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GAUSSIAN AND THEIR SUBORDINATED SELF-SIMILAR
RANDOM GENERALIZED FIELDS

By R. L. DOBRUSHIN

Institute of Problems of Transmission of Information, Moscow

A large class of generalized random fields is defined, containing ran-
dom elements F of &/, where & is the dual of the Schwartz space & =
S (R¥). Such a generalized random field is translation-invariant if F¢ is
the same as F¢ for any translate ¢ of ¢; it is invariant under the renor-
malization group with index » (or self-similar with index x) if Fé; =
A-aFg¢ for all 2 > 0 and ¢ € &, where ¢, is the rescaled test function ¢;(x) =
2-vé(x/A). Recent work of several authors has shown that self-similar
generalized random fields on R», and self-similar random fields on Z~
which can be constructed from them, arise naturally in problems of statis-
tical mechanics and limit laws of probability theory. They generalize the
theory of stable distributions. Here the class of all translation-invariant
self-similar Gaussian generalized random fields on R* is completely de-
scribed. By the discretization of such fields the class of self-similar Gaussian
fields with discrete arguments (found by Sinai) is extended. Finally, a class
of generalized random fields subordinated to the self-similar translation-
invariant Gaussian ones is constructed. These non-Gaussian generalized
random fields are Wick powers (multiple It6 integrals) of the Gaussian
ones.

1. Introduction. In recent years many investigations have attempted to clarify
mathematically the applications of renormalization group theory to statistical
physics: see [1]. [3], [6], [7], [8], [16] and [26]. In particular, a mathematical
definition of the class of random fields with discrete argument which are invariant
under renormalization transformations was introduced in the papers of Gallavotti
and Jona-Lasinio [6] and Sinai [26]. This generalizes the well-known definition
of random variables with stable probability distribution. (See for example
[13].) We shall call such fields self-similar. (We translate the term automodel of
[26] by self-similar. The term stable random fields used in [6] is less convenient
because of the polysemantic mathematical use of the word stable.) However,
there exists also another tradition for the study of what is in essence the same
set of ideas. Lamperti [18] has introduced, in connection with limit theorems
for “strongly dependent” random processes, the notion of semistable random
process, which is a direct analog of the notion of a self-similar random field in
its application to usual (i.e., nongeneralized) one-dimensional random fields
(i.e., random processes) with continuous argument. Here some interesting results
have: been obtained (see, for example, a recent paper of Taqqu [27]); however,
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2 R. L. DOBRUSHIN

the possibilities of direct application of these ideas to physical problems are
limited. This is seen, for example, from the fact that there exist no nontrivial
stationary random fields of the usual kind.

In this connection it was proposed in a recent paper [4] of the author to begin
the study of generalized self-similar random fields,’ which seems to us natural
and useful for several reasons. In particular we explain below and in more detail
in [4] that probably (i.e., if some plausible but unproved hypotheses are true)
the notion of self-similar field with discrete argument (in the sense of [6] and
[26]) can be embedded in the notion of generalized self-similar random field.
Self-similar random fields with discrete argument can be constructed by the
discretization of generalized self-similar fields if we consider the values of gener-
alized fields at the indicators of cubes which arise from the partitioning of
Euclidean space. The general properties of self-similar fields were studied in
[4]. In particular in [4] were introduced the notions of the large-scale limit of
the field, which describes its behavior at infinity, and of the short-scale limit of
the field, which describes its local behavior near the point zero of the argument
space. It was shown in [4] that in the case of any (not necessarily power) nor-
malization, these limits are always self-similar random fields. (The large-scale
limits are natural from the point of view of statistical physics, and the short-
scale limits can be useful in the Euclidean quantum field theory.)

The fundamental problem of looking for the stationary self-similar fields de-
fined over Euclidean space of arbitrary dimension v was considered in [4] only
for the case of fields with independent values, leading to stable probability dis-
tributions. In Section 3 of this paper we describe all generalized stationary
Gaussian self-similar fields. By the discretization of such fields we extend the
class of self-similar. Gaussian fields with discrete arguments found by Sinai in
[26]. Forv = 1 this description reduces to the results of Kolmogorov [17] (which
were obtained as early as 1940) and Pinsker [22], who investigated the Gaussian
random processes with stationary increments invariant with respect to the simi-
larity transformations, provided we translate their results into the language of
the theory of generalized random processes. In Sections 5 and 6 we consider
generalized random fields subordinated to the Gaussian random fields (i.e.,
random fields which are functionally dependent on the Gaussian ones and sta-
tionarily connected with them). The main results state that Wick powers (or
Itd integrals in the language of probability theory) of self-similar stationary
Gaussian fields are also self-similar stationary fields (not Gaussian, of course).
For v = 1 the random process corresponding to Wick power 2 is the derivative
of the so-called Rosenblatt process. Its one-dimensional distributions were found
by Rosenblatt in [24] (see also Section 19.5 of [13]) and multidimensional ones

1 We follow here the tradition of the Russian mathematical terminology by using the term
generalized random field instead of random distribution, the term more customary in English.
The main reason is the wish to avoid the expression “‘the probability distribution of a random
distribution.” :
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by Taqqu in [27] in connection with limit theorems of probability theory.? The
discretization of the random fields thus constructed leads to random fields with
discrete argument which are self-similar in the Gallavotti-Jona-Lasinio-Sinai
sense. The possibility of constructing such fields with the help of the Rosenblatt
process was noted in the Gallavotti and Jona-Lasinio paper [6].

In another paper we shall prove that, after a corresponding normalization,
the constructed self-similar fields define in the space of probability distributions
of random fields a family of curves which branch out of the curve of Gaussian
self-similar fields at the point corresponding to white noise. Such points of
bifurcation were studied on the level of methods of asymptotic expansions by
Sinai [26]. The question of the possibility of physical applications of such fields
is open. But these fields are adequate for the problem of studying the limit
distributions of functionals of Gaussian fields (compare [27]). Results in such
directions will be published in another paper of the author. We finally note that
we give in Section 5 a general representation of generalized random fields sub-
ordinated to a Gaussian one which apparently has some independent interest.

2. Generalized random fields. A generalized random field is usually defined
(see [10]) as a probability measure on the space of real generalized functions
(distributions) & which is dual to the Schwartz space & = S“(R*) of all in-
finitely differentiable rapidly decreasing functions on v-dimensional Euclidean
space (see, for example, [9] and [10]). However it is more natural for our aims
to consider a wider class of random fields, the study of which corresponds,
roughly speaking, to the study of derivatives of different orders of random fields

. in the usual sense.
Let #*, v=1,2,... be the set of all y-dimensional multi-indices j =

G o) Joo oo =0,1, «oes |jl =j,+ -+ +J, for je _F*. Also define
thesets _Z = {je £ |jl=rhr=0,1,--. and £, = (je £ |j| < 1},
r=1,2,.... We shall write here and in the following

(2.1) X3 = (x) e (%), x=(x,---,x)eR, je 2.

For each r = 1,2, ... let us denote by &, = &(R*) the closed subspace of
F(R*) consisting of all functions ¢ ¢ S(IR*) such that

(2.2) (v d(X)xidx =0, je FZ:,.
We note that by using the Fourier transform ¢ of the function ¢ € (R*) we
can write the condition (2.2) in the form :

(2.3) D"gﬁ(O) =0, je 2,
wheére
(2.4) Di= (D D)y j=(jn--2)) €55

2 It follows apparently from a note in [27] that in his dissertation (unpublished and regrettably
inaccesible to the author) Taqqu found formally the moments of such processes corresponding
to any Wick power but could not prove that these moments define a unique random process.
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here D, is the differentiation operator in the kth variable, and D is the identity
operator. We note also that it is possible to derive from one of Vilenkin’s results
(see the addendum to Section 2.4 in [10]) that for all v the subspace &, can be
described as the closure of the set of all linear combinations of functions of

the set
(2.5) S, = [Dig, pe S\ je £,

and for v = 1 it coincides with the set (2.2) itself. The space & will be denoted
&, for the sake of unified notation.

