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ENVELOPES OF VECTOR RANDOM PROCESSES AND THEIR
CROSSING RATES

BY DANIELE VENEZIANO
Massachusetts Institute of Technology

Vector-valued random processes, X(#), can be “enveloped” by set-valued
random processes, S(#), to which they belong with probability 1 during any
finite length of time. When applied to scalar processes, the set-definition of
envelope includes and is richer than the familiar point-definitions. Several
random set-envelope processes in n-dimensional space, R, are defined and the
mean rates at which they “cross” given regions of R, are calculated. Compari-
son is made with the mean crossing rates of associated enveloped Gaussian
processes, X(?).

1. Introduction. Enveloping scalar random processes has proved to be an
effective means of studying their extremal properties (Cramér and Leadbetter,
1967; Crandall and Mark, 1961; Rice, 1944, 1945). In particular, the mean rate at
which the envelope of a random process, X(¢), upcrosses a high level, r, has been
used to approximate the probability distribution of the time 7, T > 0, at which
X(?) first exceeds the same level (Crandall, 1970; Lyon, 1961; Vanmarcke, 1969,
1975). In reliability applications, F(r) is the probability that a system with state
X(¢#) and survival condition X < r has failed at time 7. Similarly, for a system with
vector-state X(#) = [X,(?), - - - , X,(©)]", and survival condition X € D (D = a
region of R,), Fy(7) is the probability that X(¢) is not in D, sometimes in [0, 7]. In
the multivariate problem, F(7) can be estimated from the mean rate at which X(7)
leaves D (Veneziano et al., 1977), but by analogy with the scalar case one may
expect that mean crossing rates of appropriately defined envelopes will generate
better approximations. The notion of envelope is extended here from scalar to
vector random functions by defining stochastic set processes in n-dimensional
space to which X(¢) belongs with probability 1. The mean rate at which some set
processes in R, experience “crossings” is derived and compared with the associated
mean outcrossing rate of X(¢).

2. Set processes in R,. In one-dimension, a scalar process S(¢) such that
S(#) > |X(¢)| for all ¢ is called an envelope of X(¢). For easy physical interpretation
it is desirable that the difference, S(#) — | X(¢)|, be not very large, particularly at the
points of stationarity of X(¢), and that S(¢) be a smoother process than X(#). The
definition that follows, due to Cramér and Leadbettér (1967), satisfies these
requirements for narrow-band processes and is mathematically convenient for
mean-crossing-rate-calculations. Let U(w) and V(w) be the random cosine and sine
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spectral components of X(¢), such that

2.1) X(#) = [&] U(w)cos wt + V(w)sin wt ] dw.
Then S(¢) is defined:

22) S(1) =[x%(1) + X¥(1)]?,

in which

(2.3) X(#) = [&[ U(w)sin wt — V(w)cos wt] de.

A multivariate generalization of S(¢) becomes conceptually simple if one replaces
the crossing level r with the interval D = (— o0, r] and the envelope S(¢) with the
random set process

2.4) (1) = {X:|X| < S()}.

At any time ¢, S(f) is a vertical line segment with random, time-dependent
extremes. S will be said to be in the crossed state at time ¢ iff S (¢) is not entirely in
D. Because S (¢) is in the crossed state if and only if S(f) > r, the two definitions of
envelope, (2.2) and (2.4), are equivalent with respect to level crossing. However, the
concept of set envelope is richer than the concept of point envelope and can be
extended more naturally to the multivariate case.

DEFINITION. & (7) is a set-envelope process (or simply a set process) of X(¢) if
X(#) € &(r) with probability 1 during any finite length of time.

In application—e.g., to system reliability—it is desirable that at any given time ¢,
S () be contained in a small region of R, and that in some sense & (f) be smoother
than X(7). Three set processes that satisfy these requirements and for which mean
crossing rates are rather simple to calculate are defined in the next section.

