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SOME STABILITY RESULTS FOR VECTOR VALUED RANDOM
VARIABLES

By J. KUELBS' AND JOEL ZINN?
University of Wisconsin and Michigan State University

This paper explores the strong law of large numbers in the infinite
dimensional setting. It is shown that under several classical conditions—such as
the Kolmogorov condition—the strong law holds if and only if the weak law
holds.

1. Introduction. Let B denote a real vector space, B a sigma algebra of subsets
of B, and ||-|| a semi-norm on B. We say the triple (B, B, ||||) is a linear measurable
space if (i) addition and scalar multiplication are B measurable operations on B, (ii)
forall t > O we have {x € B :||x|| <t} € B, and (iii) there exists a subset F of the
B measurable linear functionals on B such that

(L.1) x|l = SqueF|f(x)| XEB

(actually property (iii) is not used in this paper).

Examples of linear measurable spaces include the situation where B is a real
separable Banach space, B denotes the Borel subsets of B, and ||+|| is the norm on
B. Another important example consists of B = D[0, T'] where D[0, T'] denotes the
real-valued functions on [0, 7] which are right continuous on [0, T] and have
left-hand limits on (0, T'). In this case B consists of the minimal sigma-algebra
making the maps x — x(¢), 0 < ¢t < T, measurable and the norm is the sup-norm,

o lxll = supo, < 7| x(D)-

Now assume (B, B, ||*||) is a linear measurable space, and {X;:j > 1} is a
sequence of independent (B, B)-valued random variables. We say {X;} satisfies the
strong law of large numbers (SLLN) if
(12) P(lim,||(X, + - - - + X,)/n|| =0) = 1.

If the {X; :j > 1} are real valued, then necessary and sufficient conditions for
the strong law of large numbers which might be considered “satisfactory” are
rather recent [6], [7]. These results are easily extended to the case where the { X}
takes values in a finite dimensional vector space, but for random variables with
values in an infinite dimensional vector space the situation is much less desirable.

To be sure, the infinite dimensional case is substantially different. In fact, except
for the case where the {X;} are independent indentically distributed (i.i.d.), only
rather unsatisfactory sets of sufficient conditions are known when the {X;} takes
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76 J. KUELBS AND JOEL ZINN

values in an arbitrary separable Banach space. For example, we have

THEOREM A ([1]). Let {X; :j > 1} be independent random variables with values

in a real separable Banach space. If EX; =0 (j > 1),
1
N 22 . (EIX|P)?

() Z72,E|X|)*/j* < o0 and 2j=1——n——> 0as n— oo, or

(if) Zj_ess sup||X;||/n—0as n— oo,
then {X;} satisfies the SLLN.

In (i) it is the second part which is unusually restrictive, and, of course, (ii) is
extremely restrictive. Nevertheless, the fact remains that the conditions (i) and (ii)
are best possible in the sense that if either is weakened the resulting statement is no
longer true for all Banach spaces. For example, if 27_ ,(E ||Xj||2)% /n+0asn— o,
then the Kolmogorov condition
(1.3) SR LE|X|P/P < oo

need not imply the SLLN for {X;} unless B is a type-2 Banach space.

What we have, then, is that the SLLN in an arbitrary Banach space is consider-
ably different from the situation for real valued random variables. The purpose of
this paper is to provide further sufficient conditions for the SLLN which hold for
random variables with values in any measurable linear space. For example, if {X;}
is a centered sequence of independent random variables with values in any linear
space and having variances such that

2
(14) » ElIXl

j=1 - s
J

then we show that the SLLN is equivalent to (S,/n) —,0.

From a practical point of view our results are still somewhat unsatisfactory in
that our assumptions are not entirely in terms of the individual summands.
Nevertheless, finding good sufficient conditions for the SLLN without restrictions
on the range space is a very delicate problem, and what is accomplished here in
many cases reduces the problem to the study of the weak law of large numbers.

An application to the strong law of large numbers in Banach spaces of type p is
made in Section 4.

2. Some lemmas.

LemMA 2.1. Let X = {X;:j > 1} and X' = {X/ :j > 1} be two sequences of
independent random variables in the linear measurable space (B, B, ||*||) such that X
and X' are independent copies of each other. Then

(2.1a) 31_1X,/n .0
iff

(x, — X)) X
(2.1v) 7o —-j—n—j— —,:0  and Y 7’ —,0.



SOME STABILITY RESULTS FOR VECTOR VALUED RANDOM VARIABLES 77

ProOF. Obvious.

