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EMPIRICAL PROCESSES: A SURVEY OF RESULTS FOR
INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM
VARIABLES

BY PETER GAENSSLER! AND WINFRIED STUTE!
Ruhr-University of Bochum, West Germany

We consider a sequence £, §,, - - - of independent and identically distrib-
uted random observations. Let p, denote the empirical distribution for the
sample {£},- - -, §,}. It is the aim of the present article to give a survey of
various results in the theory of empirical distributions and empirical processes.
Special emphasis is given to the developments of the last ten years.

0. Introduction and basic definitions. The idea of testing hypotheses on the
basis of a distribution giving equal mass to each observation has been central to
modern statistical inference since 1933, when Glivenko, Cantelli and Kolmogorov
published their fundamental results on the convergence of the empirical distribu-
tion function. Pyke (1972) also made some comments on much earlier references.
Since then a large literature has evolved, and it is the aim of the present article to
survey various aspects of this theory. Because of the complexity of the subject, this
review must necessarily be incomplete. For example, we do not mention any result
for the two-sample case. Similarly, in an already long paper we have no place to

“review the rapidly increasing literature on empirical processes which are based on
‘weakly dependent observations (such as mixing variables). Instead, to make the
survey more accessible to nonexperts, we include a discussion of the main ideas of
proofs.

The basic viewpoint of the paper is no doubt a probabilistic one. The reader who
is interested in more statistical applications is referred to the monograph of Durbin
(1973) and the literature cited there.

Throughout, let £, §&,, - - -+ be independent and identically distributed (i.i.d.)
random variables on a probability space (R, ¥, P) with values in a sample space
(X, %B). By u we shall always denote the probability distribution of £, on 9, i.e.,

u(B) =P({¢(, €B}) forallB €%B.

Usually £, &,, - - - will be random vectors in the Euclidean space R*. In this case
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F = F; will always be the (right-continuous) distribution function (df) of £, i..,
F(t) = p((— oo, t]), where (—0, t] is the extended interval with corner t € R*.

In testing hypotheses about the (unknown) distribution p, statistical inferences
are usually based on the independent observations §,(w), §,(w), - - - , w € Q. To get
a statistical approximation to p the following concept of empirical distribution has
proved useful. For each w € 2 and C € B let u(C) denote the fraction of those
(@), -+, §,(w) which fall into the set C. The number p°(C) is called the
empirical measure of C for the sample {£,(w), - - -, §,(w)}. For notational con-
venience we write u,(C) instead of p2(C). If §,, &, - - - are random vectors in an
Euclidean space, F, will always denote the df of y,, called the empirical df.

A much more illuminating expression for p,(C) may be obtained in terms of the
indicator function 1. of C, namely

1 (C) = ”—127=11c(§i)-
From this we see that yu,(C) is a properly normalized partial sum of independent
Bernoulli-variables with mean u(C). The strong law of large numbers (SLLN)
therefore implies that u,(C)— u(C) P-almost surely (P-a.s.). In Part 1 of this
survey various aspects of the almost sure convergence of p, to p are reviewed.

According to the classical central limit theorem (CLT), a weak convergence
result should involve a different normalizing factor. For this, let

BA(C) := n2(,(C) = w(C)) = n~7121,(1c(&) — w(C)).
Then, by the CLT, B8,(C) is weakly convergent to a normal random variable with
zero mean and variance p(C)(1 — p(C)). If C ranges over some parameter set
.C C B, the collection of random variables { B,(C) : C € C} will be called the
empirical C-process. In Part 2 certain properties of the B,-process are investigated,
especially when £, §,, - - - are random vectors in R* and € is the class of all
intervals (— oo, t]. If in addition £, is uniformly distributed over the unit cube
I*¥ = [0, 1]%, we use the symbol a,. For example, if k = 1,
a,(t) = ni(F(f) —t) for 0<t< L
We shall always refer to a, as the uniform empirical process, or empirical process,
on I =1I'. Since for each uniform random variable £ the variate F~!(£) has
distribution function F (where F ~! is the inverse function of F); this shows that 3,
is a version of a, o F, i.e., both processes have the same finite dimensional
distributions. From a probabilistic point of view the study of a general 8,-process
may therefore be reduced to the study of the uniform empirical process. On the
other hand, the process 8, ° F~! is a version of a, for continuous F’s. The
importance of this observation lies in the fact that with its help one may construct
statistics which are distribution-free. In this survey we mainly consider the
Kolmogorov and Smirnov statistics, defined by
D, = supocr<i| F,(A) — Al and D" = supycp < 1(F,(A) — A).
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It is known (cf. Simpson (1951)) that the corresponding quantities are no longer
distribution-free in the case of multivariate observations.

In the second part we shall review some important distributional results for the
a,-process, both in the finite sample and limiting case. As usual, convergence in
distribution is defined in the sense of weak convergence of measures. Recall that a
sequence {} of (finite) Borel-measures on a metric space (S,d) is weakly
convergent to », if and only if

lim,_, ., = {fdvo

for all real-valued, bounded, continuous functions f on S. The distribution of an
S-valued random element will always be denoted by £{-}. By definition, »;
converges in distribution to 1y if £{n;} — £{ny} (weakly). The notation »(f) is
frequently used for the expectation of f w.r.t. the measure ». The uniform empirical
process is considered as a random element in the space D = D[0, 1] of all
right-continuous functions on 7 with left limits. In this context the limit process is
tied down Brownian motion B°(¢) = B(¢) — tB(1), 0 < ¢ < 1 (Brownian bridge).
We always consider versions of B with continuous sample paths.

For complete separable metric spaces S, Skorokhod (1956) proved the following
result.

THEOREM 0.1.  Suppose that {v;} is a sequence of S-valued random elements such
that £{n;} — £{no}. Then there exist versions 1, of n; (i.e., i, and w; have the same
distribution) on an appropriate probability space (2, ¥, P) such that 1, — 7, P-a.s.