Probability measures P on the g-algebra <Z, of Borel subsets (with respect to
the weak topology) of the dual space .5’ we shall call states of a random field
over the space #,. The random fields over .&*] were introduced earlier by Jaglom
[15]. We shall denote the set of all states of random fields over the space &,
by A(R") = Z.

As &, C & there is defined a natural injection of dual spaces

(2.6) T, S > S FSF . F(¢) = F($), deF°.

The pre-image of the point F, in &’ under the injection , is a class of gener-
alized functions for which all the derivatives of order r or greater coincide.
We shall say that the state P, ¢ & is a restriction to &, of the state Pe 7 if

(2.7) P(B) = P(z,"'B), Be ..

Thus the description of the state P, € &, which is a restriction of a state Pe &
can be interpreted as the description of the statistical properties of partial deri-
vatives of order r or greater of the random field with state P.

ProrosiTION 2.1. For each state P, ¢ & where r > 0 there exists a state P ¢
such that P, is a restriction of P.

Proor. Fix a function ¢ € & such that $(0) = 0. It is easy to check by
Fourier transforms that each function ¢ € & can be represented in a unique way
in the form

(2.8) = Sy D+ &,

where ¢ € &, and the coefficients ¢,¢, je _£,, can be uniquely determined from
the system of linear equations

(2.9) Tie s, 6 S (O DiP(x) dx = (g (x)*d(x)dx, ke _Z¢,.

(By Fourier transforms it is easy to check that the integrals on the left in this
system of equations vanish for |j| = |k|, j # k, but not for j = k, which implies
that the corresponding determinant does not vanish.) Let us now define the
measurable transform

(2.10) Uy: &) - F,>F:F$)=F($), $e.
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It is clear that the transform r, U, is the identity. So the state P defined from
P, by the relation
(2.11) P(B) = P(U,B), Be 4,
has P, as its restriction.

It is convenient to describe the states of random fields by the characteristic
functionals '

(2.12) LP(p) = § ., exp(iF($)}P(dF), ¢pe,.

As the &7, are closed subspaces of the nuclear space & they are also nuclear
(see [21], Sections 6.2.5 and 5.1.1). So the Minlos theorem is true for them
(see [2], Section 6.10 and [10], Section 4.4). In particular this theorem implies
that the transformation P — L? is a one-to-one mapping of the space %~ onto
the set of all continuous nonnegative-definite functionals {L?(¢), ¢ € &} such
that L7(0) = 1.

We introduce the group of shift transformations E = {E,, a € R*} on the space
SR):
(2.13) E, ¢(x) = ¢(x — a), peS,, xeR', aecR.

We introduce the group of Euclidean rotations Q = {Qg4, G € Z(R*)} with respect
to the origin:
(2.14) Qed(x) = #(Gx), ¢e, xeR, GeIRY);
here Z(R*) is the set of Euclidean rotations with respect to the origin in R*.
- We introduce further the group of similarity transformations U = {U,, 4 € (0, oo)}:
(2.15) U,d(x) = 27*¢(A7'x) , pe,, xeR, 2€(0,0).
We also introduce similar groups of transformations £ = {£,,aecR*}, 0 =
{O¢» Ge LR}, U = {U,, 1€ (0, o)} on the space of generalized functions .&,’:
E,F(g) = F(E.§), acR,
(2.16) 0.F(9) = F(Qe9), Ge IR,
U,F(¢) = F(U,¢), 2e€(0,), Fe', ¢e.
The sense of these definitions is explained by the fact that for ordinary functions

f(x) of x e R*, treated as generalized functions, the transformations (2.16) reduce
to the transformations

E.f(x) = f(x +a), aeR,

(2.17) 0of) = fiGx),  GeHRY),
0,/(x) = f(), 2e(0, ), xeR.

A random field over &7, described by the state P ¢ &%, we shall call station-
ary if
(2.18) P(B) = P((E,)'B), Be<,, acR.
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We shall call such a field isotropic if

(2.19) P(B) = P((Q5)'B), Be, GeHAR).

In terms of characteristic functionals stationarity means that

(2.20) L?(¢) = L*(E,9), pe,, aecR’,

and isotropy means that

(2.21) L?(¢) = L®(Q¢9) » 0eS,, GeARY).

We must remember that the partial derivative of order j (j e 7*) of the random

field over & described by the state P e . is by definition the random field over
& described by the state DiP e .7 such that

(2.22) DiP(B) = P((D)'B), BedB,;
here D7 is the differentiation operator (2.4) applied to a generalized function
from & (see for example [9]). We shall say that a random field over & is a

random field with stationary rth increments (where r > 0) if all its partial deriva-
tives of order je _Z,* are stationary random fields.

PROPOSITION 2.2. The random field described by the state Pe & is a random
field with stationary rth increments if and only if the restriction P, of the state P to
&, describes a stationary random field over &,.

Proor. The definition (2.22) implies that the state P describes a random field
with stationary rth increments if and only if

" (2.23) LP(¢) = LP(E,$), ¢eS, acR,

where the set of functions ‘92 was introduced in (2.5). Further, stationarity of
the field described by the state P, means that (2.23) is true for all ¢ € &#,. But
the set of linear combinations of functions of ., is dense in .&7,, so that these
two conditions are equivalent.

Proposition 2.2 shows that the problem of investigating the random fields with
stationary rth increments is in essence equivalent to the problem of investigating
the stationary random fields over &, and it justifies the study of this class of
random fields.

Fixing the number « € R', we shall introduce the group of transformations
S, = {S‘,, 2» A€ (0, 00)} on the space &, of generalized functions by the relation

(2.24) S, F=2»U,F, Fe<,.

In the case of ordinary functions f(x), treated as generalized functions, these
transformations reduce to the transformations

(2.25) S, f(x) = #f(ax),

and this explains their meaning.
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Further, we shall introduce the transformation group S,* = {S¥;, 1€ (0, o)}
in the space of states 7, by the relations

(2.26) S*,P(B) = P((S,J)—IB) , BeZ,.
In terms of characteristic functionals this means that
(2.27) LSEiP(¢) = LP(U,9), o€, .

The group S,* will be called (in the tradition of physics) the renormalization
group of order k. The random field over ., described by the state Pe F. we
shall call a self-similar field of order « if

(2.28) P=S¥P, 2€(0, ).
In terms of characteristic functionals this means that
(2.29) LF(g) = LU, 9), e, .

This notion was introduced in a somewhat more general situation in the author’s
paper [4], which contains a more detailed discussion.

The following sections of this paper are devoted to the construction of exam-
ples of self-similar stationary random fields and self-similar random fields with
stationary increments. We note for use below that trivial examples of self-
similar fields of order —r with stationary rth increments (where r > 0) are the
homogeneous random polynomials of order r, i.e., random fields for which the
state describing them is concentrated on the functions of the type

(2.30) f(¥) = Djemeix, xeR

* for real numbers c;, je_Z. If the state P is concentrated on the function
f(x)=0, xe R}, then this state will be called the zero state. 1t is self-similar
for all values of the order x € R".