3. Three set-envelope processes in R,. Without loss of generality, one can
define set envelopes, &(7), only for zero-mean processes, X(¢). Processes with
nonzero and possibly time-dependent-mean are enveloped by translations of S (7).

Let d*(f) = =7_,S(¢) with S;(#) = envelope of X,(¢) in the sense of (2.2). Then
X(?) is enveloped by the spherical set (disk process of X(?)),

3.1) Sp(8) = (X:[X]| < d(£)}.

Envelope sets smaller then &,, can be defined in terms of the scalar processes, S;(?),
the smallest set of this type being

(32) Sa(1) = {(X:|X| < S i=1,- - ,n).

Sgr(?), the rectangle process of X(¢), is a random parallelepiped with center at the
origin and vertices on the boundary of &, (¢).

Equation (3.2) uses the scalar envelope processes to constrain X(¢) along the
coordinate directions. With some additional information one can constrain X(#) in
all directions. Consider the random process, X () = a”X(?), being the component
of X(7) in the direction of the unit vector, a. The associated envelope process in the
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sense of Cramér and Leadbetter (1967) is
(33)  S.(1) =[XX0) + X2A1)]} = {«T[X(OXT(2) + K()XT(1)]a)?
=[a"G( t)a]%

in which G(n)_ is the random, positive semidefinite matrix with (i, j)th element
[X:(DX; (t) + X (t)X (1)]. For any given a, X(#) belongs to the set {X:|a”X| <
[aTG(t)a] }; hence X(7) belongs to the ellipsoid (called here the ellipse set of X(¢))

(3.4) Se(t) = {X:|oTX| < [«7G(f)a]*  forall a}.

This definition of Sz(¢) holds whether G(7) is singular or not; if G(¢) is nonsingu-
lar, then an equivalent definition is §.(r) = {X : X’G™ (X < 1}. For n > 2, G(¢)
is always singular and S;(f) is a random ellipse in the plane that contains the
origin, the point X(¢), and the direction of f((t).

Properties of Sp,, Sz, and S;. For any given ¢ and with 95 = boundary of S,

L 8p(#) D 5x(5) D 3£(1).
2. X(1) € 05, (1) iff X(t) = 0 for all i,
X(?) € 95 (2) iff X(t) = 0 for at least one i,
X(1) €95, () if n>1 (for X =X(#) and for a such that aTX(t) =0 the
inequality of (3 4) holds as an equality).
3. §,(?) is invariant under isotropic scaling and rotation,
Sg(?) is invariant under scaling but not under rotation,
&g (?) is invariant under all homogeneous linear transformations.

* Let Y(¢) = AX(#), A a given square matrix, and denote by 5, (1) and 5, () the
disk processes of X(¢) and Y(¢), respectively. The set processes, Sg (£), Sg (¥),
Sk (), and S (1) are defined in a similar way. For any X in 5, (1), Y = AX €
&p,(?) if A is proportional to an orthogonal matrix, but not necessarily otherwise.
Therefore, the disk process is invariant under rotation and under isotropic scaling.
For all X € 5 (¢), Y = AX belongs to S, () if A is diagonal, but not necessarily
otherwise. Hence, the rectangle process is invariant under scaling of the compo-
nents of X but not under rotation. Finally, if X € 5 (¢), then Y = AX € Sg, (D)
for any given A, indicating that the ellipse process is invariant under all homoge-
neous linear transformations. One can use these invariance properties to obtain the
following alternative definitions of S, and Sz_in terms of &,

4. Sp () = (X : Y = AX € 5, (1) for all diagonal A},
() ={X:Y=AX€ Sby(t) for all A}.
5. Forn=1,5,(f) = Sg() = Sz(1) = {X:|X| < S(2)}.