LEMMA 2.2. Let {X;:j > 1} be independent, symmetric random variables with
values in the linear measurable space (B, B, ||*||). Then

S, o Sy — Sy
7 _>a‘s.0 iff —2—27—2 —as.

0.

Proor. See [8], page 159, for a method which handles this easily.
LeMMA 2.3. Let {X;:j > 1} be independent symmetric random variables with
values in the linear measurable space (B, B, ||*||) such that

(222) X0 <j >l
and
Sh
(2.2b) " —>p0.
Then
(2.3) E|l—|| >0

Proor. To prove (23) fix ¢ > 0. By (2.2b) there exists n, such that
Sup,, , P(I|S, || > ne) < - From [2] or [4], Lemma 5.4, we have that

SGP(IS,|| > ne) dt =3 [§/°P(||S,|| > 3nt) dt
< 3[4f(,’/3P2(||S | > nt) dt + [§/°P(N, > nt) dt]
< 12¢ + éi aP(||S,|| > nt) dt + 12[§/°P(N, > nt) dt

< 24e + 24({/*P(N, > nt) dt, for n > n,,
where N, = max, ;,||Xj|l. By (2.2a) N, < n, and hence

S
E < 24e + 24[}P(N, > nt) dt.

Now for z > 0,
P(N, > nt) < P(max1<k<n”Sk” nt/2)
< (by Lévy’s inequality) 2P(||S,|| > nt/2) — 0,
as n — co. Hence by the bounded convergence theorem
J6P(N, > nt)dt -0 as n— .

Hence, by the arbitrariness of ¢, lim, ,E||S,/n| = 0.

3. Stability results for vector valued random variables. The main results of the
paper are presented here, and are expressed in terms of the quantities

A(n, p) = Z;eimENIX;|1P /204 DP
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where
I(n)={j:2"<j<2"*1}.
To prove Theorem 1 we employ the Erdds double truncation technique (see, €.g.,
[8]) and the exponential inequalities of [5].

THEOREM 1. Let {X; : j > 1} be indépendent random variables with values in the
linear measurable space (B, B, ||*||) such that

X.
(3.1a) —25,.0
J
(3.1b)  for some p €[1,2] andsome r € (0, ) Z7.A(n, p) < oo.
Then (S, /n) =0 iff (S,/n) —,0.
Proor. Assume (3.1a, b) and (S, /n) —,0. By Lemmas 2.1 and 2.2 it suffices to
assume that {X,; j > 1} is symmetric and prove that
S2n+l - S2n
—2n_ as.
Next we note that by symmetry and (3.1a) it suffices to assume that

(3.3) IX;0 <.

(32) 0.

Since under (3.3) A(n, 2) < 22 A(n, p), it suffices to prove the theorem for p = 2.
Let A(n) = A(n, 2). For this purpose fix ¢ > 0, N € N = natural numbers, N > 2,
and set

= XI[1X] < A 2| j € Xn)
Unl = llzjel(n)Xj'”

N 2n+ls
U2 = IZjeimX | 1% > =5 |l

and
U3 = IZ e X[ A2+t < 1% < 527
To prove (3.2) we need only prove that
(34X) S2_P(Uf >e2"*") <0 for k=123

To prove (34.1) we let b, = .°,2"+'A(n)8 e, =2""'e/b, = A(n)"% and ¢, =
a/ e)A(n)s Then

(3.5) IX/| < A(m)i2"*! = c,b, € I(n),

and hence by using the estimate 1 + (ec/3) + ((e¢)*/4-3) + - - - <e* in the
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proof of Lemma 2.1 of [5], we have for n > ny(e) (see 3.7 below)

Ul n+lg U!
(36) P(U}>2"t%) = P(——E— > 2b ) = P(T” >e,,)

E||X/|]?
< exp 1% }

&
(7)(6%.0,.)2].61(,,)7

o [ 2ol

€

NI;'”N
\.\,—J

< exp

since
: U
(3.7a) lim, —;~ = 0 by (3.3) and Lemma 2.3
(3.7v) €,C, = %
E||X;|? EIXI?  A(n)

(370) Ejel(n)—? zje,(,,) sz = p -0
Therefore,

2n>no(ff)P( Unl > 2n+1€) < 2n exp(—ef/z)

<3, exp(— A_(”zl—_) < 3. 2%(4r + 1)IA(n) < .