We shall give below a general construction which was introduced in [4] and
which permits us to construct the self-similar fields with discrete argument (in
the sense of [26] and [6]) with the help of generalized self-similar fields. For
this we shall introduce a linear functional space M, (R*) consisting of the finite-
range functions ¢ € L,(R*) such that-for k = (k;, - -+, k,) e R’

(2:31) ¢l = supyers {IPCONTT5=1 (1 + [5;w(lk;1))} < o0

and the function of k ¢ R* under the supremum tends to 0, 2 — oo; here w(k),
0 < k < oo, is a bounded, positive, monotone nonincreasing function of k
tending to 0 as k — oo and & is the Fourier transform of the function ¢. We
introduce a topology in the subspaces M, (S,), where M,(S,) is the set of func-
tions ¢ € M,(R*) with support in the sphere S, C R* with center at the origin
and radius 7 in the norm (2.31). The topology in M,(IR*) is defined as the in-
ductive limit (see, for example, [23]) of topologies in M,(S,), r = 1,2,..-. It
is easy to prove (see [4]) that the Schwarz space Z(R*) of finite-range functions
is a dense subspace of the space M, (R"), and that the topology of the space



8 R. L. DOBRUSHIN

Z(R*) is stronger than the topology induced by the topology in M,(R*). Let
x. be the indicator of the unit cube with center at the point t = (1,, . .-, t,) € Z,
where 7Z* is the v-dimensional integer lattice:

(2.32) 2(x) =1 if -3<x,=s4,+%, 1sj=v,
=0 otherwise;

these are elements of the spaces M, (IR*). We shall say that the state Pe & is
discretizable if for some choice of the function w its characteristic functional
{L?(¢), ¢ € &} (see (2.12)) can be extended to a continuous functional {L7(¢),
¢ € M,(R*)}. To each discretizable state P we make correspond a random field
{é,, te Z*} with discrete argument, such that its joint probability distributions
are described by the system of joint characteristic functions

Ly ..of(515 -+ 50) = Eexp{i 7, 5; Etj}
(2.33) = ﬁP(SIth + o+ szt,,,) ’
Sy S, €RY, ty, -, t, €2,
m=1,2,....

It is easy to show (see [4]) that if the random field described by the state P is
self-similar, then the corresponding random field {£,, re Z*} will also be self-
similar in the sense of Gallavotti-Jona-Lasinio-Sinai. The self-similar parameter
a used in the papers [6] and [26] is connected with our self-similar parameter &
by the relation

(2.34) a= 242,
Y

In [4] it is shown that the previous construction relates the different self-similar
fields with discrete argument to the different generalized self-similar fields.

3. Gaussian random fields. We recall (compare for example [10]) that the
random field described by the state P is called Gaussian (with zero means—
obviously the inclusion of nonzero means would only lead to trivial corﬁplica-
tions) if its characteristic functional is

3.1 L*(¢) = exp{—$4B"(¢, 9)}, ¢,

where BP(¢, ¢)(4, ¢ € &,) is a continuous nonnegative-definite real-valued bi-
linear functional. The functional B” is called the correlation functional of the
random field described by the state P. 1t follows from the relations (2.29) and
(3.1) that the Gaussian random field described by the correlation functional B”
is a self-similar field with parameter « if and only if

(3’2) BP(U2¢’ U1¢) = 1—2:3P(¢, ¢) ’ ¢s ¢’ € % ’ A € (Oa 00) .

The explicit description of the stationary Gaussian random fields over the
spaces ., is given by the following proposition.



RANDOM GENERALIZED FIELDS 9

ProposITION 3.1. The functional B*(¢, ¢) is the correlation functional of a sta-
tionary Gaussian random field over &, if and only if

(3.3) B9, 9) = 5j.50e 2 5 DG(0)D7(0)
+ Seno H)P(K)GT(dk) . ¢, pe S,
(kere ¢ and ¢ are the Fourier transforms of ¢ and ¢), where the matrix A® =

{af ;. J, J' € 7'} is symmetric and nonnegative-definite, and the measure G* on the
o-algebra By, of Borel subsets of R*\{0} is such that

(3:4) G'(E) = G(—E), Ee Fpno>
such that for some g > 0

3.5) $ki>1 |K|79GP(dk) < oo,

and such that

(3.6) Socimis [k[*"G*(dk) < oo .

The measure G* and the matrix A” are determined uniquely by the correlation func-
tional B.

This proposition is a direct consequence of a result of Vilenkin (see [10], Sec-
tion 3.5.2) and of the Propositions 2.1 and 2.2. For the case r = 1 it was proven
by Jaglom [15]. For the case r = 0 it is a reformulation of the well-known
Bochner-Schwartz theorem (see [10], Section 3.1). The measure G” is called a
spectral measure of the corresponding Gaussian field and its density is called a

spectral density.
We shall now describe the self-similar stationary Gaussian random field in its

spectral form. For this purpose we write

3.7 Q" ={ecR: |e| = 1}

for the unit sphere in the space R*, and we introduce the one-to-one corre-
spondence

(3.8) x: R\{0} - Q¥ X (0, 0): k—(e,a), k=ae.

We shall sometimes interpret the speétral measure G” as a measure on the direct
product of the measurable spaces (Q* X (0, o), Fyp X FBy,«,), Where F,, and

By ., are c-algebras of Borel subsets of the corresponding space (i.e., we shall
use “spherical coordinates”).

THEOREM 3.2. Let P . be a state that describes a Gaussian stationary field
over .&,. This field will be self-similar of order k > —r if and only if A = 0 and
there exists a finite measure G¥ on the -algebra B, such that

3.9) GP(E) = G-"(—E-) , EeZ,
and
(3.10) G”(E X C) = G”(E‘) {ca*'da, Ee Py, Ce€ By -
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The field will be self-similar of order k = —r if and only if the spectral measure
G® = 0. If the field is self-similar of order xk < —r, then it is the zero field.

PROOF. A comparison of the relations (2.27) and (3.1) shows that the renor-
malization-transformation S¥, transforms the stationary Gaussian field over &,
described by the state P into a stationary Gaussian field. And it follows easily
from the relations (2.27), (3.1), and (3.3), together with the relation

(3.11) (U;9)” = 27Uz 8
that
(3.12) aSiar = et e Fr,

G%247(E) = MG*(1E),  E€ B, A€(0, ).

The relations (3.12) imply the sufficiency statement in the theorem. To prove
the necessity we let

(3.13)  G%(g, E) = §5x0,p @ 'GP(de, da), Ee B, ge(0, ).

The condition (3.6) implies the convergence of the integral (3.13). Let P be a
self-similar state of order . To the representation of the integral (3.13) as a
limit of its approximating sums apply the relation (3.12) for 2 = g~*; this gives

G*(g, E) = lim,_,_, 71 _.. (907" "*G?([gp", gp’] x E)
(3.14) =lim,_,_, X% _,, (907" H=1g*GP ([0, p7] X E)
= gr++-1G8(1, ), ge(0,0), EeFB,.

- By differentiating this identity with respect to g and using (3.13) we now obtain
the formula (3.10) for:

(3.15) G(E) = (2r + v + 2t — 1)G?(1, E), Ee H, .

The relation (3.4) implies (3.9), and so the necessity of the condition (3.10) fol-
lows. The condition (3.6) implies that GP(E) = 0 if # < —r, and therefore the
corresponding self-similar field is zero if ¥ < —r.

The state of the nonzero Gaussian self-similar field described by the spectral
measure (3.10) will be denoted by P;.

The self-similar Gaussian field of order x = —r is a homogeneous polynomial
of order r (see Section 2) giving a stationary field over .,. The isotropic self-
similar Gaussian fields are especially important. As follows from (3.10), such
fields (with £ > —r) are described by the spectral densities

(3.16) g(k) = clk*=, ke R\{0},
where ¢ = 0. (For more details about such fields see [15].) In particular, for
& = v/2 and r = O this field is the white noise field, and for x = —4 and r = 1

it is the v-parameter Brownian motion introduced by Lévy. For x = (v/2) — 1,
r =0, and v > 3 it is the massless free field usually used in Euclidean quantum-
field theory. (Forv = 1, 2 it can be interpreted as a field over #].) For v =1
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all stationary self-similar Gaussian fields have spectral density of the type (3.16);
this fact was in essence proved by Kolmogorov [17] for r = 1 and then by Pinsker
[22] for general r. The versions of the self-similar process and the process with
stationary increments used in these papers are the integrated versions of the
processes in this paper and therefore do not require the use of generalized func-
tions. (Kolmogorov and Pinsker used the phrase “process invariant with respect
to the similarity transformation.”) We note that even in the case v = 2 the set
of self-similar Gaussian states described in the theorem is infinite dimensional.
By means of the operations of convolution and closure (that agrees with the
general hypothesis formulated in Section 5 of [4]), it can be generated by the
finite-dimensional set of those states for which the measure G is concentrated in
two opposite points.