4. Outcrossing rates of Gaussian vector processes, X(f). Let X(¢) be an n-
variate stationary Gaussian process. In calculating the mean crossing rate of X(¢)
out of a given region D, it is often convenient to formulate the problem in a
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X(?)
X(1)

standard reference such that for any given ¢, [ } is a zero-mean vector with

independent components and covariance matrix

diag(A,) ! 0
(4.1) z[x] _| Siae 3')_; _____ :
X 0 diag(),)
Similarly, for calculation of the mean crossing rates of S,(f), Sz(?), or S;(?), a
X
convenient reference is one in which )‘(8 is a zero-mean vector with indepen-
dent components and covariance matrix
diag(}\ol) 0
(4.2) Z‘.[X] = - - — - —— -
X 0 d1ag(7\ )

and in which the scalar envelopes S;(?) are 1ndependent of the envelope derivatives
S;(9). In (4.1) and (4.2), }‘1, is the ith absolute spectral moment of X(¢),

(4.3) A = [Pw'Gw) dw

in which Gj(w) = one-sided mean power spectral density function of X;(#). It is not
always possible to reduce a stationary Gaussian process to standard form by means
of linear transformations. However, the class of processes for which this is possible
is large enough (e.g., it includes processes with independent components) for results
in this and in later sections to be of practical interest (Veneziano et al., 1977).
There is no additional loss of generality in setting Ay = Aq = 1 for all /, in which
case X(7) will be said to be in (standard) reference 1, or in setting Ay, =2 =1X(©)
in reference 2), or in setting B, = A, — A2 /Ao, = 1 (X(?) in reference 3). B, is the
variance of S(7), the derivative process of S(t) In all cases, (4.1) is assumed to
hold if the mean crossing rate of X(¢) is being calculated, whereas (4.2) is assumed
to hold if an envelope mean crossing rate is being calculated.

Reference 2 is particularly convenient to find »y, the mean rate with which X(#)
outcrosses the boundary 9, of any given region, D. In fact in this reference
(Bolotin, 1971; Veneziano et al., 1977),

(4.4) vx = (27) " 2px(8p)
in which
(4.5) rx(dp) = J a,,fx(x) da(x)

is the integral of the probability density of X(#) over 0, (da(x) = differential area
of 9, at x). More explicit results for particular configurations of D are found in
Belyaev (1968), Belyaev and Nosko (1969), Hasofer (1974), Veneziano et al. (1977).
These results will be used in later sections, to compare vy with »j,, v, and v, the
mean crossing rates of set processes S, (f), Sg(?), and S (f), respectively.
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5. Mean crossing rates of S;(f). In any given reference, S, (¢) is in the crossed
state if and only if the radius of §,(¢), d(?) = [E"_,SA(?)]z, is larger then B =
distance of 3,, from the mean of X(f). Hence, v, equals the mean rate at which d(7)

upcrosses f3.
Calculation of »,, is particularly simple if Aq and B; do not depend on i. Then, in
standard reference 1 (\q =1 and B, = B =\, — )\2) d(f) and d(¢) are indepen-

dent, d(¢r) with x,, distribution and d()B ~7 with standard normal distribution.
Their joint probability density function is

r(r2/2)" " exp(—r2/2) exp(— r2/2B)
(” - 1)’ (27;-)232

Use of (5.1) in Rice’s formula for the mean upcrossing rate of scalar processes
(Rice, 1944, 1945) gives

(52) v = (27) 2 BEx,( )

in which x,(+) = probability density function of the chi-variate with » degrees of
freedom. »;, depends on the shape of D only through S. The expected duration of
Sp(¥) crossings, E[Tp), equals the ratio between the probability that §,(¢) is in the
crossed state at the generic time ¢, P[d(f) > B], and the mean crossing rate, vp, i.e.,

