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A WEAK CONVERGENCE THEOREM WITH APPLICATION TO
THE ROBBINS-MONRO PROCESS

By GOtz D. KERSTING
University of Gottingen
In this paper the asymptotic distribution of a sequence of random variables
(X,)nen» given by the recursion
Xn+l = Xn(l - nzg(Xn)) + a, Yn’

is considered, where (Y,) is a sequence of independent identically distributed
random variables, g : R— R is a positive continuous function, and (a,) is a
sequence of positive numbers, going to zero. One application to the Robbins-
Monro process is discussed, in which the function g will not be constant. Here
the asymptotic distribution is no longer normal.

1. Introduction. In this paper a new method for calculating limiting distribu-
tions of stochastic processes is introduced. Let Y,, n = 1,2, ... be a sequence of
independent, identically distributed random variables with zero mean and finite
variance. Define X, = n‘%E’,?:.Y}. Then

X1 = X,(1=1/2(n + 1)™" + 0(n2)) + (n + 1)77Y,, .

It is easily shown that the term O(n ~2) may be neglected if one is only interested in
the limiting distribution of X,. We shall more generally look at processes (X,)
which satisfy the recursion

Xn+| = Xn(l - ar%g(Xn)) + a, Yn

where g is a continuous positive function and (a,) a sequence of positive numbers.
We give a method for finding under some restrictions the limiting distribution of
(X,), which in general will no longer be normal. An application to the Robbins-
Monro process is discussed in which the function g is not constant. (We discuss a
case where the right and left derivatives of the regression function M exist, but are
not necessarily equal, at the unique point § where M(f) = 0; 4 is to be estimated.
See Section 3.)

We shall need no heavy machinery like characteristic functions. Thus our
method may serve as a new easy way to prove the central limit theorem for sums of
independent, identically distributed random variables with finite variance.

2. The limit theorem. We start with

LemMa 2.1. Let a,, B,(n > 1) be nonnegative numbers such that o, — 0, Z7_,a,
= oo and for large n

Bn+1 < Bn(l - C(!n) + dan
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with ¢, d > 0. Then
lim sup,_, . B, <d/c.
If B,+1 < B,(1 — ca,) + o(a,) then lim,_, B, = 0.

Proor. Choose ¢ > 0. If 8, > (d + ¢)/c, then

@) Brr < By~ L2 ca, + da,
=B, — ea,

for n large enough. Thus, if 8, > (d + €)/c for all n > ny, then B, > — oo, since
25,04, = oo. This is a contradiction. Thus there is an increasing sequence (n,) of
natural numbers containing just those numbers n with the property B8, < (d +
e)/c. For n, <n <n,, we get from (2.1)

Bn < Bn—l <0 < Bnk+l
< B, +da, <(d+e)/c+ da,.

Thus lim sup,_, B, < (d + ¢)/c. Letting ¢ >0 we get the desired result. The
second statement follows immediately from the first. []

THEOREM 2.2. Let Y|, Y,,... be a sequence of independent, identically distrib-
uted random variables with zero mean and finite variance o*. Let g : R—>R be a
differentiable function with bounded derivative g’ such that

@D gx)>0 forall x>0,
gx)<0 forall x<O0;

(i) 0<d, <gx)<d,<
for all x € R.

Let (a,) be a sequence of nonnegative numbers such that
(i) I ,a2= o0
(iv) Z=,a®< .
If X, is a random variable with finite second moment and independent of Y,, n > 1,
and if (X,) for n > 1 is given by
Xn+| = Xn(l - ar%g(Xn)) + an Yn’

then X, has a limiting distribution function F on R and its density (with respect to the
Lebesgue measure) is

f(x) = C exp(—h(x))

where h(x) = 20 2[%2g(z) dz and C is a normalizing constant.

(Note that from (ii) follows A(x) > 6 ~2 d,x2. Thus all moments of F exist.)
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Proor. First suppose g'(x) =0 for all x such that |x| > D with a certain
D > 0. We first show that there is an N, € N such that for all x, y € R and all
n 2> N;:

(22) Ix(1 - g(x)a}) = »(1 = g(»)a}) < |x = yI(1 — dya?).
Look at the function s,(x) = x(1 — g(x)a?). Then
su(x) =1 - g(x)a; - aixg'(x)
> 1 — dya? — a2D sup,| g'(x)|.
There is an N, such that s;(x) >1 and (1 — g(x)a?) >3 for all n > N, and all

x € R.
Now suppose 0 < x < y. Because of condition (i) g(x) < g(y). Thus for n > N,

x(1 = g(x)a?) < y(1 = g(y)a?) < y(1 = g(x)ad);
thus
Ix(1 — g(x)a?) — y(1 — g(y)a?)|
< Jx = yl(1 - g(x)a) < |x = yI(1 - d,a2);

thus (2.2) is true. Essentially the same argument holdsif x < y < 0. If x <0 < y,
we have for n > N,

x(1 - dia?) < x(1 - g(x)a?) < 0 < y(1 - g(y)a?)
<y(1 - dia}),

which again leads to (2.2).