By using the general construction described in Section 2 it is possible to apply
Theorem 3.2 to the construction of the self-similar random fields with discrete

argument.

PRroPOSITION 3.3. The self-similar Gaussian state P; £ > 0 over & is discreti-
zable if and only if for k = (k,, ---, k,)e R”
(3.17) Srovo (IT5=1 (1 + [k;1))~* G(dk) < o0,

where the measure G = G%6 is given by the relation (3.10).
Suppose that the measure G is given by density g(e), e € Q*, with respect to the
uniform measure on Q* and that for some ¢ > 0, C < oo

(3.18) 0<c<g(e) S C< 0, ecQ;
then the integral (3.17) converges if and only if
(3.19) et L

A measure G such that the integral (3.17) converges for some fixed r exists if and
only if

(3.20) E<y.
The integral (3.17) converges for all measures G if and only if
(3.21) e 1.

Proor. The convergence of integral (3.17) implies that there exists a positive,
bounded, nonincreasing function w(k), going to 0 as k — ‘oo, such that

(3-22) Vv (IL5=0 (1 + [K;[)(w(k;1)) ~*G(dk) < oo .
This relation and the condition (2.31) imply that if
(3.23) B($: ¢) = Swnn SKIFRNG@K) , 6, ¢ € My(R),

then the integral in this relation converges and defines a continuous bilinear
functional on the space M, (IR*). It is possible to define the continuation of the
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characteristic functional to the space M,(IR*) again by the relation (3.1), and
this proves the sufficiency of the condition (3.17).

On the other hand it is easy to see that if the condition (3.17) is not true, then
for ¢ = ¢ = y, (see (2.32)) the integral (3.23) is infinite even though y, € M, (IR*)
for every choice of w. By approximating the function y, by functions of the
space S(R) it is easy to check that the functional B is unbounded on the
intersection of &(IR*) with any sphere in M,(R*), whatever its radius. Since
L?(0) = 1, we see from the relation (3.1) that the functional L?(¢) cannot be
continuously extended to M, (IR*), and this proves the necessity of the condition
(3.17).

If the condition (3.18) holds then the spectral measure G is given by a density
g(k) such that for some ¢, > 0, C; < co (compare (3.16))

(3:24) cilk ™ < g(k) = Cilk[*, ke R\{0}.

So the sufficiency statement of the condition (3.19) can be obtained by the appli-
cation of a variant of a power counting theorem well known in mathematical
physics (see (3.4) in Lowenstein and Zimmerman’s paper [19]). The necessity
of the condition (3.19) will be evident if we note that the integral of the function
g(k) TT%=: (1 + |k;|)~2 diverges along every line parallel to the coordinate axis if
£ = (v + 1)/2.

The divergence of the integral (3.17) for £ = v and all G follows from (3.10)
and the fact that the integrated function in (3.17) restricted to any ray ae,
0 < a < oo (here e € Q*), decreases when a — oo as a~% or slower. Along the
rays which do not lie on any coordinate hyperflats this function decreases exactly
as a-*. So if £ < v and the measure G is concentrated on the closed set cor-
responding to such rays, then the integral (3.17) converges. Along any ray the
integrated function decreases as a~* or more rapidly, so for £ < 1 the relation
(3.10) implies that the integral converges if restricted to any ray, and this means
that it converges. If x = 1 and the measure G is concentrated on the set cor-
responding to the set of rays parallel to the coordinate axis, then the integral
(3.17) diverges.

The self-similar fields with discrete argument defined by the application of
Propposition 3.3 and the relation (2.33) are again stationary and Gaussian. It
is easy to compute the spectral measure of such a self-similar field with discrete
argument,; it is

G(E) = Liez Smaane (ILj=i (k; + 2m8;)]e™i — 11)G(dk) ,
(3.25) Ec{t=(p - t)eR{0}: —z<t; S, j=1,---,4},
‘ E' = E\{0} € 0 »

where the measure G satisfies the condition (3.17), which guarantees the finite-
ness of the measure G. At the formal level (without investigation of the con-
dition for the finiteness of the measure G), and in the case where there exists a
density, the formula (3.25) was obtained by Sinai [26]. He proved that for
v = 1 it exhausts the entire class of self-similar stationary Gaussian fields.
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4. Multiple Itd integrals. Let L,(P) be the Hilbert space of real functions
D(F) of F e & that are square-integrable with respect to P. For the construc-
tion of non-Gaussian self-similar fields it is necessary to use the description of
the space L,(P) in terms of multiple It6 integrals with respect to the spectral
measure of the stationary Gaussian state P (see [14]). (The same ideas are usually
described in the mathematical physics literature in the language of the Wick
polynomials; see for example [25], and for the connection between the two
approaches see [5].)

We shall assume in this and following sections that a Gaussian stationary state
Pe &, is given for which the matrix 4” in its spectral description (see Proposi-
tion 3.1) is zero and the spectral measue is continuous. This last condition is
introduced for the simplification of some constructions and is not essential.

Let us denote by L, (P) the complex Hilbert space of functions ®(F) square-
integrable with respect to P. Let us denote by H,° the complex Hilbert space
of complex-valued functions of k ¢ R* integrable with respect to the measure G
and by H;' C H,® the real Hilbert space of (in general complex-valued) even
elements of the space H,°. For each ¢ in the set .&° of functions of the type
o, + i}y, Py, P, €. F,, we define a random variable

this is an element of L,%(P). Consider the mapping & — L (P): ¢ — D,, where
& is the Fourier transform of the function ¢ and the set 5%‘ of the Fourier trans-
forms of the functions in &,° is treated as a subspace of the Hilbert space H,".
The relation (3.3) implies that this mapping is isometric. The usual considera-
tions of the theory of generalized functions (see [9], Chapter 1, Appendix 1)
shows that the set &% is dense in H,*. Therefore the mapping introduced above
can be extended uniquely to an isometry Z: Hy; — Ly(P): ¢ — Z, such that

(4.2) Z; =®,, ¢eFr.
The restriction of such a mapping Z to H;' is an isometry from H;' into Ly(P).
Let <&, be the family of Borel sets A € .,y such that G(A) < oo. Let
(4.3) Zb) = Z,,, AeZ,,
where y, is the indicator of the set A. The set of random variables {Z(A), A e <&}
is called in probability theory a random orthogonal measure of the random field
described by the state P (see [10], Section 3.3.4, and [15]).
We shall point out some properties of the spectral measure Z; useful in the

sequel. All these properties of Z; can be easily obtained from its definition.
(1) For any set A € &,

(4.4) Z(b) = Zy(—1).
(2) For any nonintersecting A,, A,, ---, A, € Fp, s =2,3, .-+
(4.5) ZyA U --- UA)=Z,A) + .-+ + Z4,)-
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(3) For any sets A, A, € ZZ,,

(4.6) E(Zy(A)Z4(4,)) = G(A, N A,).
(4) For any set A € 7,

(4.7) EZ (A)=0.

(5) ForanysetsA,, A, ---,4,,5s=2,3,...,suchthatthesets A, U (—4)),---,
A, U (—A,) are nonintersecting, the random variables Zy(4,), - - -, Z4(A,) are
independent.

(6) For any set A € &, such that A n (—A) is empty, the real part Re Z (A)
and the imaginary part Im Z (A) of the random variable Z,(A) are independent
Gaussian random variables with mean 0 and variance G(A)/2.