(277)% [1 — Xan( ,3)]
BEI in(:B)

in which X,(*) = cumulative distribution function of the chi-variate with » degrees
. of freedom. ,
Since the mean rate of X(f) crossings depends on the shape of D, the ratio
vx/vp = expected number of X outcrossings per S,, crossing depends on the shape
of D and not just on B. For example, let D be the centered sphere (center at 0) with

radius B. For A, = A, and A, = 1, (4.4) gives vy = (277)‘%}\2% X.(B). Hence

A )5 Xa(B)
A, —A}) x2(B)
If N, or B; are functions of i, then (5. 1) and (5.2) cannot be used. One can work in

standard reference 3, in which case d(f) has the normal distribution implied by
(5.1) and d(¢) has probability density function

(5.1) Joa(r, F) =

(5.3) E[Tp] =

(54) vx/vp = (

(5.5) ﬁi(’) = Ja fs(s) da(s)
in which fs(s) = I f5(s), f5(®) = Ay Txa(shg ?), @, = (sl =7, 5> 0,i =
1,---,n} = portion of centered spherlcal surface w1th radius r in the positive

orthant of R,, and da(s) = differential area of Q, at s. With f,(+) in (5.5), the mean
crossing rate of &, (¢) is

(5.6) vp = fi( B)2m) T B3,
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Alternatively, one can work in standard reference 1. Then the variables S(¢) are
independent with identical Rayleigh distribution, d(#) has the x,, distribution
implied by (5.1), and, given d(¢) = r, d(¢) has conditional probability density
(5.7 f;ﬂd(i L 1) = X3,/ (1) n,fs(s)fégs(': , 8) da(s)
in which (d|S = s) is a normal variate with zero mean and variance |s| “227_,s?B,.
In this case »,, is found from
(5-8) Vp = in(ﬁ)f((;(".'f;iw('.', B) dr.
For n = 2 and with y2 = Var[S,(¢)]/Var[S,(?)] = B,/ B, (y2 > 1, say), integration
of (5.8) gives
3

(5.9) ) v D = _% YS 1

Yppg=1 3 y3—1

in which »p,;_, is the mean crossing rate in (5.2) for n = 2.

6. Mean crossing rates of S ,;(t). Since point envelope vectors S =
[Sy, -+, S,] and rectangles Sy are in one-to-one correspondence, Sg(#) crossings
with respect to a region D of R, are in one-to-one correspondence with S(¢) exits
out of the region Dy, defined
6.1

Dp={S:Xe€ D forall X suchthat |X]|<S,i=1"-"--,n}.
A simple case is when D is a centered sphere in R,; then Dy = D, Sy crossings
coincide with S, crossings, and the results of the previous section apply without
modification. Some problems with nonspherical regions in standard reference 3 are
considered next. In all cases,

_11
(6.2) vr = 27) "2 B2pg(d),)
in which pg(3,,) = integral of the S(#) density over the boundary of Dg. If D is the
rectangle (X : —¢; < X; < d, i =1, - - , n} with ¢;,, d, nonnegative constants, then
Dy is the rectangle {S: 0 < S; < b, = min(¢;, d), i =1, - -, n} and

_1 1 n b,' —_

(6.3) vg = (2m)"2B23}_, Wexp( - bi2 / 2>‘0)X/ XZ(bi/ )\5’/2)
with x = II7_ xx(;/ >\(I)l/ 2). The expected duration of Sg(7) crossings is (1 — X)/7g
in which the numerator is the probability that Sz (7) is in the crossed state at any

given time .
For cubic regions with ¢; = d, = B and for processes X,(#) with the same first

three spectral moments (say Ag = Ao = 1,A; =A;, Ay = Ay, and B;= B=A, —
A}), the mean rate at which X(?) leaves D is (Veneziano et al. (1977))

(64) =20 % (B)exp(—B7/2)

where x,(8) = 1 — 2®(— B) and ®(+) = standard normal cdf. From (6.3) and (6.4)
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one finds that the expected number of X(¢) crossings per Sg(#) crossing is

(6.5) x_ 2 ‘1_( )E[)_(l(ﬂ)/)_(z(ﬁ)]"_l-

VR (27,-)% B

A
A — A

For B > 3, a very good approximation to »x/vg is obtained by setting
X1(B)/x,(B) = 1. This approximation coincides with a well-known result for
scalar processes (Cramér and Leadbetter, 1967; Vanmarcke, 1969), which in turn is
a special case of (6.5).