This was generalized to arbitrary separable metric spaces by Dudley (1968) and
to arbitrary metric spaces, if 7, takes values in a separable subset, by Wichura
" (1970).

For proving weak limit theorems such a result will often enable one to assume
that {7} is itself almost surely convergent. In Part 3 we shall consider the rate of
this almost sure convergence for the special case of empirical processes. For further
applications we refer the reader to Pyke (1969) and Billingsley (1971).

Before giving the detailed contents of the survey we have to establish some
further notation. A, will always denote Lebesgue measure on R¥. [x] will be the
greatest integer n < x, and ¢ /\ s means the minimum of ¢, s € R. The sup-norm
distance between two real functions f and g will be denoted by p(f, g). Finally, the
expectation w.r.t. P is written E(-).

The three chapters of the survey are organized in the following way:

Part 1: :

1.1. On Glivenko-Cantelli convergence.

1.2.,0n the speed of Glivenko-Cantelli convergence.
1.3. Functional LIL’s for the empirical process.

1.4. Strong laws for the weighted empirical process.
1.5. On convergence of empirical probability measures.
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Part 2:
2.1. Functional limit theorems (invariance principles).
2.2. Limiting distributions.
2.3. Rates of convergence.
2.4. Exact distributions.
2.5. Weak convergence of the weighted empirical process.
2.6. Empirical processes with random sample size.

Part 3:
3.1. Strong approximation results for the empirical process.
3.2. Strong approximation of the two-parameter empirical process.

Part 1

1.1. On Glivenko-Cantelli convergence. In statistical inference the standard
procedures for testing hypotheses are usually based on a random sample
{1, &, - - - } of ii.d. observations. For such a sample the empirical probability
measure p,(C) is defined by

1, (C) = ”_IZLIIC(&)’
i.e., u,(C) is the average number of points &, - - - , §, falling into a subset C of the
sample space X. To be precise, we will assume that there is a o-field B on X, for
which all £&’s are measurable with distribution p on 9. Since the variables
1c(6)), 1c(6), - - - are again i.i.d. with common mean u(C), the SLLN implies that
for each C € B

p(C)>u(C) as n— oo,

:except on a P-null set (which may depend on C); p,(C) therefore provides a
reasonable estimate of u(C) as the sample size tends to infinity. For statistical
inference based on this empirical measure it is important to construct strongly
consistent tests against alternatives, i.e., as more observations are added a false
hypothesis on p is eventually rejected with probability one. A suitable statistic for
constructing such tests is the so-called ©-discrepancy between p, and p. This is
defined for each determining subclass © of % by

Dn(@’ H) = SupCe@l H-,,(C) - :U‘(C)l
(Recall that a determining class has the property that if any two measures agree on

that class then they must agree on the whole of 9 .) For historical reasons we shall
say that C is a Glivenko-Cantelli (GC)-class for the measure p if and only if

(1.1.1) D,(C, u) = 0as n— oo on a set of probability one.

Clearly, when such a result holds, strongly consistent tests can be constructed. In
general it is too much to expect the GC-theorem to hold with € = % . Indeed,
since u is concentrated on the countable set {£,(w), £,(w), - - - } for every w € £,
the validity of (1.1.1) in this case would show that p must be a discrete measure. On
the other hand, it follows from a straightforward application of Scheffé’s lemma
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that % is a GC-class for every discrete u. Hence to obtain GC-results for more
general p one must consider proper subclasses of B .

In most of the Glivenko-Cantelli theorems known to date the sample space X is
a k-dimensional Euclidean space with Borel o-field %, . The classical result in this
field was obtained for real-valued ii.d. random variables and the class of all
extended half intervals (— oo, A] by Glivenko (1933) for continuous df F = F;, and
by Cantelli (1933) for general F’s. In terms of the empirical df F,, their result states
that

(1.12)  DF=sup_,cacolF,(A) = FA)| >0 as n— oo almost surely.

The analogous result for k > 1 has been well known for a long time. The first
proof is apparently due to Wolfowitz (1960). See also Dehardt (1971), where the
same result is derived by using compactness arguments in the space of all
monotone functions on R.

In 1953 Fortet and Mourier proved several theorems on the convergence of
empirical measures in separable metric spaces. In particular they showed that for
Euclidean spaces the class of all halfspaces is a GC-class for u, whenever p is
absolutely continuous w.r.t. Lebesgue measure. Wolfowitz (1954, 1960) proved the
same result for general p’s. In 1955 Blum considered the larger class of all lower
layers C C R, for which s € C whenever s < t for some t € C, together with all
sets which are obtained by reversing, one at a time, the k (partial) inequalities in
the definition of a lower layer. The corresponding GC-result then holds again when
p is absolutely continuous w.r.t. Lebesgue measure on R¥. By Ranga Rao (1962),
Glivenko—Cantelli convergence also holds in full generality for the intersections of
at most m halfspaces, m € N fixed. Finally, Sazonov (1963) showed by an example
that in general GC-convergence fails to be true for the halfspaces in an infinite
dimensional space.

Using compactness arguments in the space of all bounded, closed and convex
subsets of R¥ (endowed with the Hausdorff metric) Elker (1975) proved that the
class of closed Euclidean balls is a GC-class for general p’s. Topsee, Dudley and
Hoffmann-Jergensen (1976) showed by an example that Elker’s result in this full
generality is no longer true for infinite dimensional Banach spaces. The class
@ = @, of all convex Borel sets in R was first considered by Ahmad (1961) and
Ranga Rao (1960). They proved (1.1.1) under the assumption that p is absolutely
continuous w.r.t. Lebesgue measure A,. The following simple example shows that
Cy is not a GC-class for a general measure p if k£ > 1. For this let p, be the uniform
distribution on the unit circle in the Euclidean plane. For each w € 2 and n € N
let C,(w) denote the convex hull of the sample {§,(w), - - - , £,(w)}. Since p’(C,(w))
=1 and py(C,(w)) =0, we obtain D,(C,, p) =1, i.e., C, is far from being a
GC-class in this case.