It will be necessary for us to modify Itd’s construction [14] a little because
property (1) above shows that Z; is not a measure with independent values;
besides, the measure Z;(A) is defined only for A € &,. This modification re-
duces, roughly speaking, to the fact that besides the diagonals k, = k;, usually
discarded, it is also necessary to discard hyperplanes k; = —k;; in addition it
is necessary to include in the integral-approximating sums only the terms cor-
responding to the sets A € <%,. A detailed exposition of this modification (for
the case <%, = %) can be found in the lectures [28]. But because the lectures
are not easily available we shall give a brief exposition of the construction here.
Let us denote by Hz, n =1, 2, - .-, the real Hilbert space of complex-valued
symmetric functions A(k,, - - -, k,) of k;, - - -, k, € R* such that

(4.8) h(ky, - -+, k,) = h(—ky, - -+, —k,)
and such that the norm

1 %
(49) = (o e - Suo ik -, kPG, - -+ Gldk,))

is finite. Let us denote by HY, the one-dimensional space of real constants and
by Exp H,; the orthogonal direct sum of the spaces H%, n=0,1, .... The
space Exp Hj is usually called the Fock space in the mathematical physics litera-
ture. The elements of Exp H,; will be interpreted as sequences

(4.10) h=(hyhy---), heHi, n=0,1,....

Let A2 c Hy be the subspace of functions ke H2 which can be represented
in the following form: Suppose 4,, ---, A,€ F,, s =1,2, ... and 4A_, = — A4,,
i=1,...,saresetssuchthat 4, ..., 4_, 4,, - - -, 4, are disjoint, and suppose
ﬁ(il, ---, i,) are complex numbers. The condition is that

(4.11)  h(ky, oo k) = Ry -0 d)  if ke, oo ke 4, ,

where the indices i, - - -, i, take values +1, - .., +ssuch that i; = +i,, j+ j,
J»j'=1,---,n, and that k(k,, - - -, k,) = O for the other k,, - .-, k,. It is easy
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to check that each H? is dense in H%. Let us make the definition

(412) IR = o § e S Ak e k)Zo(dk,) - Zo(dk,)

1 . . .
= T Diigseeriy Plss - o5 ln)ZG(Ail) - Zy(A;), heHg,

where Y’ indicates that the summation extends over the set of indices i}, -- -, i,
used in (4.11). The conditions (4.4) and (4.8) imply that I (k) is a real random
variable, and so 7 (k) = Re I,(k) € L(P). Furthermore, a simple calculation
based on the properties of the measure Z given above shows that the mapping
Ay — L(P): h — I(h) is isometric. Therefore it can be extended uniquely to
an isometry Hj — L,(P). The image of ke Hj under this transformation will
be called the n-tuple It6 integral and will be denoted Iy (k) (or by the integral
notation used in (4.12)). For a vector & € Exp H; of the type (4.10), we set

(413) LB =yt e § e Uk s k) ZodR) - Zofdk,) -

The usual constructions (see [5], [14], [25] and [28]) prove that the transforma-
tion Exp H; — L(P): h — I (h) is a unitary mapping of Exp H; onto Ly(P).

We shall describe some further relations for Itd integrals which are important
for future use. First we shall give the formula for It6 integrals in terms of
Hermite polynomials (see [5], [14], [25] and [28]). The proof of this formula in
the case of the usual It integrals can be adapted without any change to our
case. For any orthonormal functions A, ..., e Hy, m = 1,2, --., and any
integers ji, « - -y jms if

(4.14) go=hr for j+ -+, <iZjh+ -+

wherei=1, .-+, j, + --- + j, = n, we have

(415)  § oo (D ien, 9906) - 0(k,)) Zodk) - -+ Zo(dk,)
= H,(§ BOZo(dK) - - Hi (§ B(K)Zo(dk))

where II, is the set of all n! permutations of the indices 1,2, ---, n and H,,
j=1,2, .., are Hermite polynomials with highest coefficient 1.

Other formulas which are important for our aims give the “diagram” expres-
sion for the product of multiple Itd integrals. Suppose we are given integers
ny, ---,n,. Weshall use the term diagram® of order (n,, - - -, n,,) for an undirected
graph of 4 "=n, + ... + n, vertices such that its vertices are indexed by the
pairs of integers (j, 1), j=1, ---,m, I =1, .-+, m, such that no more than one

3 In the description of diagrams traditional in theoretical physics, the set all vertices (j, /) of
the graph with fixed / corresponds to one vertex of the diagram together with legs coming out
of it, and the vertices connected by the branches correspond to the connected legs. From the
unprejudiced point of view such a description seems inconvenient for a mathematical exposition.
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branch enters into each vertex, and such that branches can connect only pairs
of vertices (j,, 1), (Ja» ;) for which [, 3 [,. The set of all diagrams containing ¢
branches will be denoted I', = I'y(ny, -+, n,), t =0,1, ..., [.#7/2]. For even
4" the diagrams yeI'  4(n,, ---,n,) in which one branch enters into each
vertex will be called complete and the set I" _ ,(n,, - - -, n,) will be denoted also by
= I_‘(nl, .-+, n,). Letthere be given a set of functions k, e Hz1, ..., h, € H
We introduce the function 4 of _#"real variables k; , corresponding to the ver-
tices of the diagram by the formula

(4.16) Ak, j=1,--,m,l=1,...,m)

= Ik pj=1, -+, m). '
Fixing the diagram y e I', we enumerate the variables k;, in such a way that
the variables corresponding to those vertices into which no branches enter will
have the numbers 1,2, ..., #"— 2¢t, and the variables corresponding to the

vertices connected by a branch will have numbers p and p + t, where p =
A =2t 4+ 1, ..., 4 —t. Let

hr'(kv Tt km—zt)
(4°17) = SR” : SR" ’;(kv o m ts _k/—2t+1’ ] —kw—t)
X G(dk‘,;f—zt-n) t G(dkm-—t) ’

and let &, e Hy~* be the function obtained from %’ by means of symmetrization
(i.e., by means of averaging over all (.4~ — 2¢)! permutations of its arguments).
It is easy to see, by changing the sign of some of the variables k, with s =
A"—2t+ 1, ..., 47—t in the integration and by using the evenness of the
measure G, that the function %, does not depend on the order of enumeration
of the variables of the type considered. Then the following result obtains.

PRrOPOSITION 4.1. For any hye H», - .-, h, e Him, ny, «+-,m,, = 1,2, ..., the
following formula is true:

(418)  I(m) - Kh) = zwzl(nﬁ”——zi(z,er, I(#)

Variants of this formula (all to some degree different in the literature known
to the author) are well known in the literature of probability theory (see [14],
[28] and [29]) and mathematical physics (the “‘diagram method”). This formula
can be obtained in a purely analytical way from the formula (4.15). We shall
indicate shortly another proof of the formula which shows its probability meaning.

ProoF. Itis enough to consider the case m = 2 because then the relation (4.18)
can be proved by induction with respect to m. Let m = 2 and let h, ¢ Hjt be the
functions given by the relation (4.11) by means of the sets 4,, - - -, 4, (inde-
pendent of /) and of the numbers A¥(i,, - - -, i,). We shall enumerate the vari-
ables and the sets in the same order as the vertices of the diagrams. From the
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formula (4.12) we obtain
1 210 ,
I(h,)I(hy) = n il ITi- (X A - - - ’n,.t)ZG(Al,t) ce ZG(An,,t))
AEA

1 L
n,! n2! Zrel‘t[zr h(lj,p] = 1, cee,ny,

= 1,2) (I3 15 Z(A4; )] 5

(4.19) = Y im

here
(4.20) h(ijnj=1, -y = 1,2) =TI By - s daya) s

and )7 indicates that the summation extends over the entire set of indices i, ,
such that i; , = =i, , if the vertices (j,, ;;) and (jy, l,) lie on the same branch
of the graph y and such that indices of any other pair of indices i; ,,i; , are
different in absolute value. By enumerating the vertices of the diagram in the
same way as in the formula (4.17) it is possible to rewrite the term in the square

brackets in (4.19) as

(4.21) bty ’;(iv sy i) [TESG™ Z(4,,)
x [2: Ay (2% yigeeviy HE gt ZG(Aiﬂ))] ’

iy—gt+10""
where Y * indicates that the summation extends over all the indicesi ,_, 5, -+, i,
such thati,,, = +i,, p=.4"—2t+ 1, ..., 4" — t. By using the properties
(1), (3) and (5) of the spectral measure Z; it is easy to calculate the mathema-

tical expectation

E(Hf;m—zzﬂ ZG(Aiﬂ))

= G(Ai/—zt—l) T G(Abr—t)
(4.22) if iﬂ+¢=_ip’ P:j—2t+l’...,j_t
=0 otherwise.