A case of interest for reliability applications is when D is a generic polygon in the
plane (then also Dy is a polygon). A simple expression for »x was obtained by
Veneziano et al. (1977) in terms of scalar mean-crossing-rate results. A convenient
expression can be found also for v, and is given below without derivation. Since v,
is contributed additively by the mean rates at which S(7) outcrosses each side of
dp,» one need only find the mean outcrossing rate, v, for the generic side i. With
the notation of Figure la it can be shown that:

(6.6) ve, = (2m) 20 (Y, d, @) — g(Y,, dy )]

in which ¢? = B, cos’a; + B, sin%; and

6.7) g(Y,d,a)= {—%fsm 2a[T(3,d?) - T(3, Y?)]

+d cos 2a[exp(— Y2/2) — exp(—d}i/2)]
+3d” sin 2a[ exp(— Y?) — exp(—d})] }exp(—d2/2),

1
- {—%z—sin 20([T(3, d3) + (2, 7]

+d cos 2a[exp(— Y2/2) — exp(—d}?/2)]

+3d? sin 2a[2 — exp(— Y?) — exp(—;if)]}exp(—dz/2),

if 0<Y<dtana

with d; = d tan"!a and T(+, **) = incomplete gamma function (Abramowitz and
Stegun, 1965). Function g(Y, d, a) in (6.7) is the integral of the joint density of
S1(?) and S,(?) over the segment AB in Figure 1b.
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A
/ ith side of Dp a
// B
/ a; d; a d /
Y|| / / / /
0 S 0 / S|
/
/ /
(a) Yi, (b) Y

FiG. 1. Notation for the mean crossing rate of rectangle set processes. D is a polygon in the plane.

7. Mean crossing rates of S;(¢). Consideration will be limited to bivariate
processes X(¢) in standard reference 1, or 2, or 3, with D either a centered disk or a
convex polygon. In all these cases S, (?) is a random ellipse with fixed center at 0;
therefore S;(¢) can be described by three parameters, themselves components of a
stochastic vector process of time. A set of parameters that is convenient for
mean- crossmg—rate calculations is S;(¢), Sy(¢), and ¢(¢¥) = tan“[Xz(t) /X,(0] —
tan™'[X,(1)/X,(9)]. In terms of C = [S,, S,, ¢], the ellipse S is

(1.1) Sz(C) = {X caTX < [aTQ(C)a]% forall « =[ Z; ]}
* in which
S} S,S, cos ¢
C = .
O [ S,S, cos ¢ S}

If cos ¢ # 1, Q(C) is nonsingular and a simpler characterization of S is §5(C) =
{X : XTQ/(C)X < 1}. Crossings of Sz(¢) can be studied as crossings of C(f) out
of the region Dy of R, defined

(7.2) Dy = {Sg:55C) c D}.

For example, if D is the centered disk with radius B, then Dy is the set of points C
such that the principal semiaxes of S, are not larger than B. A sketch of Dy for
this case is shown in Figure 2a, for 0 < ¢ < 7. In the interval, # < ¢ < 27, one
can use symmetry of D, with respect to the plane ¢ = . if D is a convex polygon,
then Dy = N;Dg where Dy is the reglon that corresponds to D; = the half plane
bounded by the jth side that contains the polygon. It is therefore sufficient to find
Dy for D = the half plane bounded by a generic line, aX, + bX, =1, and
containing the origin. This is

(7.3) Dy = {C:[n"Q(Cm]* <

N[—-
‘,-/



ds: (a) to a centered disk, (b) to a half plane in XX,

2. Region Dy in S;S,¢ space that correspon
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in which 7 1s the unit vector normal to the line aX, + bX, =1 and
d=(a*+b¥)"72 is the distance between the same line and the origin. Dy is
sketched in Figure 2b for the case @ = b. As in the previous case, Dy is symmetri-
cal With respect to the plane ¢ = 7.

