')^2\Big) \\ &\leqslant E\Big((X_n - X_n')^2\big)\Big(1 - d_1a_n^2\big)^2 \\ &+ 2a_n^2\eta\Big(E(|X_nX_n'|) + E(X_n^2)\Big) \\ &+ a_n^4\eta^2E(X_n^2) + a_n^2\eta \\ &\leqslant E\Big((X_n - X_n')^2\big)\Big(1 - d_1a_n^2\Big) \\ &+ 2a_n^2\eta\bigg(\frac{\sigma\sigma' + \sigma^2}{d_1}\bigg)(1 + o(1)) + \eta a_n^2. \end{split}$$

Thus by Lemma 2.1

$$\lim \sup_{n\to\infty} E\left(\left(X_n - X_n'\right)^2\right) \le \eta \left(2\frac{\sigma\sigma' + \sigma^2}{d_1} + 1\right)/d_1.$$

Since $\sigma' \to \sigma$, as $\eta \to 0$, this bound may be chosen arbitrarily small, say smaller than τ^3 for any $\tau > 0$.

By Tschebyscheff's inequality then

$$\lim \sup_{n\to\infty} P(|X_n-X_n'| \ge \tau) \le \tau,$$

thus

$$\lim \sup_{n \to \infty} P(X_n < x) \le \lim \sup_{n \to \infty} P(X_n' < x + \tau) + \tau$$
$$= C' \int_{-\infty}^{x+\tau} \exp\left(-2 \int_{0}^{y} z\bar{g}(z) \, dz / \sigma'^2\right) \, dy + \tau.$$

We let $\eta \to 0$ and $\bar{g} \to g$. It follows that $\sigma' \to \sigma$ and $\tau \to 0$ so that

$$\lim \sup_{n \to \infty} P(X_n < x) \le F(x).$$

Similarly,

$$\lim \inf_{n \to \infty} P(X_n < x) \geqslant F(x).$$

This proves the theorem. []

We shall see later that the theorem remains true for a larger class of functions $g: R \to R^+$ as described in the theorem by using a similar approximation argument as in the end of the proof.

3. Application to the Robbins-Monro process. The Robbins-Monro process, as introduced by Robbins and Monro (1951), deals with the problem of estimating the root θ of the equation

$$M(x) = 0$$

for an unknown measurable function M. The method is the following: choose an arbitrary X_1 and define a sequence of random variables X_n by

$$X_{n+1} = X_n - c_n Z_n,$$

where c_n is a sequence of nonnegative numbers and the random variable Z_n denotes a measurement of M at the point X_n so that

$$(3.1) E(Z_n|X_1,\cdots,X_n) = M(X_n) a.s.$$

Several authors proved convergence of X_n to θ for suitable choice of a_n . (See Blum (1954), Chung (1954); see Schmetterer (1961) for a more complete bibliography.)

If $c_n = n^{-1}$, Chung proved asymptotic normality of $n^{\frac{1}{2}}(X_n - \theta)$ under several assumptions; this was generalized later by several authors (Fabian (1968), Sacks (1958)). In all these papers one essential condition is that the derivative $M'(\theta)$ exists and

$$(3.2) M'(\theta) > \frac{1}{2}.$$

In addition to other results Révész and Major (1973) got asymptotic normality of $(n/\log n)^{\frac{1}{2}}(X_n - \theta)$, if $M'(\theta) = \frac{1}{2}$ and a.s. convergence of $X_n^{M'(\theta)}$, if $0 < M'(\theta) < \frac{1}{2}$. In this paper we look at the case where $M'(\theta)$ does not exist, but the derivatives at θ from the right and left exist. (This problem was posed by Dvoretzky.)

We shall look only at the situation where the error of measurement $M(X_n) - Z_n$ is independent of X_n , i.e., we shall assume that $-M(X_n) + Z_n$, $n \ge 1$, is a sequence

of independent, identically distributed random variables and that X_1 is independent from this sequence.

Now assume that

$$m_1 := \lim_{x \to \theta} M(x)(x - \theta)^{-1},$$

and

$$m_2 := \lim_{x \uparrow \theta} M(x)(x - \theta)^{-1}$$

exist. Denote

$$Y_n = M(X_n) - Z_n.$$

We need the following lemma due to Chung (1954), page 466, and Venter (1966), page 1535.