-

Now (3.4.2) follows since (3.1a) implies that only finitely many of the terms in U?
are nonzero. Finally (3.4.3) follows since

P(U? > 2"*'¢) < P(3 at least N s in I(n) such that || X;|| > 2"*'A(n)?)
1 An) TV l
< S cimPUX | > 27 A < [-—( )1} = A(m)"/?
A(n)?
which is summable if N is chosen so that N/2 > r.

COROLLARY 1. Let {X; :j > 1} be independent random variables with values in
the linear measurable space (B, B, ||+||) such that

E||X,|1P
(3.8) \ o [l <

=1 -
J jP

Then (S,/n) -0 iff (S,/n) —,0.

for some 1 <p<2
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PROOF. (3.1a) follows from (3.8) and (3.1b) holds with = 1 by (3.8).

ReEMARK. Theorem A (i) follows from Corollary 1 since X%_,((E ||Xj||2)% /n)—0
implies (E||S,||/n)— 0, which implies (S,/n) —,0. On the real line (3.8) and
EX; =0 (j > l1) trivially implies (S,/n)—,0, although (3.8) need not imply
2 (ENX;|1%)2/n) - 0.

CorOLLARY 2 ([9)). If {X;:j > 1} is a sequence of independent random vari-
ables taking values in the separable Banach space B such that

(3.92) EX,=0, j>1,
(3.9b) {Xx;} is tight, and
(3.9¢) supE||X||I” < 0 forsome p >1,

then (S, /n) —, 0.

Proor. Combining (3.9b, c) we have for every ¢ > 0 that there exists a compact
set K such that [ . || X;||dP < e. Hence by [3], Theorem 2.4, we have E||S,/n| —
0 and thus (S, /n) —,0. Thus Corollary 1 applies and the corollary is proved.

If one imposes stronger conditions on the X;’s, then one can obtain the conclu-
sion of Theorem 1 under hypotheses which are sometimes weaker than (3.1b). In
what follows we let LLj = log(log(j \/ €°)).

THEOREM 2. Let X, X,, - - - be independent random variables with values in
the linear measurable space (B, B, ||*||) such that
(3.102) IX| < Mj/LLj  for some constant M < oo, j > 1,
and

(3.100) =, exp{—e/A(n)} < oo  forall €>0 where A(n)= A(n,?2).
Then '

Si,0 iff S2s,0
n n

a.s.”*

ReMARK. Condition (a) of Theorem 2 is necessary even on the real line. That is,
if (3.10a) is replaced by

(3.10a) X0 < TG)/LLi > 1

where T'(j) — oo as j — o, then there exists a sequence of independent, symmetric,
real valued random variables such that (3.10a)’ and (3.10b) hold, yet (S, /n) 4,0.
Such an example is given by Prokhorov [7], and is easily modified so that we also
have (S, /n) —,0 and still (S,/n) 4,0

Furthermore, under (3.10a) condition (3.10b) is necessary and sufficient for
independent mean zero real-valued random variables to satisfy the strong law of
large numbers [7], but it is easy to produce an example in the infinite dimensional
setting which satisfies (a) and (S,/n) —, 0, yet (b) fails.
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The example is in the Banach space ¢,. Let X, = (n/LLn)g,e, where {¢,} is a
sequence of independent random variables such that P(g, = + 1) =3 and {e,} is
the usual basis in ¢, Then (a) holds and (S, /n) —, 0 in ¢,, yet (b) fails.

PrOOF. The proof proceeds in a manner similar to that of Theorem 1. As
before we can assume the X;’s are symmetric, so it suffices to prove (3.2).

First we note by the method used to prove the exponential inequality of [5] we
get: if || X}|| < ¢,b, (1 < j < n), then

n

ISl = EllSAll , . €., EIXIP ..
(3.11) P(—T—_>e" < exp —e,,+7 1 5 oo .