Similar arguments (see Stute (1976b)) may be applied to show that the GC-theo-
rem is also violated for G, with k > 2, if for some C € C, the nonatomic part y, of
the measure p gives positive mass to the extreme points e(C) of C. In other words,
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the following condition
(1.1.3) p(e(C)) =0 forall C € G,

is necessary for G, to be a GC-class for p. Furthermore (1.1.3) is also a sufficient
condition if kK = 2. To see that the sufficiency part is no longer valid for dimension
k = 3, let u be the uniform distribution on the envelope of some convex cone. Then
(1.1.3) is obviously satisfied in this case, while on the other hand D,(C;, u) = 1 by
the same arguments as for y, above.

To prove sufficiency one therefore requires more than (1.1.3). The following
condition was shown to be suitable by Ranga Rao (1962):

(1.1.4) p(dC) =0 forall C € C,,

where dC denotes the boundary of C. It is easy to see (cf. Gaenssler and Stute
(1976)) that (1.1.4) is in particular satisfied for each measure p which is absolutely
continuous w.r.t. Lebesgue measure. Stute (1976a) showed that C, is also a
GC-class for those p’s which are absolutely continuous w.r.t. an arbitrary product
of k o-finite measures on the real line.

By means of methods similar to those developed in Stute (1976a) a complete
solution of the GC-problem in the , -case was obtained by Elker (1975). See also
Elker, Pollard and Stute (1977). For alternative approaches we refer the reader to
Eddy and Hartigan (1977), and Topsee (1977).

To state Elker’s result, let M, = {x € R¥ : p({x}) > 0} be the set of all y-atoms.

Forj=1,2,- - -,k let M; be the countable family of all j-flats L(j-dimensional
linear manifolds in R¥) such that p still assigns positive mass to L after removing
all those L' € M,,i =0, 1, - - ,j — 1, which are included in L. Furthermore, for

C € G, and L € M, let 3, C denote the boundary of C N L relative to L. Then C,
is a GC-class for u if and only if
(1.1.5)

p(aLc —Uj:(: U Mi) =0 forall C€C, andevery LEM,1<j<k

Clearly, when y, assigns zero mass to each hyperplane, then M; is empty for all
1 < j < k. In this case condition (1.1.5) is the same as (1.1.4).

. In place of G, Topsee (1970) considered the larger class of all Borel sets B, for
which 9B C dC for some C € C,. As a main result he showed that in this case
(1.1.4) is both necessary and sufficient for (1.1.1).

Vapnik and Chervonenkis (1971) obtained necessary and sufficient conditions
for the GC-convergence using combinatorial arguments. See also Steele (1978).
Below we will describe various methods of proof for the results stated so far. As
shown by Dehardt (1971) the GC-convergence may be achieved by verifying the
following Glivenko-Cantelli criterion (GCC):

(GCC): For every ¢ > 0 there exist a finite covering C(1), - - - , C(m) of € and
p-integrable functions f; and f; defined on R¥,j =1, - -, m, such that

f<lc<f forall C€C() and u(f —f)<e
j=1’...’m'
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In fact, it is easy to see that in this case

D,(C, p) < sup;_y ..., ,max{| () = w(H |m(f) = w(F)I} + e

Since the first term on the right-hand side converges to zero P-a.s. by the SLLN,
we obtain lim sup, . D,(C, p) < & on a set of probability one and therefore (1.1.1).
Gaenssler (1974) considered a family {4, : € T'} of p-integrable functions on an
abstract probability space (X, B, p), where ¢ ranges over some compact set 7.
Suppose that for some base 9, of the topology on T the following condition holds:
(1.1.6)

For every f, € T and each ¢ > 0 there exists a neighborhood S € 9, of
to such that p(h, ) — & < p(inf,c gh,) < p(sup,egh,) < p(h,) + e

Then on a set of probability one

(1.1.7) Sup,crln !SI ih(E) — w(h) >0 as n—s oo,

where §,, &, - - - are independent X-valued random elements with distribution p.
The method of proof is based on an argument which is similar to that employed for
(GCC) above. Clearly, € is a GC-class for the measure y if and only if (1.1.7) is
satisfied for 7= C and h, = 1,, t € T. The problem now becomes one of defining
a compact topology on € for which (1.1.6) holds. If C consists of all closed convex
subsets of a fixed cube in R¥, then it is compact in the Hausdorff topology by the
Blaschke selection theorem (see Valentine (1964)). Condition (1.1.6) is in particular
fulfilled (cf. Gaenssler (1974)) if u satisfies (1.1.4). See also Krickeberg (1976),
where the classical GC-result is derived by introducing a compact topology into the
class of intervals of the form (— o0, %) or (— oo, u], u € R.
 There is also a more measure theoretic approach to the GC-theorems. In this
setup one considers an arbitrary measurable space (X, 9B ) with a fixed subfield %,
of B and a finite measure u|% . Then, by definition, a subfamily C of B is a
(s Bo)-uniformity class if and only if
lima(suPcee| ”"a(C) - ,LL(C)I) =0
for every net (u,), of (finite) measures on % converging setwise to p on B, i.e.,

lim_p (B) = w(B) for each B € B,. The following characterization of (u, B)-
uniformity classes may be found in Stute (1976a).