Elementary calculations show that the random variable in square brackets in
(4.21) is close to its mathematical expectation in the L,(P) metric if max, G(4,)
is small enough. So we obtain by a limiting argument the number (.#"—21)! I(h,)
and the formula (4.18) from the formula (4.19).

The formula (4.18) can be also used for the evaluation of the moments of the
It6 integrals. Because the mean value EI(g) is 0 if g € H, s > 0, we find from
the relation (4.18) that

EQh) - )
(4.23) - ey, ermp if .4 iseven,

i) T
n!...n,!

=0 if 4" isodd;

here the number 4" = n, + --. + n,, the set of complete diagrams, and the



18 R. L. DOBRUSHIN

function £ are defined the same way as above, and (see (4.17))
424) =S Sk -k —ky o =k p)G(dK) - G(dK )

if we use the enumeration introduced above for the arguments of the function
h, depending on the choice of 7.
We shall now find the “formula for change of variables” in the It6 integral:

PROPOSITION 4.2. Let G and G’ be continuous spectral measures on By, Such
that the measure G is absolutely continuous with respect to the measure G', and let
f(k) be a complex-valued function such that

(4.25) flk) = f(—k)
2 _ dG(k) v
0 = Gy kRO
For any h = (hy, hy, - - -) € Exp Hy we let
(4.26) By - k) = Byl oo k)f(k) - flk), m=1,2,

b =hy, K = (h', k', ---)eExpH, .

Then the probability distribution of the random variable I..(h') coincides with the
probability distribution of the random variable I,(h).

Proor. The formula (4.23) implies the coincidence of all the moments of the
variables /(%) and I,,(k'), but it is regrettably unclear whether the conditions of
the uniqueness of the moment problem are fulfilled here. In view of this we use
another method of proof. It is clear that the transformation Exp H; — Exp Hg, :
" h — K isisometric. From this fact and the fact that the mean-square convergence
of random variables implies the weak convergence of their probability distribu-
tions, it follows that it is sufficient to prove the proposition only for functions
h such that A, =0 if n > .4  and h,,eﬂg, n=1,..., 4. Suppose h,,ef{g
and ¢ > 0. Without any loss of generality it is possible to suppose that the sets

A, = Af, i =1, .. .. st used for the construction of the function 4, are such that
for some fixed numbers £, i =1, - .., s°
(4.27) esssup,. . [f(k) — ff < e, i=1, ..., 5

and G(4;7) # 0,i =1, ..., s>. The properties (1) through (6) of the measure
Z, listed above imply that two sets of random variables

(4.28) Z (AL, P= s, e, =11, e s
and (we suppose here that § = 1).
; G(AN) \F [ .
(4.29) Z,(A5)<_,_i__) © L dm st e =11, e s
NG (A 1]

have the same joint probability distributions. It is necessary to use here the fact
that the property (6) implies that the random variables Z;(A) and {Z,(A) are
identically distributed if { is a complex constant with [{| = 1. So the probability
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distributions of the random variables I (k,) and I.(h,°) coincide, where

(430) it k) = ks o k) T [ (G2 )))* L,

if kyedy, - ke,

and Ak, ---, k,) = 0 if A (k,, ---, k,) = 0. Itisclearthatase — 0, h,* — h,’
in the Hilbert space Hg,. This implies that the random variables I (h,) and
I;(h,") are identically distributed. Analogous considerations prove the coinci-
dence of the joint probability distribution of N random variables (Iy(4,), - - -,
I(h_)) and (I.(ky), - - -, I(.,)), and it implies the coincidence of the proba-
bility distributions of the random variables I,(%) and ;.(#") and therefore proves
the proposition.

5. Random fields subordinated to Gaussian fields. Let Pec S~ be the state
of a Gaussian stationary random field given by a spectral measure G, and let
L,(P) be the Hilbert space of the real functions ®(F) of F € & square-integrable
with respect to the measure P. We shall use the term random functional over the
state P for a system of random variables {®,, ¢ € &} such that @, ¢ Ly(P),
¢ € &, and such that the transformation &, — L,(P) is linear and continuous.
The Minlos theorem (see the references in Section 2) implies that for any random
functional {®,, ¢ € &} there exists a unique state P’ € &, such that

(5.1 P(Fe &): ®,(F)e B)
= P'(Fe &,!: F(¢) e B), e, BeZH,
where &7, is the g-algebra of Borel sets in R'. The state P’ will be called a state

of the random functional {®,, ¢ € &,.}. The random functional can be defined
by means of a measurable transformation H: &, — &/ if

(5-2) O (F) = HF(¢), FeS,

and in this way we obtain a function @, € Ly(P), ¢ € &,'.* The shift transfor-
mations £, in the space .5, of generahzed functions (see (2.16)) induce the

r

shift transformation in the space L,(P) which we shall again denote £,:

(5.3) E,O(F) = ®(,F), @eL(P), FeS/, acR.

We shall say that the random functional describes a random field subordinate to
the field having the state P if .

(5-4) E®,=0,,, ¢eF, acR.

By using the fact that the space &, contains a countable dense subset (see [9],

Sections 1.6.5 and 2.2.3) it is easy to show that it is necessary and sufficient for

¢ By applying the Minlos theorem to a “two-dimensional” system of random variables
(@yr, ' € Fpr, F(P), p € ¥} it is possible to show that any random functional can be described
in such a way. But it is not essential for what follows.
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the subordination of the field of the type (5.2) that

(5.5) HE,=E,H, acR".

An important class of subordinated fields is given as

(5.6) O, =\ pVE,F)dx, $eF, Fe,

where ¥ € L,(P) and it is necessary to understand the integral as an integral in
the sense of convergence in L,(P). Such a generalized random field can be inter-
preted as the ordinary random field given by the system of random variables
&(x) = W(E,F), xe R, on the probability space (&', &,, P). We shall give
in this section a description of subordinated random fields in terms of It6’s
integrals. We begin by the description of the operators £,, a ¢ R*.

PRrOPOSITION 5.1. For any vector h € Exp H,; of the kind (4.10) and for any
acR,

5.7 B =h+ D5, i, § e § Ak e, k)

X explia(k, + -+ + k,)}Zy(dk)) - - Zy(dk,) .

Proor, For the vectors 2 e H}, the formula (5.7) follows immediately from
the definition (5.3) and the fact that the functions ¢ with ¢ ¢ ., are dense in
H}. Then by using the formula (4.15) we can check the relation (5.7) for the
vectors ke H% used in (4.15) under the integral sign. Because it is possible to
construct a basis of Hy consisting of such vectors the relation (5.7) is true for
all & ¢ H% and hence for all & ¢ Exp H,.

We note here the following useful fact (used in Maruyama’s report [20]). We
shall consider a (usual) Gaussian field of the type (5.6) subordinated to the
Gaussian stationary field having the spectral measure G. By choosing # = (4,,
n=20,1, ...)such that I(ﬁ) = ¥ we can describe this field by the formula

(5-8) ®, = hop(0) + iy 8 - S Bl o + k)

X ho(kss + - 5 kp)Zo(dky) - - - Zy(dk,) .