For calculation of v, the mean rate at which C(¢) leaves Dy, one needs to know
the joint probability density function of S,(¢), Sy(2), &(f), S)(t), Sx(?), and &(?).
Using results in the Appendix and independence properties in the standard
references, this density function is found to be

(74) fs,, Sy 6.8, Snd fslfszf¢f$|f$;f$|sly S
in which »

fs(s) = }\%exp(—-sz/Z)\ol), s3>0

i=1,2
=0, s <0,

f(5) = @uB) lexp(—42/2B) i=12;
fo$) =1/27, 0<¢<2m
=0, otherwise;

! exP[-____(‘i’ —m) }

1 2 >
(27)2 045, 5,(515 55) 2035, 5,(515 52)

Fas, (@ 515) =

and
e = N A
¢ AOz }‘Ou
B, B
2 1 2
o, S, 8,) = — + —
#|S1, sz( 1 52) Sl s%

If n(C) = [1n,(C), ny)(C), ny(C)]” is the vector of director cosines of the external
normal to 35, at C, then

(7.5) ve = o, fs, (Sl)fsz(sz)f¢(¢)E(f°[Y(c)] da(c)
in which ¢ = [s;, 55, ¢]7, da(c) = differential area of dp, at ¢, Y(c) = nl(c)S1

ny(c)S, + n3(c)¢ = component of C at ¢ in the direction of n(c), and Eg°[ Y] =
/¥ ufy(u) du. Y(c) has normal distribution with parameters

E[ Y(c)] = ny(c)m,

(7'6> Var| Y(c)] = n¥(c)B; + n¥(c)B, + ng(c)aiwh (51 52)-

8. Appendix: Joint distribution of S, ©, S, and ©. Let X(7) be a stationary
Gaussian process with continuous derivative. We obtain here the joint distril’)\ution
of S(), O(¢), S(¢) and O(¢), with S(¢) in (2.2), O(¢) = tan™~'[X(¢)/ X(?)], and X(¢) in
2.3).
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Fron} Cramér and Leadbetter (1967), pages 249 and 251, vector &, 1) =
[X(9), X(¥), X(t + 1), X(¢t + 7)]" has normal distribution with zero mean and co-
variance matrix

Ao 0 a b
10 A -b a
(8.1) z, = 4 —b A O
b a 0 A
in which
A2 )
(82) a=a(7)=}\0-———2—+0(1-)

b=b(r) =N\7+0(7)
and A; = ith absolute spectral moment of X(¢). Let

% él(t)
8.3 ,T) =| .
(83) &t 1) Lz(m)]
with
2o | X() - _[AXx(e,7) ] _[X(t+ 1) — X(9)
(84) 5‘(’)'_)?(0} and  &(8 T)_[A)?(t, T)} ‘{)?(HT)—)?(:)]‘

Then &(t, 7) has normal distribution with zero mean and covariance matrix

(a—XNy) b
(8.5) = e [ b (a - ’\o)}
. £= .
(a—=2) —b
{ b (a _ Ao)} 2(}\0 - a)IZ

Since £(7) has circular Gaussian distribution with zero mean, S(t)}\o‘% and O() are
independent variables, the former with Rayleigh distribution, the latter with uni-
form distribution in [0, 27]. The conditional distribution of [S(f), ©(f)] given
[S(?), B(?)] is found as follows.