CRITERION. In the above notation C C B is a (p, By)-uniformity class if and
only if for every £ > 0 there exists a finite partition 7 = () of X into B,-sets such
that for all C € C ‘

WU (Ber:BnC+B#B\C)) <

From this criterion it is fairly easy to see that every (u, B,)-uniformity class is
even a (p, Bg)-uniformity class for the smallest subfield B, which contains the
elements of m(n~'), n =1,2,- - - . The importance of this observation lies in the
fact that B¢t is countable. In fact, using the ordinary SLLN one can find a set £,
of probability one, such that p°(B) — u(B) for each w € Q, and all B € B¢. In
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other words, u® is setwise convergent to p on B¢ for each w € Q. By the very
definition of the uniformity class property, we thus obtain for all such «’s

limn»w(suPceel [J,,?(C) - “'(C)I) = 0’
i.e., C is a GC-class for the measure p.

If, for example, @ is the class of intervals on the real line and p has no atoms,
then an appropriate partition may be obtained by dividing R into finitely many
intervals of u-measure less than or equal to €/2. For further applications see Stute
(1976a), Gaenssler and Stute (1976), and Elker et al. (1979). Elker showed by an
example that the uniformity class property is strictly stronger than GC-conver-
gence.

In most of the results stated so far the sets C were subsets of an Euclidean space
with a common geometrical structure, such as balls, halfspaces or intervals. In
proving the GC-result this was strongly needed to verify one of the above criteria.
For arbitrary sample spaces X such a geometrical argument will not be available,
so that different criteria are required to obtain GC-results in this general setup.
Since, by the Borel-Cantelli lemma, lim sup,_,D,(C, p) < & P-as. if
2,51P{Dy(C, p) > €}) < o0, we see that C is a GC-class for p if the last series
converges for all ¢ > 0. To obtain suitable upper bounds for the probabilities
involved, Vapnik and Chervonenkis (1971) in their approach considered the two-
sample C-discrepancy

D,(C, p) = supcee m(C) = 7,(C),

where 7, is the empirical measure for the sample {£,,,, - - -, §&,,). Assuming that
both D, and D, are measurable functions they showed that for all large enough n:

P({D,(C, 1) >¢}) < 2P({ D,(C, p) >¢/2}).
For estimating the right-hand side the following inequality was derived:

(1.18)  P({D,(C, p) >e/2}) < 2 exp(—eln/B)E(A(Ey, - - -, £3,))s

where for each r-sample {x,, - - - , x,} in X, A%x,, - - - , x,) denotes the number of
different subsamples of the form {x,, - - -, x,} N C induced by the sets in C. The
function

m®(r) = max A®(x,, - + -, x,),

where the maximum is taken over all samples of size 7, is called the growth
function. Clearly, m(r) < 2". As shown by Vapnik and Chervonenkis (1971) the
growth function has the following remarkable property: it is either identically equal
to 2" ‘or it is majorized by the power function r* + 1, where s is the minimal value
of r for which the equality m%(r) = 2" is violated. In the second case we therefore
obtain from (1.1.8):

P({D,(C, p) >&/2}) < 2m®(2n)exp(—e’n/8) < 2[(2n)" + 1]exp(—&'n/8).
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Since the corresponding series converges for each ¢ > 0, we may conclude in this
case that C is a GC-class for a general p.

Vapnik and Chervonenkis (1971) computed the growth function for the class of
all rays (— oo, f] on the real line, and for the class of all halfspaces in the
k-dimensional Euclidean space. In the first case m§(r) = r + 1, so that s = 2. For
the halfspaces one has (cf. Harding (1967))

m@(r)=22’f,0(r;l) if r>k+1

=2 if r<k+1
and therefore s = k + 2. For the class of all closed balls in R¥, Dudley (1976)
proved s = k + 2. Recently Topsee (private communication) gave a much shorter
proof which is based on Radon’s theorem (cf. Valentine (1964), Theorem 1.26).
Since for large ©’s the function m® has an exponential growth it is sometimes more
convenient to work with the logarithm of A® (w.r.t. base 2). Let
V(C, p) = lim inf,_  n"'"E(log,A%(,, - - - , £,)).

Clearly, 0 < ¥(C, p) < 1. Vapnik and Chervonenkis (1971) showed that V(C, p) =
0 is a necessary and sufficient condition for D,(C, p) to converge to zero in
probability. A main result of Steele’s (1978) work is that one actually has almost
sure convergence.

Since V(C, p) is not at all easy to compute, Steele (1978) also introduced a new
type of a A%function which is easier to handle and which is still effective in the
study of Glivenko-Cantelli convergence. He also gave estimates for the correspond-
ing V(C, u)-term, which are closely related to the conditions (1.1.3) and (1.1.4) if
. C=C.

1.2. On the speed of Glivenko-Cantelli convergence. For a sequence of i.i.d.
random variables with mean zero and variance 0? < oo the Hartman-Wintner law
of the iterated logarithm (LIL) implies that for the sequence {S,} of partial sums
one has

lim sup,_, (27 log log n)_%IS,,| =0 P-as.

Clearly, this is a remarkable improvement of the SLLN. On the other hand, it has
been pointed out in the first section of this survey that the GC-theorem is a simple
consequence of the SLLN, if © satisfies one of the criteria mentioned there. From
this one might guess that a more refined technique would also yield rates of
convergence, which are strongly related to the LIL, at least if € is not too large.

Let us first consider a single set C € C with 0 < u(C) < 1. By the LIL we
obtain

(1.2.1)
lim sup,_,..(2 log log n) ~2n2| 1, (C) — w(C)| =[ W(C)(1 — W(C)]*  P-as.
Thus D,(C, p) cannot tend to zero faster than @(n"%(log log n)%). To simplify the
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notation let c(p) = supcee[#(C)(1 — ,u.(C))]%. If C is a finite system of sets, we
may infer from (1.2.1) that

(12.2) lim sup,_, (2 log log n)*%n%D,,(@, w =c(p) P-as.

Note that c¢(p) <4 and c(p) =3 if p(C) =3 for some C € C.