To check this formula it is necessary to rewrite the integral-approximating sums
as Itd integrals and then to go to the limit. The following theorem shows that
if we consider a more general class of functions #, then we can extend this
representation to generalized subordinated random fields.

THEOREM 5.2. A random functional of a stationary Gaussian random field having
the spectral measure G is a field subordinated to this Gaussian field if and only if
one has the representation

(59 @ = N0 "B DO + i § o § Sl oo + k)

X ho(ky, + -, k)Zo(dky) - - - Zg(dk,), @€
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where we use the following notations. Functions h,, n = 1,2, ..., satisfy the con-
ditions (4.8) and are functions of the space L(G"), and G™ is the direct product of n
copies of the measure G. The measure G is such that the conditions

(.100 X, :—, §lki 4 - ka7 Rk - - -y K,)PG(dK,) - - - G(dk,) < oo

{(kv ”"kn): |k1+ +kn|§ 1}

and

(5:11) B e+ o o k(K - kPG - - Gldk,) < oo

L N L R N D ¥}
for some g < oo are satisfied. Moreover, k;, je _Z? are real numbers.
Proor. The conditions (5.10), (5.11) and (2.3) imply that

\ . )
(5.12) 2inm1 T Srevor - Seovo [9(ky 4+ -+ + kn)iin(kv s k)P

X G(dk,) - - G(dk,) < o0, ¢eF,
and that the expression (5.9) depends continuously on ¢ € &, in Ly(P). There-
fore the relation (5.9) defines correctly a random functional over the state P.
The relation (5.4) follows from the relation (5.7), and so the sufficiency is

proved.
For the proof of necessity, by using the representation of the space L,(P)
through It6 integrals, we consider the random variables

(5.13) @, =hy + z:=1n_1’ § o § Rtk ey k) Zo(dhy) - - - Zo(dky) -

Let the function ¢, e & be such that g,(k) > 0 for all ke R*. For any je _#;,
we denote by ¢; € &, the function whose Fourier transform is ¢,(k) = kig(k).
Our next aim is to obtain the relation

5.14)  ht(ky - k) = Tatilkn e k) g k), ¢ .
(C:14) Al k) = e DS G g k) ge

(The denominator §; in (5.14) can vanish only on a set of G"-measureNO and so
the right side of the equality (5.14) is well defined.) Let us denote by 27 < .,
the set of all functions ¢ such that ¢ = D7y, where 7 € & and 7 has finite range.
If ¢ e &, then the ratio $/$, has an inverse Fourier transform y; € &. Then
¢ = ¢, * x; where x denotes convolution. So it is possible to construct by the
usual discretization of the function y; a sequence of functions

(5.15) Pk) = Tty e,k — a), =12,
such that ¢! — ¢ in the sense of convergence in .%,, and the sequence
(5.16) 7ik) = T, cletak I=1,2,.

converges at each point to j,(k) and is uniformly bounded for k¢ R* and | =
1,2, .... Therelation (5.14) for ¢ = ¢' follows from the formulas (5.13), (5.4)
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and (5.7). By considering the limit in (5.14) when / — oo and ¢ is changed to
¢*, we find using the continuity of the transformation ., — Hz: ¢ — h,# that
the relation (5.14) is true for all functions ¢ € .ZZ,.. We note now that a function
¢ €., such that the support of its Fourier transform has finite range and
satisfies

(5.17) suppg C (ke R : ki+0,je 2k}

is an element of each of the spaces &, je _#y. Because the complement of
the set on the right in (5.17) has G-measure 0, we can prove by applying (5.14)
to such a function ¢ that there exists a function 4, € L,(G") such that

: hi(ky, - - -y k) .
518 h”k, ...,k” = 7 1 I3 " € ry[
(5.18) (ks )= Sy e

and that for all functions ¢ € U, ., i

(5.19) ho(ky -y k) = Bo(ky oo k)Blky + -+ + k) -
By applying this relation to ¢ = ¢, je £, using the fact that
(5-20) [y 4 okl = T el 4 - + K)T

for some integers c;, and finally using the inequalities (see (4.8))

(5:21) T (e < oo je 27
we find that the condition (5.10) is satisfied. The condition (5.11) can be proved
in the same way as a similar condition is checked in the construction of the
general expression for conditionally positive functions (see [10], Sections 2.2.2
" and 2.3.3). It is known (see [10], the addendum to Section 2.4) that the set of
linear combinations of functions of {J;. ,», i is dense in the space ... So
by using the continuity of the transformation ¢ — ,¢ and the conditions (5.10)
and (5.11) we can extend the relation (5.19) to all functions ¢ € ..

As regards the constant 4, we have first to note that it is a functional on
# € ., which is invariant under the shifts from R*. Therefore the functionals

(5.22) R =hPY,  peF, je L
are also invariant and a known theorem about general description of the gener-

alized functions which are invariant with respect to shifts (see [9], Section 1.2.6)
implies that there exist constants #; such that

(5.23) % = hi(0) = (it - - )" R, DI(Digh)(0) .

By using the fact that D¢(0) = 0 if ¢ = D7¢, where j = j', j'e Z;:, and by
using (5.23) we find that if A, = (ji! --- j,!)7'h;

(5.24) ht = i7" Fie v, h; Di §(0)

for all functions ¢ € .5, which are linear combinations of the functions which

are equal to D¢, je £, ¢ € &. The manifold of such functions is dense in
&, (see Section 2) and because the transformation &, — R': ¢ — h# is
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continuous the relation (5.23) is true for all ¢ € &*,,, and this completes the proof
of the theorem.

The set of numbers and functions {ﬁj, je_~zx, ﬁ,,, n=1,2, ...} will be called
the spectral description of the random functional {®,, ¢ € &,.} and the expression
(5.9) will be called its spectral representation. For readers accustomed to them,
we note that by using the notations of mathematical physics it is possible in
the case ' =0 A, = 0, i;,,(kl, - k)= k%, where A, are some constants, to
express the random field as
(5.25) O, = Yo, h g Ox): f(x)dx, ¢e.F,
where ®,(x) is the Gaussian field described by the state P.

6. Self-similar random fields subordinated to Gaussian ones. We now de-
scribe in terms of the spectral representation the action of the renormalization-
group (see (2.26)). We shall drop the inessential constant terms in (5.9).

PROPOSITION 6.1. Let
1 . .
(6.1) D, =730, - § oo SPky+ - oo+ k)hu(kys - - -5 k) Zg(dky) - - - Zy(dk,)
be the spectral representation of a random field subordinated to the Gaussian field
having the spectral measure G and the state P’ € P,,. Consider the measure
(6.2) G*o(A) = 2*G(2'4), Ae By, 4€(0, ),

where r,e R' is some constant. Then the stationary functional {®*, ¢ € &} over
the Gaussian stationary field having the spectral measure G5 which is described by
the spectral representation

1 -
(6.3) D, = Z;ﬂ;'_,zx—'uog oo S By A e+ k)
X b3y, <oy A7k )Zgsi(dky) - Zoso(dk,)

has the state S¥ ,P'.

Proor. The definition (2.26) and the relation (3.11) imply directly that the
random field

6.4) D= B S S+ e+ Rk k)

X ZG(dkl) tee ZG(dk,,)

has the state S¥,P’. By using the Proposition 4.2 with G'(4) = A%G(4),
A € Sbyu ) and then using the evident “change of variables of the Itd integral”
we can obtain the relation (6.3) from the relation (6.4).

Now it is easy to obtain the following result.

THEOREM 6.2. Suppose that the spectral measure G defines a self-similar Gaussian
random field with parameter k, and let {®,, ¢ ¢ )} be the random field subordinated
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to it and described by formula (6.1). If the functions h,(k,, - - -, k,) are such that®
for some ke R*

(6.5) ho(Aky, < -, 2k,) = A™orhy(ky, oy kL)
then {®,, ¢ € .F,.} is a self-similar stationary random field with parameter &.