We now define a new process X,, n > N, on the same probability space as X,
(by enlarging this space, if necessary), where N € N is greater than N,, such that
Xy has the distribution function F given in the theorem statement and is indepen-
dent of Y,, n > N, and such that

Xr:+l = Xr:(l - g(Xr;)ar%) + anYn
forn > N. By (2.2) we get forn > N
X1 = Xowal = 1X,(1 — g(X,)al) — X,(1 — g(X;)a)|
<|X, - X':|(1 - dlaf)' |
Thus by condition (iii) and Lemma 2.1 X, — X, — 0 almost surely. Thus if the
distribution of X, is near to F for large n, then the same will be true for X,
Now assume that Y, takes on only finitely many values. Thus there are numbers
r,i=1,...,msuch that forp, = P(Y, =r)
Zp =1, 2pir; =0, T prt = ok
Take a fixed n > N and choose ¢ > 0 such that
(2.3) P(X, <x) < F(x)+ ¢ forallx € R.
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We shall show that there is a constant 4 (not depending on N or n) such that °
(24) P(X,, <x) < F(x)+ ¢+ Aa>.
By definition of X, , we get
P(X,, ) <x) = 27‘=1PiP(Xr:(l - g(X)al) <x - a,r;).
Since s,(x), as defined above, is continuous and strictly increasing for n > N,, and

since s, — * 00 as x — * oo, there is exactly one o, i = 1, - - -, m, such that
(2.5) "‘i(l - g(ai)ar%) =X = a,r.
Then by (2.3)

P(X,,1 <x) =27 pP(X, <a)
<27l piF(ey) + e
= F(x) + e + 27, pf3f(y) d.

Now by a Taylor expansion
f(y) = C exp(—h(y)) ‘
= C exp(—h(x)) — 2Co ~xg(x)exp(—h(x))(y — x)
(x4 80— ) L5
with 0 < §, < 1. Thus
(2.6) [5(y) & < C exp(—h(x))(e; = x)
— Co~xg(x)exp(— h(x))(&; = x)’

vy %= P
+sup|y - x|< e, — x!lf (y)l—

Now from (2.5),
.= (x — ra,)(1 — gl )az)-
= (x = na)[1 + gle)a? + (g(@)ai(1 - g(e)ad) ']

Thus there is an 4; > 0 (note in the following that the constants 4, will not
depend on N or n) such that

o

@7 (o = x) — (xg(e)a; — ra,)| < A,(1 + |x])ag.
This implies ‘
(2.8) I(a; = x)| < 4y(1 + |x])a,.

By the mean value theorem, since g’ is bounded,

|g() = g(x)| < A5(1 + |x])a,.
Thus from (2.7)

(29) (e — x) — (xg(x)a,% - rian)l <A1+ xz)a'::
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From (2.7) we see that
|(a; — x) + ra,| < As(1 + |x|)a’.
Using this and (2.8) we obtain
(& = x)* = rla}]
= (o = x) + ra,| - |(&; = x) = ra,|
As(1 + [xai[ Ay(1 + |x)a, + |r]a,]
<A1 + xHa?
From (2.6) we get by means of (2.8), (2.9) and the last inequality
JAy) dy
< Cexp(—h(x))(xg(x)a? — ra, + A,(1 + x?)a?)
= Co ~xg(x)exp(— h(x))(rfa? — A4(1 + x?)a?)
+5UP|, _ri<la— xS ()A3(1 + |x|)’al/6.

Now exp(—h(x))|x|* is bounded and sup, _ |, _x|f"(»)| |x|> is bounded (in x),
thus

Jif(y) & < C exp(—h(x))(xg(x)a} — r.a,)
— Co~xg(x)exp(— h(x))r7a}
+Aa’.
Thus
Spfif(y)d < C exp(—h(x))xg(x)a,%Z’,-"_lp,-
= C exp(— h(x))a,Z7_ \7:p;
— Co~*xg(x)exp(— h(x))az=7rip,
+A4a> = Aad’.
This proves (2.4). Since P(X} < x) = F(x), we get from (2.3) and (2.4) by induc-
tion
lim sup, ,,P(X, < x) < F(x) + AZL. ya’.
Thus, since X, — X, -0 as., for any § > 0
lim sup, , . P(X, < x) < F(x + 8) + AZ®_ya’.
Letting N - 0, 6 >0
lim sup,_,  P(X, < x) < F(x).
Similarly
lim inf, ,  P(X, < x) > F(x).