For infinite C’s the uniform LIL (1.2.2) is not at all trivial. As in the classical
GC-theorems the first result in this field was obtained for the class of all rays
(— o0, A] on the real line, i.e., for the maximum deviation D[ between the empirical
df F, and the theoretical df F (Smirnov (1944)). Actually more is known than
(1.2.2) in this case. For example, Chung (1949) derived a simple series condition for
a sequence of real numbers to be in the upper class of DF. In Dvoretzky, Kiefer
and Wolfowitz (1956) the uniform LIL is proved by means of a sharp exponential
inequality for the tail probabilities of D/ (see (2.4.2) below). Csaki (1968) in his
approach obtained (1.2.2) as a corollary to a more general LIL for a certain class of
submartingales. For verifying his assumptions for the particular submartingale
My =N SUP_ o rcoo(Fr(A) — F(N)), the exact expression for the distribution of 7,
is needed (see Section 2.4 below).

In the multivariate case the corresponding LIL has been shown to hold by Kiefer
(1961). Instead of (2.4.2) the proof is now based on the exponential inequality
(2.4.3) below. The technique of Cséki (1968) breaks down in the multivariate case,
since the exact distribution of 7, is not known (except for trivial cases) if k > 1. In
the sequel we will give a brief survey on known results for various other classes of
subsets of R¥. For the uniform distribution on [0, 1] Cassels (1951) proved (1.2.2)
for the class of all subintervals of [0, 1]. The extension to arbitrary dimension is due
to Zaremba (1971) and Wichura (1973). Philipp (1971, 1973) considered the class of
.all rectangles with sides parallel to the coordinate planes, and the class of all
ellipsoids. It is plausible that the uniform LIL is also true for the class of all
halfspaces, but we know of no proof of this conjecture.

For the class C, of all convex Borel subsets of R* the situation is completely
different. By the results of 1.1 G, is in particular a GC-class for the uniform
distribution on I*. Philipp (1973) showed that in this case the uniform LIL is still
valid in two dimensions. At the 1973 Oberwolfach meeting he conjectured that it is
no longer true for k > 3. It turns out that the rate of convergence for C, is a
function of the dimension k. In fact, using a combinatorial argument, Schmidt
(1975) showed that D,(C,, ) > cun~2/®+D for every sequence of points in I¥,
where ¢, is a positive constant depending only on k. This implies that the LIL is
violated for C, if k > 4. By contrast, for a random sample from the uniform
distribution on 7%, Stute (1977) showed that P-almost surely

D,(Cy, w) = O(n™2/**D(log m)*),

where g, = 2(k + 1)"'if kK > 4 and a; =3.
Combining these results we see that D,(C,, u) tends to zero as n=>**D up to a
logarithmic factor, if kK > 3. The same result holds if p has a bounded Lebesgue
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density with compact support. Furthermore, it may be shown (see Stute (1975))
that without such a condition this rate of convergence may not hold.

Clearly, statements on rates of convergence need a technically more involved
proof than the GC-results in the first section. Some methods of proof for the
maximum deviation D between the empirical df F, and the theoretical df F have
already been mentioned. For arbitrary C-discrepancies such arguments break
down. Accordingly, different techniques are needed to obtain the upper bounds in
the results stated so far. The proof is based on finding, for each n € N, a finite
C-approximating system C, of a specified (small) cardinality. This means that for
each C € C one may obtain sets C,, C; € G, such that C, c C c C, and
w(C/\ C;)) < 27", say. Classical exponential inequalities may then be applied to
get suitable upper bounds for the C,-discrepancy on a set of probability close to
one. Together these will show that D,(C, u) has the same asymptotic behaviour as
D,(C,, ) on a set of probability one.

Under the assumption that D,(C, u) is a measurable function for each » € N the
strong version of the GC-theorem has the following weak analogue:

(1.2.3) lim,_, ,P({D,(C, ) >¢e}) = 0for each e > 0.

If C is a finite system of sets, it follows from known results (see Cramér (1938),
Chernoff (1952)) that the convergence in (1.2.3) takes place at an exponential rate.
More precisely, for each ¢ > 0 it is true that

(1.2.4) lim,_,,n~" log P({D,(C, p) >¢}) = log p(C, &), |

where p(C, ¢) is a nonnegative constant strictly smaller than one (cf. Hoeffding
(1963)). An argument similar to (GCC) of Section 1.1 now leads to the result that
(1.2.4) is also valid for certain nonfinite C’s. As shown by Sethuraman (1964) it is
in particular satisfied for various classes of convex sets.

Note that (1.2.4) is a strengthening of the (strong) GC-result, since in this case
2,51P{D,(C, p) > &}) < oo and therefore lim sup,,_,,D,(C, p) < eP-as. for each
e > 0. See also Sen (1973b) and Csorgé (1974).

1.3. Functional LIL’s for the empirical process. In 1964 Strassen obtained the
following striking'extension of the LIL for standard Brownian motion B on R,.
For this let S, be the continuous function on I defined by S,(f) =
(2n log log n)‘%B(nt), n > 2. Then on a set of probability one the sequence of
functions {S, } is relatively compact w.r.t. the topology of uniform convergence on
I. The limit set consists of all functions f of the form:f(s) = [3g(x) dx with
fo8%(x) dx < 1. Recall that for a sequence M = {z, : n € N} in a metric space
(Z, d) a point z € Z is a limit point of M if and only if for each ¢ > 0 there exist
arbitrarily large indices n € N with d(z,, z) < e. Using the well-known Skorokhod
embedding scheme (cf. Skorokhod (1965)) Strassen also obtained the correspond-
ing LIL for the partial sum process of a sequence of i.i.d. random variables with
finite variance.
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In this section the analogue to Strassen’s result is presented for the uniform
empirical process, defined by

a, (1) = n2(F, (1) — 1), 0<r< 1

By a technique similar to that of Strassen, Finkelstein (1971) proved the following
functional LIL for the sequence of a,’s.