LEMMA 3.1. Let α_n be a sequence of real numbers such that for large n

$$\alpha_{n+1} \le \alpha_n (1 - cn^{-1}) + dn^{-1-\rho}$$

with $c, d, \rho > 0$. If $c > \rho$ then $\alpha_n = 0(n^{-\rho})$. If $c < \rho$ then $\alpha_n = 0(n^{-c})$.

THEOREM 3.2. Let (X_n) be a Robbins-Monro process with $c_n = n^{-1}$ such that

(i)
$$M(x)(x-\theta) > 0$$
 for all $x \neq \theta$,

(ii)
$$|M(x)| \le A + B|x|$$
 for all $x \in \mathbb{R}$,

(iii)
$$\inf_{r \le |x-\theta| \le R} |M(x)| > 0 \quad \text{for all} \quad 0 < r < R < \infty,$$

(iv)
$$E(Y_n^2) = \sigma^2 < \infty, \quad E(X_1^2) < \infty,$$

(v)
$$m_1, m_2 > \frac{1}{2}$$
.

Then $n^{\frac{1}{2}}(X_n - \theta)$ has a limiting distribution and its density is

$$f(x) = C \exp\left(-\frac{x^2(2m_1 - 1)}{2\sigma^2}\right)$$
 if $x > 0$,
 $f(x) = C \exp\left(-\frac{x^2(2m_2 - 1)}{2\sigma^2}\right)$ if $x \le 0$

with

$$C = \left(\frac{2}{\pi\sigma^2}\right)^{\frac{1}{2}} \frac{(2m_1 - 1)^{\frac{1}{2}} (2m_2 - 1)^{\frac{1}{2}}}{(2m_1 - 1)^{\frac{1}{2}} + (2m_2 - 1)^{\frac{1}{2}}}.$$

PROOF. Suppose $\theta = 0$. Conditions (i)-(iv) imply almost sure convergence of X_n to 0. (This is Blum's theorem.) Define $m(x) = m_1$ for $x \ge 0$, $m(x) = m_2$ for x < 0. We assume that M(x) - m(x)x is bounded for $x \in R$ and also that

$$|M(x)| \geqslant K_1|x|$$

with $K_1 > \frac{1}{2}$. If we prove the theorem under these conditions, then the general case

follows by a trick of Hodges and Lehmann (see their paper and also the proof of Theorem 1' in Sacks (1958)).

Now by independence

$$E(X_{n+1}^2) = E\left(X_n^2 \left(1 - n^{-1} \frac{M(X_n)}{X_n}\right)^2\right) + \sigma^2 n^{-2}$$

$$\leq E(X_n^2) \left(1 - (2K_1 + o(1))n^{-1}\right) + \sigma^2 n^{-2}.$$

Since $2K_1 > 1$, by Lemma 3.1 with $\rho = 1$

$$E(X_n^2) = 0(n^{-1}).$$

Thus $E(|X_n|) = 0(n^{-\frac{1}{2}})$ and

$$P(|X_n| \ge \varepsilon) = O(n^{-1})$$

for all $\epsilon > 0$. Since |M(x) - xm(x)| = o(x) and $\sup_x |M(x) - xm(x)| < \infty$ this implies

$$E(|M(X_n) - X_n m(X_n)|) = o(n^{-\frac{1}{2}}).$$

Now

$$X_{n+1} = X_n (1 - m(X_n)n^{-1}) + n^{-1}(X_n m(X_n) - M(X_n)) + n^{-1}Y_n.$$

Multiply this by $n^{\frac{1}{2}}$, and obtain

$$n^{\frac{1}{2}}X_{n+1} = (n-1)^{\frac{1}{2}}X_n\left(1 - \left(m(X_n) - \frac{1}{2}\right)n^{-1} + 0(n^{-2})\right)$$
$$+ n^{-\frac{1}{2}}(m(X_n)X_n - M(X_n)) + n^{-\frac{1}{2}}Y_n.$$

Define \overline{X}_n by $\overline{X}_1 = 0$ and

$$\overline{X}_{n+1} = \overline{X}_n (1 - n^{-1} (m(\overline{X}_n) - \frac{1}{2})) + n^{-\frac{1}{2}} Y_n.$$

As in the proof of (2.2), if n is large enough, then

$$|x[1-(m(x)-\frac{1}{2})n^{-1}]-y[1-(m(y)-\frac{1}{2})n^{-1}]|$$

$$\leq |x-y|(1-\overline{m}n^{-1})$$

uniformly in x and y where $\overline{m} = \min(m_1, m_2) - \frac{1}{2} > 0$. Then, since $m(X_n) = m(X_n(n-1)^{\frac{1}{2}})$, for large enough n

$$|n^{\frac{1}{2}}X_{n+1} - \overline{X}_{n+1}| \le |(n-1)^{\frac{1}{2}}X_n - \overline{X}_n|(1 - \overline{m}n^{-1}) + (n-1)^{\frac{1}{2}}|X_n|0(n^{-2}) + n^{-\frac{1}{2}}|X_n m(X_n) - M(X_n)|.$$