From well-known results on conditional Gaussian vectors, [£(z, 7)/£,(#)] has
bivariate normal distribution with mean

»

1 [(a - M) X(1) - b)?(t)]

(8.6) =N BX(1) + (@ — A)X(0)

and covariance matrix

(8.7) %, = {20\0 —a) - Xl(‘)'[O‘o — P+ bz]}lz.
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.ﬁ,(t) is the limit of (1/7),(t, 7) as T — 0. Substituting for a and b in (8. -2), using the
fact that if £ has mean m, and covariance matrix X,, then (1/7){, has mean
(1/7)m, and covariance matrix (1/72)X,, and taking the limit as 7 — 0 one finds
that [£,(1)|£,(¢)] has normal distribution with parameters

©9) H[b k0] =2 50|

Z; oo = (A2 = AF/AL,.

Next denote by S(¢) and Sg(¢) the radial and tangential components of é,(t),
respectively. In terms of previous quantities, S(f) and Sg(?) are

S(t) :l =[C _d}gl(t)

Se(?) d ¢

in which ¢ = X(¢)/S(¢) and d = X@) /S(t). Given §, (or, equivalently, given S(z)
and ©(¢)), ¢ and 4 are known and the conditional joint distribution of S(f) and
Se(#) is normal with mean [0, A,;S(r)/A]” and covariance matrix (A, — A2/AL,.
Finally, given S(¢) and ©(z), S(f) and O(¢) = Se(?)/ S(f) have conditional bivariate
normal distribution with parameters

(8.10) m =[A19>\0 ] E=(\- )\f/)\o)[(l) 1/5?2(’) ]

This completes the derivation of the joint distribution of S(f), ©(¢), S(¢) and
©(#). Note that the distribution of S(f) implied by (8.10)—normal with zero mean
and variance (A, — A}/A;)—coincides with the well-known result by Cramér and
Leadbetter (1967).

(8.9)

REFERENCES ' -

[1] ABRAMOWITZ, M. and STEGUN, L. A., eds. (1965). Handbook of Mathematical Functions. Dover, New
York.

[2] BELYAEY, YU. K. (1968). On the number of exits across the boundary of a region by a vector
stochastic process. Theor. Probability Appl. 13 320-324.

[3] BeLYAEY, Yu. K. and Nosko, V. P. (1969). Characteristics of excursions above a high level for a
Gaussian process and its envelope. Theor. Probability Appl. 14 296-309.

[4] BoLoTIN, V. V. (1971). Primenenie Metodov Teorii Verovatnostei i Teorii Nadejnosti v Raschetah
Soorujenni. 1zdatelstvo Literaturi po Stroitelstvi, Moskov.

[5] CraMER, H. and LEADBETTER, M. R. (1967). Stationary and Related Stochastic Processes. Wiley,
New York.

[6] CRANDALL, S. H. (1970). First-crossing probabilities of the linear oscillator. J. Sound Vib. 12(3)
285-299.

[7] CRANDALL, S. H. and MARk, W. D. (1963). Random Vibration in Mechanical Systems. Academic
Press, New York.

[8] HASOFER, A. M. (1974).The upcrossing rate of a class of stochastic processes. In Studies in
Probability and Statistics (papers in honor of E. J. G. Pitman; E. J. Williams, ed.), 153-160.
Jerusalem Academic Press.

[9] Lyon, R. H. (1961). On the vibration statistics of a randomly excited hard-spring oscillator II. J.
Acoust. Soc. Am. 33(10) 1395-1403.



74 DANIELE VENEZIANO

[10] Rick, S. O. (1944). Mathematical analysis of random noise. Bell System Tech. J. 23 282; (1945) 24
46.

[11] VANMARCKE, E. H. (1969). First-passage and other failure criteria in narrow-band random vibra-
tion: a discrete state approach. Res. Report No. R69-68, Dept. of Civil Engrg., M.L.T.

[12] VANMARCKE, E. H. (1975). On the distribution of the first-passage time for normal stationary
random processes. J. Appl. Mech., Transactions, ASME 42 215-220.

[13] VENEZIANO, D., GRIGORIU, M. and CoRNELL, C. A. (1977). Vector-process models for system
reliability. J. Engrg. Mech. Div., ASCE 103 (EM3) 441-460.

DEPARTMENT OF CIVIL ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139