THEOREM 1.3.1. On a set of probability one the sequence of functions
{2 log log n)’%a,,} is relatively compact w.r.t. the topology of uniform convergence
on 1. The limit set L consists of all functions f of the form f(s) = [48(x) dx such that
J48%(x) dx < 1 and [} g(x) dx = 0.
~ In Kuelbs (1976) the same result was derived from a more general strong
convergence theorem for the partial sums of ii.d. random elements in the space
DI[0, 1]. He identified the limit set L as the unit ball of the reproducing kernel
Hilbert space (RKHS) with reproducing kernel R given by the covariance structure
of the Brownian bridge, namely

(1.3.1) R(s,t)=s(1—1¢) for0<s<r<1
=#1-s5) for0<z<s<L
According to Aronszajn (1950) a RKHS is a Hilbert space (H, { >j) of (real- or

complex-valued) functions on some set E with the following property: there exists a
kernel function R(s, ¢) of s and ¢ in E such that

R(-,t)e H forall t€E

<
<

and
{RC, )y =f() forall f€ Handt € E.

" Below we will show that the limit set L in Finkelstein’s theorem is equal to the unit
ball of the RKHS for the kernel in (1.3.1).
For this let Q(u, ) be defined by

Qu,)=1—1t foru<t
= —t foru >1t.
Then we have
(1.3.2) R(s, t) = [00(u, )Q(u, s) du  forall 0<s,¢<1.
Let G be the closed subspace of L*(\) (= square-Lebesgue-integrable functions on
I) spanned by the set of functions {Q(-,#): 0 <¢ < 1}. Next let H denote the
Hilbert space of all functions of the form .
f(s) = [og(u)Q(u, s) du, 0<s<1lg€EGQG,
with'inner product defined by .
o fou = fogi(u)gy(u) du.
By (1.3.2), R(+,t) € H for every ¢t € I. Furthermore,

o RC, )n = [og(u)Q(u, 1) du = f(1).



EMPIRICAL PROCESSES 205

Hence H is the RKHS with reproducing kernel R. Since

[5Q(u, t) du =0  forevery 0<t<1
it follows that

(1.3.3) Jog(u)du =0  forevery g€ G.

Thus every f € H admits a representation

f(s) = fog(w)Q(u, s) du = [og(u) du, g €EG.
To show that the limit set L is equal to the unit ball of H it therefore suffices to
prove, in view of (1.3.3), that every g € L*(\) with zero mean is a member of G.
Using standard approximation arguments one may assume w.l.o.g. that g is a step.
function on I. In this case, however, it is fairly easy to see that g is a linear
combination of a finite number of Q(-, #)-functions.

Let £, C © denote the set of all w’s for which the assertion of Theorem 1.3.1
holds. Then @, belongs to the smallest subfield of % for which each a, is
measurable. Consequently it suffices to prove Finkelstein’s result for a particular
version of {a, : n € N}. On the other hand, it has been pointed out before that by
means of the Skorokhod embedding scheme the functional LIL for the partial sum
process may be simply derived from the corresponding result for Brownian motion.
Similarly, one could hope to obtain 1.3.1 from an embedding of {a, : n € N} into
a Gaussian process for which simpler estimates would yield the same result.

Miiller (1970) introduced a two-parameter Gaussian process K with zero means
and covariance structure given by

Cov(K(n,, t,), K(ny, t;)) = min(n,, n,)[min(z,, 2,) — 1,8, ].
This process will be discussed further in 2.1 and 3.2. In particular, such a process
can be obtained by summing up independent Brownian bridges B;:

K(n,t)=37_B%t), 0<t<ln=12"---.

Kiefer (1972a) proved that there is a process K of the above type and a version
{a,} of {a,} such that

(1.3.4) SUPo<,<1|@,(f) — n"2K(n, 1)) = o(1) as.
It therefore remains to prove that the assertions of Finkelstein’s result are valid if
a,, is replaced by n ‘%K(n, -). Actually, this is shown to hold by Csorgé and Révész
(1977) in their forthcoming monograph on strong approximations in probability
and statistics.

Richter (1974) extended 1.3.1 to the case where &, &, - - - are ii.d. random
vectors with arbitrary df F on R.

The various applications of the functional LIL are mainly based on the following
simple lemma.

LemMA. If M = {z,} is a relatively compact sequence in a metric space (Z, d)
with limit set L and if N is a continuous mapping of Z into some metric space
(Z', d’), then N(M) is relatively compact in (Z', d") with limit set N(L).
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In particular, if Z is the space of all real-valued bounded functions on 7/ under
the sup-norm metric and Z’ is the real line, we may apply the lemma to the
function N(f) I fll = supoc,<:|f(H)]. Thus, by 1.3.1, the sequence
{@2 loglog n)~ 1D, .} 1s relatively compact with limit set N(L) on a set of proba-
bility one. We show that N(L) = [0, ;]. First note that || f|| <3 for every f € L
and therefore N(L) C [0, 3]. For the converse the following two properties of L are
needed (see, for example, Richter (1974)): (2) aL C L for all 0 < a < 1 and (b) for
every & > 0 there exists f € L with || f|| >3 — .

If 6, - - have df F, the set N(L) is equal to the interval [0, ¢(F)], where
c(F) = sup_ o cacoo FA)1 — (7\))]2 Hence on a set of probablhty one each point
of this interval is the limit of some subsequence of {(2 log log n)~ n ZDF }. Clearly,
this is an improvement of the Smirnov-Chung LIL (1.2.2) for DF.

By definition, «, is unchanged by permutations of the underlying sample
{£&, - - -, §,}. An empirical process which takes account of the order of occurrence
of the §&’s is obtained by defining

ZE(s, t) = [ 1] (Fas)(t) — E(1)), 0<s< LteR
n2
If F is concentrated on I¥ we need only consider ZF on the cube I**!. The
corresponding functional LIL for ZF was obtained by Wichura (1973).