Thus

$$E(|n^{\frac{1}{2}}X_{n+1} - \overline{X}_{n+1}|) \leq E(|(n-1)^{\frac{1}{2}}X_n - \overline{X}_n|)(1 - \overline{m}n^{-1}) + o(n^{-1}).$$

By Lemma 2.1 $E(|(n-1)^{\frac{1}{2}}X_n - \overline{X_n}|) \to 0$. Thus it is sufficient to show that the limiting distribution of $\overline{X_n}$ is the one given in the theorem.

Now choose $\eta > 0$ and $g_{\eta} : R \to R$ such that

$$g_n(x) = m(x) - \frac{1}{2}$$
 for $|x| \ge \eta$

such that g_{η} satisfies the conditions of Theorem 2.2, and such that $m(x) - \frac{1}{2} \ge g_{\eta}(x) \ge \overline{m} > 0$. Define the process \overline{X}_n by $\overline{X}_1 = 0$ and

$$\overline{\overline{X}}_{n+1} = \overline{\overline{X}}_n \left(1 - n^{-1} g_{\eta} \left(\overline{\overline{X}}_n \right) \right) + n^{-\frac{1}{2}} Y_n.$$

Then as in Theorem 2.2

$$|\overline{X}_{n+1} - \overline{\overline{X}}_{n+1}| \leq |\overline{X}_n (1 - g_{\eta}(\overline{X}_n) n^{-1}) - \overline{\overline{X}}_n (1 - g_{\eta}(\overline{X}_n) n^{-1})|$$

$$+ |\overline{X}_n| n^{-1} (m(\overline{X}_n) - \frac{1}{2} - g_{\eta}(\overline{X}_n))$$

$$\leq |\overline{X}_n - \overline{\overline{X}}_n| (1 - \overline{m} n^{-1}) + \eta n^{-1} |m_1 - m_2|.$$

Thus by Lemma 2.1

$$\lim \sup_{n\to\infty} E\left(\overline{X}_n - \overline{\overline{X}}_n\right) \leq \eta \overline{m}^{b-1} |m_1 - m_2|.$$

Now from Theorem 2.2 with $a_n = n^{-\frac{1}{2}}$ we see that $\overline{\overline{X}}_n$ has a limiting distribution F_{η} and its density is

$$C_{\eta} \exp(-2\sigma^{-2}\int_0^x yg_{\eta}(y) dy).$$

Thus by the argument at the end of the proof of Theorem 2.2, letting $\eta \to 0$, $g_{\eta} \to m - \frac{1}{2}$, \overline{X}_n must converge to the distribution given in the theorem. The normalizing constant may easily be calculated. \square

REFERENCES

- Blum, J. R. (1954). Approximation methods which converge with probability one. Ann. Math. Statist. 25 382-386.
- [2] CHUNG, K. L. (1954). On stochastic approximation methods. Ann. Math. Statist. 25 463-483.
- [3] FABIAN, V. (1968). On asymptotic normality in stochastic approximation. Ann. Math. Statist. 39 1327-1332.
- [4] HODGES, J. L. and LEHMANN, E. L. (1956). Two approximations to the Robbins-Monro process. Proc. Third Berkeley Symp. Math. Statist. Prob. 95-104.
- [5] Kersting, G. (1978). On the rate of convergence of the Robbins-Monro process. Unpublished manuscript.
- [6] MAJOR, P. and RÉVÉSZ, P. (1973). A limit theorem for the Robbins-Monro approximation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 79-86.
- [7] ROBBINS, H. and MONRO, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22 400-407.

- [8] SACKS, J. (1958). Asymptotic distribution of stochastic approximation procedures. Ann. Math. Statist. 29 373-405.
- [9] SCHMETTERER, L. (1961). Stochastic approximation. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 587-609.
- [10] VENTER, J. H. (1966). On Dvoretzky stochastic approximation theorems. Ann. Math. Statist. 37 1534-1544.

Institut für Mathematische Statistik und Wirtschaftsmathematik Göttingen University D-34 Göttingen Lotzestrassen 13 Federal Republik of Germany