This proves the theorem under the restrictions in the proof.
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We now proceed to the general case where Y, is not longer discrete and g’(x)
need not vanish for large |x|. Choose n > 0. Construct identically distributed
random variables ¥; which are Y;-measurable and thus independent, which assume
only finitely many values, and which satisfy

E(Y))=0, E((Y/ - Y))<nm.

Further choose g : R — R satisfying the conditions of the theorem and such that
for some D >0

g(x)=0 forall |x|>D
|g(x) — g(x)| <n  forall x €R.
Define X| = X,

w1 = X1 = g(X)al) + a,7,.
Then E(X2,) < E(X?)(1 — d,a?) + o"%a?, with 0> = E(Y;?). Thus by Lemma 2.1
lim sup,,_mE(X,{z) < 0?/d,.
Similarly
lim sup,_, ,E(X;?) < 0*/d,.

Now by independence and (2.2), if n is large enough that 1 — g(X,)a2 > 0 and
1 - g(X)a? > 0,

E((Xpe1 = X;11)%)
= E[(x,(1 - &(X,)a) - X,(1 - g(X)a))’]
-2E[ X,aX(g(X,) — Z(X,) ][ X.(1 - &(X,)a7) — X;(1 - &(X;)a;)]
+E[ XZaX(e(X,) — 2(X,))"] + &2E((Y, - Y,)?)
< E((x, — X)) (1 — dya2)’
+2a(E(|X,X,) + E(X?))
+ai’E(X7) + agn
< B((X, - X,)°)(1 = dha?)
+2an (‘—’5‘-;—")(1 + (1)) + na2.
Thus by Lemma 2.1

’ 2
lim sup, o, E((X, — X;)?) < n(z = ; <+ 1) /d,.
1

Since ¢’ — 0, as n — 0, this bound may be chosen arbitrarily small, say smaller
than 73 for any 7 > 0.
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By Tschebyscheff’s inequality then
lim sup,_,P(|X, = X;| >7) <,
thus
lim sup,_,,P(X, < x) < lim sup, , ,P(X, <x+ 1)+

= C'f**rexp(—2/328(2) dz/o?) dy + .
We let n — 0 and g — g. It follows that ¢’ — o and 7 — 0 so that
lim sup,,_, , P(X, < x) < F(x).
Similarly,
lim inf, ,  P(X, < x) > F(x).
This proves the theorem. []
We shall see later that the theorem remains true for a larger class of functions

g: R— R™ as described in the theorem by using a similar approximation argu-
ment as in the end of the proof.

3. Application to the Robbins-Monro process. The Robbins-Monro process, as
introduced by Robbins and Monro (1951), deals with the problem of estimating the
root # of the equation

M(x)=0
for an unknown measurable function M. The method is the following: choose an
arbitrary X, and define a sequence of random variables X, by

X,

n+l = Xn - ann’
where ¢, is a sequence of nonnegative numbers and the random variable Z,

denotes a measurement of M at the point X, so that
3.1 E(Z,|X,, - -, X, = MX,) as.
Several authors proved convergence of X,, to # for suitable choice of a,. (See Blum
(1954), Chung (1954); see Schmetterer (1961) for a more complete bibliography.)
1
If ¢, = n~!, Chung proved asymptotic normality of n2(X, — ) under several
assumptions; this was generalized later by several authors (Fabian (1968), Sacks

(1958)). In all these papers one essential condition is that the derivative M’(8)
exists and

(32) M(8) > 1.

In addition to other results Révész and Major (1973) got asymptotic normality of
(n/log n)%(X,, — 8), if M'(9) =1 and a.s. convergence of X,¥'®, if 0 < M'(0) <.
In this paper we look at the case where M’(8) does not exist, but the derivatives at
 from the right and left exist. (This problem was posed by Dvoretzky.)