THEOREM 1.3.2. On a set of probability one the sequence of functions
1
(2 log log n)~2ZF is relatively compact w.r.t. the topology of uniform convergence on
I**'. The limit set L* consists of all functions of the form

f(S, t) = f{)f[O, t] g(v, w)p,(dw) dv
such that f(s,1) =0 and [g’d(p ® \)) < 1.

To show that the Finkelstein theorem is a consequence of 1.3.2 let N(f) be
defined, for each bounded function f on I% to be the function ¢ — f(1, f) for
0 <z < 1. Clearly, N is continuous w.r.t. the topologies of uniform convergence on
I* and I. Since a, = N(ZF) (if F(t) = t on I) the above lemma implies that with
probability one {a,} is relatively compact with limit set N(L*). We show that
L = N(L*). For this note that f(1, -) has derivative g, : w — [} g(v, w) db if f has
derivative g, and that fg7 d\; < 1 if g2 d(\, ® A)) < 1. Hence N(L*) c L. Con-
versely, each f; € L determines an element f of L* by putting f(s, #) = sf,(¢) (where
the derivative of f is given by g(v, w) = g,(w) if g, is the derivative of f,). Since
J1 = N(f) this shows L C N(L*) and therefore L = N(L*).

Similarly, the following one-parameter version of the Smirnov-Chung LIL for the
maximum deviation of F, and F may be derived from 1.3.2 (cf. Wichura (1973),
page 282).

COROLLARY 1.3.3. On a set of probability one the sequence of functions s —

1
(2n log log n)_i[ns]D[‘,Z] is relatively compact w.r.t. the topology of uniform conver-
gence on 1, and its limit points coincide with the set of all nonnegative functions of the
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form
f(s) = [38(x) dx with [ig?dA, < cX(F).

1.4. Strong laws for the weighted empirical process. In this section various
aspects of the strong law behaviour of the weighted empirical process are investi-
gated. Let ¢ denote a preassigned nonnegative (reasonable) function on I. The
weighted empirical process is then defined by

V(1) =v,(t, F) = niy(0)(F,(1) - F(1)),  tER.
Possible choices for y may be found in Section 2.2, and in 2.5, where the
corresponding weak results are considered. For example, if F is concentrated on
some bounded interval [a, b], then F,(f) will usually yield a less satisfactory
approximation of F(¢) for #’s in a small neighbourhood of a or b. A weighted
discrepancy might then be helpful for detecting certain properties of F over these
portions of [a, b].

By the usual arguments we may restrict our attention to the case when
§, &, - - - are uniformly distributed on . By Finkelstein’s result 1.3.1 (and the
lemma in 1.3) we obtain for each bounded ¢ that on a set of probability one the
sequence {(2 loglog n)~ 27,,} is relatively compact in the topology of uniform
convergence on /I, with limit set L, = {yf : f € L}. On the other hand, if ¢ is
unbounded on the interval [, 1 — ¢] for some 0 <& < 1/2, the Smirnov-Chung
LIL implies that lim sup,_, . (2 log log n)~ 2||y,,|| = o0 P-a.s. Consequently, rela-
tive compactness may only be expected for those y’s which are bounded on every
 interior interval of . We therefore have to focus our attention on the behavior of Y
near 0 and 1. It follows from a result of Baxter (1955) that for

(14.1) o(t) = [z(l—t)]% for 0<t<1

otherwise,

one gets lim sup,_, (2 log log n)‘zllly,,n = oo[P-a.s. Hence we need only consider
those y’s which do not grow too fast at the endpoints of 1.

Because g(0) = g(1) = 0 for allg € L, it sufflces to find conditions on y so that,
on a set of probability close to one, (2 log log n)~ 27,,(t) is close to zero as soon as ¢
is near 0 or 1 and n is large enough. For y satisfying certain regularity assumptions,
the following condition was shown to be appropriate by James (1975):

2
(14.2) A Y0 —dt < oo,
: log logt~ (1 — ¢)
Condition (1.4.2) is slightly weaker than square-integrability of y. It is easy to
check that the above integral diverges for the weight function yj, as defined in
(1.4.1). As a main result James (1975) obtained the following
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THEOREM 14.1. Let ¢ be a nonnegative function on I such that for some
0<d8<1/2 t%tlx(t) is monotone increasing on (0, 8], (1 — t)%xp(t) is nondecreasing
on [1 — 6, 1), and y is bounded on [8, 1 — §]. Then, if (1.4.2) holds, the sequence
{2 log log n)~ %y,,} is relatively compact with limit set L, on a set of probability one.

Conversely, if the integral in (1.4.2) diverges one gets
(14.3) lim sup,_, (2 log log n)_%||y,,|| = 00 P-a.s.

Finkelstein (1971, inequality (3)) proved that

Al < (t(1 — )2 =gq(f) forall 0<t<1 and fEL,

ie., sup {||Yf]l : f € L} < ||¥qol|. To prove equality consider the functions f;
defined, for each 0 <s < 1, by £,(0) =0, f(s) = gy(s), £,(1) =0 and linear in
between. Clearly, f, € L. Furthermore,

sup{[[¥fIl : f € L} > sup{|l¥fill : 0 <s <1}
> sup{[Y(s)|£(s) : 0 <5 <1} = [|ygll.
An application of the last theorem therefore leads to the following

COROLLARY 1.4.2 (James). Under the assumptions of 1.4.1 (including (1.4.2)) we
have

. _1
lim supn—)oo(2 log log n) z”Yn” = IlquO” P-as.