Since (S,/n) —,0 and || X;|| < Mj/LLj we have by Lemma 2.3 that £|| S, /n|| —
0. Hence E||(Sy+1 — S,)/2"*!|| = 0, and we have (3.2) by showing
(3.12) 2, P(I|Sp+1 — Syl = E||Spe1 — Spl| >€2"*!) < o0

for every e > 0 (e < 1).
To verify (3.13) we divide the natural numbers into two sets. Fix § > 0, ¢ > 0.
First we consider the case
2 -2(1 + 8)*'M
3.13 nl g & —_—].
(3.13) A(n)LL2 [ D) J exp( ! )
Let

e +1 on + 18
g, =
b,

b, = = (1 + 8)(2LL2"+Y)3,

"1+ 8)QLLYYE
and c, = 2(_1_-';8)—]‘14'
e(LL2"* 1)z

Then from (3.11) we have
(3.14)  P(||Sp+1 — Syll — E||Sprer — Syl > €2"+1)

< exp[ —83[1 - Mz)zjz—z- exp(2(1 + 8)2M/e)]}.

n

Using (3.13) we have
2n+2 ’
A(n—z)%—— exp(2(1 + 8)’M /e) < 1

so for such n
(3.15)  P(||Sy1 — Syll — E||Syrer = Spull >2"*)
< exp(—%(l + 8)2LL2"+‘).
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The remaining case is

(3.16)  A(m)LL2™*! >[ r exp(—2(1 + 8)2M/€) = A(e, ).

&

2(1+ )
Let (e, 8) = [Ae, 8)/2¢l%, b, = AX(m)Q2"*'/1(e, 8)), &, = e2"*'/b, =

er(e, 8)/A2(n), and ¢, = (e, 8)/A2(n)LL2"+l Then b,c, —2’”"/LL2""'I nd

&,c, = er(e, 8)/ A(n)LL2"“l <1 by (3.16). Hence from (3.11) we have for such n

that

(317)  P(|Syrs1 — Syl — E||Syrs1 — Saul| > €2"*1)

< exp{—%e } < ex P{ Z S%A((:)s) }

because

oo A2 4 A(n) (e, 8) _ Me, 8)er _ 1
w2 2 A 4 8

when & < 1. Combining (3.15) and (3.17) we have (3.12) holding since (3.10b) is at
our disposal. Thus the theorem is proved.

Applying Lemma 2.1 of [5] and the methods used in Theorem 1 we can also
prove the following result.

THEOREM 3. Let X}, X,, - + - be independent random variables with values in
the linear measurable space (B, B, ||*||) such that
< (3.18) P(||Xj|| <A =1 j> L

Let {a, : n > 1} be a sequence of positive numbers such that
a, = 1",,(2nLLn)%

where T, 7 oo, and there exists an increasing subsequence {n, : k > 1} satisfying

(3.19) () 0 < lim inf, n"" < lim sup, n”" <1,
k+1 k+1
(i) lim inf, —* = oo
2
Then
s, S,
7’1 —>p0 lff 7" _)a.s.o‘

Of course, if @, = n” (r >3), then the above theorem holds.

4. An application to spaces of type p-Rademacher. As mentioned in the in-
troduction the above results are not completely satisfactory, since our condmons
are not on the individual terms. However, if one imposes restrictions on the
geometry of the space, the results become less unsatisfactory.
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A Banach space is said to be of type p-Rademacher if there exists a constant

¢ < oo such that whenever X, - - -+, X,, € B are independent, with EXJ =0 and
E||X;||F < oo, then
4.1) E|lX,+- -+ X,|° < 02;-'=,E||Xj||1’.

(For further information on these spaces see [3].)

THEOREM 4. Let F be type p-Rademacher 1 < p < 2. Then

(4.2a) X,/j—>0 as.
For some q € [1, 2] and some r € (0, o)
(4.2b) 22 A(n, q) < o0
and

. EIX|P

imply S,/n—0 as.

PrOOF. By Theorem 1 we need only show that (4.2c) implies (S, /n) —,0. But
(4.1) and (4.2¢) imply E||(X, + - - - +X,)/n|” < cZ7_(E| X;||?/n?) — 0. Hence
(S,/n)—0.

Theorem 2 can be recast in a similar manner.

It is easy to construct an example to see that Theorem 4 is actually an
improvement of the SLLN obtained from Theorem 2.1 of [3] when 1 < p < 2.
That is, let X; = gx; where {g} is a sequence of independent random variables
with P(g = = 1) =3, and assume {x;} is a fixed sequence in a type p-Rademacher

n(p—1)

space F such that |[x;(|” = for 2" < j< 2"*! Then

n

« EIXI?
(4~3) j=1 jPJ T= %
(4.4) ~0as,

J

(4.5) 2. A(n, p) < oo,
and
4.6 | li o EWXIE_ g
( ) m,_,o2j=1 n?

Combining (4.4), (4.5), and (4.6) we see from Theorem 4 that {X;} satisfies the
SLLN, but (4.3) prevents Theorem 2.1 of [3] from applying.
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