We shall look only at the situation where the error of measurement M(X,) — Z,
is independent of X,,, i.e., we shall assume that — M(X,) + Z,, n > 1, is a sequence
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of independent, identically distributed random variables and that X, is indepen-
dent from this sequence.
Now assume that

my := lim, ,M(x)(x — 0)",
and

my i = lim,, M(x)(x — 0)~!
exist. Denote

Y, = MX, — Z,.
We need the following lemma due to Chung (1954), page 466, and Venter (1966),
page 1535.
LemMA 3.1.  Let a, be a sequence of real numbers such that for large n

o, <a,(l—cn ) +dn'7"

with ¢, d, p > 0. If ¢ > p then a,, = O(n~"). If ¢ < p then a,, = O(n"°).

THEOREM 3.2. Let (X,) be a Robbins-Monro process with c, = n” " such that

i) M(x)(x —8) >0  forall x#9,
(ii) [M(x)| <A + B|x| forall x €R,
(iii) inf, ¢ _g<rlM(x)| >0  forall 0<r<R< oo,
(iv) E(Y)=0’< o, E(X}) <o,
) my, my > 3.

Then n%(X,, — ) has a limiting distribution and its density is

f(x)=Cexp(—W) if x>0,

o

f(x)=Cexp(—§ﬂ2’2n—22—_—Q) if x<O0
g

with

c=(i)% @m, — 1)}(2my — 1)? .
762) (2m, — 1) + 2m, — 1)?

Proor. Suppose # = 0. Conditions (i)—(iv) imply almost sure convergence of X,
to 0. (This is Blum’s theorem.) Define m(x) = m, for x > 0, m(x) = m, for x < 0.
We assume that M(x) — m(x)x is bounded for x € R and also that

|M(x)| > K;|x|
with K, > % If we prove the theorem under these conditions, then the general case
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follows by a trick of Hodges and Lehmann (see their paper and also the proof of
Theorem 1’ in Sacks (1958)).
Now by independence

E(X2,)) = E(X,,z(l - n—l__M;X_n_)z) +o'n?

<EX)(1 - K, + o(1))n™") + a’n~2

Since 2K; > 1, by Lemma 3.1 with p = 1
E(X2) =0(n"").
Thus E(|X,|) = 0(n~2) and
P(1X,| > &) =0(n"")

for all e > 0. Since |M(x) — xm(x)| = o(x) and sup,|M(x) — xm(x)| < oo this
implies

E(M(X,) ~ X,m(X,)) = o(n~3).
Now

Xoo1 = X,(1 = m(X)n™") + n Y (X,m(X,) — M(X,)) + n"'Y,.
Multiply this by n%, and obtain
nixX,,, =(n- 1)%Xn(1 - (m(X,) -~ + 0(n“2))

+n"21(m(X,)X, — M(X,)) + n~1Y,.

Define X, by X, = 0 and

X, = f(l - n“(m(f) —%)) +n72Y,

n n n

As in the proof of (2.2), if n is large enough, then
[x[1 = (m(x) = 3)n~'] = y[1 = (m(y) = 3)n""]|
< |x = y|(1 — mn~")
uniformly in x and y where m = min(m,, m,) — 3 > 0. Then, since m(X,) =
m(X,(n — l)%), for large enough n

N3 X0y = X, < (0 = 1)2X, — X,|(1 — ")
+ (n = 1)7|X,/0(n"?)
+n~3|X,m(X,) — M(X,)|.
Thus _
E(In3 X, 01 — Kpal) < E(I(n — 12X, = Z,)(1 — mn ") + o(n™").
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By Lemma 2.1 E(((n — 1)iX, — X,|) 0. Thus it is sufficient to show that the
limiting distribution of X, is the one given in the theorem.
Now choose 7 > 0 and g, : R — R such that

g(x)=m(x) —3  for |x|>n

such that g, satisfies the condltlons of Theorem 2.2, and such that m(x) — 3 >
g,(x) > m > 0. Define the process X by X, , =0and

)?,+1=)7,,(1 n~ g,'()-(_))+n %Y,,.

Then as in Theorem 2.2

X1 = Xyl < IZ (1= g(X)n") = X (1 = g,(X,)n ")l
+1X,In " (m(X,) -3 - £,(X,))
<X, - X,J(1 = mnY) + Yy = my.
Thus by Lemma 2.1
lim sup, o E(X, = X,) < n7* ™" |my = m.

Now from Theorem 2.2 with a, = n =1 we see that )?,, has a limiting distribution F,
and its density is

C, exp(—20"%(3yg,(») &).

Thus by the argument at the end of the proof of Theorem 2.2, letting 5 — 0,
g, > m-— 1, X, must converge to the distribution given in the theorem. The
normalizing constant may easily be calculated. []
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