ProOF. The relation (3.12) implies that G50 = G, 4 € (0, o), in the conditions
of the theorem, and so the theorem follows from Proposition 6.1.

We note that this theorem seems unfinished in several respects. First of all,
the following question remains open and seems very difficult: Is it true that the
theorem exhausts the entire class of self-similar stationary fields subordinated
to stationary Gaussian fields? Secondly, different self-similar stationary func-
tionals can have the same state (see for example the proposition below), and so
the question of the description of the set of all self-similar states obtained with
the help of the theorem remains open. (A very difficult question, also open,
lies on the path to the solution of both problems: How is it possible to describe
in spectral terms the classes of subordinated processes having the same state?)
Thirdly, the theorem leaves open the following question. To what extent is the
homogeneity condition (6.5) consistent with the conditions (5.10) and (5.11),
which are necessary for the existence of the subordinated random fields? By
restricting somewhat the generality of our considerations we can avoid cumber-
some calculations and reduce the question to a variant of the power counting
theorem, well known in mathematical physics. It seems reasonable to suspect
that the class of self-similar fields explicitly described in the following theorem
generates by means of the operations of convolution and closure the entire class

< of such fields (this is yet another open question). (The question of the possi-
bility of using in such generation only a finite-dimensional set of fields (see [4],
Section 5) also remains open.)

THEOREM 6.3. Consider a spectral measure G, defined by the relation (3.10),
with k changed to &, and G to G,, which defines a Gaussian stationary self-similar
field with parameter k,. We suppose that the measure G, is described by a bounded
density with respect to the uniform measure on Q*. Let k be a number in (0, v/2).
Then the relation

(6.6) o, = fﬂ% § e Pk, + -0 + k) T2 (ijl—ro+:/ngn (]II:_JI—>>

X Zg(dky) - -+ Zg(dk,), ¢e&F,

where g,(¢), ec Q*, n =1, - - ., M, are real bounded even functions defined on the
v-dimensional sphere Q* and M is an integer, defines a self-similar random field with
parameter k subordinated to the field having the spectral measure G,.

Proor. The additional statement of this theorem (in comparison with the

5 The explicit description of the class of functions having the homogeneity property (6.5) can
be obtained by using ‘‘spherical coordinates’ of the type (3.8) (compare Theorem 6.3).
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previous theorem) is only the existence of the fields in (6.6). Theorem 5.2 im-
plies that it is necessary and sufficient for the proof of this theorem to prove
the finiteness of the integral

(6.7) L= {povo o S (14 k4 oo+ + k;;l)_"

k. \°
X H?=1 (ij|—2ko+2x/n gn( ijl )i ) GO(dkl) ot Go(dkn)
J

for some g < co.
By using an evident change of variables and the boundedness of the functions
g, and the density of the measure G,, we find that for some C < o

(6-8) I, < Clpngo - Spv (1 by + -0 4 k)7
X (131 |ky> ) dky - - - dk,, .

A variant of the power-counting theorem due to Lowensten and Zimmerman
(see [19], equation (3.4)) implies that if 0 < » < v/2 and g > v, then the integral
converges.

The state of the self-similar random field described by the formula (6.6) will
be denoted ) If t = Mk, 9, =1, 9, =0, i + M, this random field
can be written in the notation (5.25) of mathematical physics as

(6.9) D, = {gv: O(x)": §(x)dx, ¢e. 7.

So it is a Wick power of a self-similar Gaussian field ®@,.
By using the relation (4.23) we can immediately find explicit expressions for
‘the moments of the fields.

PROPOSITION 6.4. For any ¢, - -+, ¢, €.,
(6.10) . F(8)) - - F($n)Ply g, - ,0,(dF)

= Z'r]:{l,'w,'nm=1:'n1+~~+nm—even (nl! ny .- ”m!)_l Zyef(nl,m,nm) hr ’
where, as in Section 4, f'(nl, ..., n,) is the set of all complete diagrams of order
(ny -+ -, n,). Here (compare (4.24), (4.16))
B, = (g S Akys -k s —kyy ooy —k )
(6.11) X Gy(dk)) - -+ G/(dk_,,) »
ref‘(nl, ceeyny), A =n+--- +n,
and

(6.12) Ak, j=1,---,ml=1,..-,m)

m I k k'n )0
= TIr bulky, + -+ + k”l'l)gnl <|kizl> co O <Ik L ) >

nl,ll

where the arguments k , in (6.11) are enumerated in such a way that the vertices of
diagrams corresponding to the variables with numbers p and p + 472, p =1, - -,
A |2, are connected by branches of the diagram, and finally, the measure G’ is
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described in spherical coordinates (3.8) by the relation
(6.13) GJ/(E X C) = G(E) §, a** ' da .

The formula for moments shows that there are many coinciding states among
the Py . .., .
0091 9M

PROPOSITION 6.5. If the states Pgy 1. 1 and Pg g . 2 are such that the
measures G\, i = 1,2, are given by the formula (3.10) (where « is changed to k'

and G” is changed to G,') and are also such that

dG,(e) n=1, ..., M,

(6.14) lo.X@F = 19 Z55y

almost everywhere with respect to the measure G*, then these states coincide.

This proposition follows immediately from Proposition 4.2. It implies that
in the case v = 1 it is possible without loss of generality to consider only the
case where G, is Lebesgue measure, i.e., P is the state of white noise. It is
natural to conjecture that the states of the random fields of Theorem 6.3 are
different if Proposition 6.5 does not imply that they coincide; this is not yet
proven. We can note only that the application of the equality (6.10) to posi-
tive ¢, shows that if g, does not vanish for some even n then the moments of
odd order do not vanish and therefore the field is not Gaussian.

With the help of the general construction described in Section 2, the gener-
alized self-similar field with states P§ , .., can be used for the construction
of self-similar fields with discrete arguments. It is necessary only to check that
the states are discretizable.

PROPOSITION 6.6. Under the conditions of Theorem 6.3 all states P are

Gpr91:° 9y
discretizable.

PrOOF. We define the random variables @, by the equality (6.6) for any
function ¢ ¢ M,,, where w(k) = (|k| + 1)=*, ¢ > 0 is small enough. The defini-
tion (2.31) implies that in order to check the correctness of the definition of
the variables @, it is enough to show that for small enough positive ¢ the inte-
grals (see (6.8))

(6.15)  Sgow S I [(IT5=a (1 + [R5 D)7 TT G [P/ T dk, - - - dk,
ki:(kjl,...,kjv)eRv, j=1,...,n,
are finite. This follows again from Lowenstein and Zimmerman’s result [19].
Let
(6.16) L7($) = § .. exp{i®(F)}P(F), &M,

where P is the state of Gaussian field with the spectral measure G,. We see that
this formula describes the necessary continuation of the characteristic functional
of the states P§ , ..., . The continuity of the functional follows from the iso-
metry of the transformation Exp H; — Ly(P): h — I(h) (see Section 4), from the
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fact that the convergence of random variables in the mean-square sense implies
the convergence of their characteristic functions, and finally from the finiteness
of the integral (6.15).

Let the dimension be v = 1. Because the indicators 7,, € R!, of the interval .
(0, r) for t = 0 and of (¢, 0) for ¢ < 0, are in the space M, the construction of
Proposition 6.6 makes it possible to define the random process § = {£,, ¢ RY}
by the relation

(6.17) Et - (DTt’ te Rla

where @, is defined by the relation (6.6). It is clear that the derivative of the
random process ¢ is the corresponding self-similar stationary process of Theo-
rem 6.3, and so (see Proposition 2.2) § is a process with stationary increments
of order 1. (In the terminology of Lamperti [18], this means that it is semi-
stable.) A comparison of the expression for the moments given in Proposition
6.4 with that found by Taqqu [27] shows that if g, =0, n = 2, it is the
Rosenblatt process mentioned in Section 1.
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