Since the weight function y,, does not satisfy the condition (1.4.2), Theorem 1.4.1
provides another proof of (1.4.3) in this case. In spite of this, there could be some
sequence {a,} of norming constants such that lim sup,_, a,||¥a,| is finite and
_ positive on a set of probability one; but Csaki (1974a) has shown that such
sequences do not exist.

THEOREM 1.4.3. For each sequence {a,} of norming constants we have P-a.s.

hm supn—»ooan”‘lloan” = 0 or oo
according as
Sal/n converges or diverges.

If the series diverges the assertion is an immediate consequence of the Borel-
Cantelli lemma. For, if X¢, = oo, then U, ., = min(,, - - -, §,) <c, infinitely
often with probability one. Since, for each 0 < ¢, < 1,

a,ni|F,(1)) — F,(t, — 0)|
2t — 1))

we see that with £, = U, ., and ¢, = e%a?n~!

an”llloan” >

a,||Yoa,|| > (2¢)"" infinitely often with probability one.

With |0 this proves one part of 1.4.3. The converse half is more technical and
must be omitted here.
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We now consider the weight function v, which is obtained by truncating ¢, at
t=c¢candt=1—g ie,

;,l/e(t)=(t(1—t))‘21 if e<t<l-—e
=0 otherwise, 0 <& <13.
Since ¥, is bounded, the integrability condition (1.4.2) is trivially satisfied. Thus, by

Corollary 1.4.2,
(14.4)
1 F(t) —t
tim sup, (2 log log 1)~ sup,c o B =y gii=1 P

(11 - 1)*

It is now natural to ask what happens if ¢ is replaced by a sequence {¢,} tending to
zero as n — oo. First note that as a consequence of Theorem 2 of Baxter (1955) one
obtains

1
2| F(1 -1
mIEA/W = UM  _  pas.
((2/m)(1 — 1/n)log log n)?
Thus, in order that the right-hand side of (1.4.4) (with & replaced by ¢,) should be
finite, one has to consider sequences {¢,} for which ne, — co. Csorgd and Révész

(1974) proved that for e, = n~'log*n one gets
(1.4.6)

(14.5) lim sup,,_, .,

1 F,(t) —t
lim sup,_, (2 log log n)~ 2 sup,3”<,<1_,snl—i)——l =2

(#(1 = 1))?
Notice that the constant on the right-hand side is now 27 instead of 1. This is
strongly related to a different LIL-type behaviour of the two-parameter Brownian
motion B = (B(s, t)) (cf. Paranjape and Park (1973a)). Actually, the proof of
(1.4.6) uses an embedding (cf. 3.2) of the empirical process into a two-parameter
Gaussian process K of the form

K(s,t) = B(s,t) — tB(s, 1), 0<t<1,0<s< c0.
The factor log*n is determined by the error of this embedding, which is given by the

estimate (3.2.3).
Csaki (1977) (see also Shorack (1977)) generalized (1.4.6) to sequences {¢,}

satisfying

1
F P-a.s.

ne,(loglogn) ™' > 00 and (logloge, ")(loglogn)™' —c
for some 0 < ¢ < 1. In this case the right-hand side of (1.4.6) has to be replaced by

(c + 1)%. This is closely connected with a pointwise LIL proved by Eicker (1970)
and Kiefer (1972b):

lim sup,_, (2 log log n)_%n%|F,,(e,,) —&,|/ (e,(1 — e,,))% =1 Pas,
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whenever ne,(log log n)™! — 0. Note that by (1.4.5) the LIL is violated for
g, = n~ L. This is related to the fact that for triangular arrays of random variables
no complete analogue of the Hartmen-Wintner LIL is available.

We will now investigate necessary and sufficient conditions for the Glivenko-
Cantelli convergence of the weighted discrepancy between F, and F, i.e., for

DS (¥) = sup,cr¥(1)|F, (1) — F()|-
Again we restrict our attention to the case when §j, &, - - - are uniformly distrib-
uted on /. If y is bounded on I then by the ordinary GC-theorem D, (y) = D)
— 0 P-a.s. So, in order to obtain nontrivial results, we must consider unbounded
¥’s. Let ¢ be always such that it is bounded on [e, 1 — €] for some & >0,
nonincreasing [nondecreasing] and continuous on (0, &)[(1 — ¢, 1)] with $(0 + 0) =
Y(1 — 0) = oo. For such a y Wellner (1977a) showed that D,(y)—0 P-as.
whenever [3y(?) dt < co. This is useful for proving strong laws of large numbers
for linear functions of order statistics.
It is also true that

lim sup,_,,D,(¢) = o P-as.
if f3y(?) dt diverges. For this, it suffices to prove that for every r € N
(1.4.7) lim sup,_,,D,(¢) > r P-as.
By symmetry, we may assume w.Lo.g. that [§y(f) dt = co. Then for all sufficiently
large n, say n > n, the number c, = max{r <e:y(f) = 2nr} is well defined.
Furthermore,

Zpsnln = (2r)_12,,>,,°c,,[2(n + 1)r — 2nr] = oo,

* whence by virtue of the Borel-Cantelli lemma, £, < c (and therefore U, ., =
min(¢,, - - - , £,) < ¢,) infinitely often with probability one. Since ¢ is continuous
and nonincreasing on (0, €), this implies

sup0<t<l¢(t)|Fn(t) - t' > 2_]¢(Ul :n)IEt (Ul :n) - Fn(Ul:n - O)I

> @) e =r
infinitely often with probability one, whence (1.4.7).
The above results imply that for the weight function
Y@=t if 0<t<1
=0 if t=0
one gets lim sup,_, . D,(¢) = oo P-a.s. By a result of Shorack and Wellner (1977),
lim sup,_, .a,D,({,) is either zero or infinite for each norming sequence {a,} with
na,; ! increasing. They showed that,

’ lim sup,_,a,D,(¢) =0 or oo P-a.s.

according as
Za,/n converges or diverges.
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Wellner (1978) also investigated the strong law behaviour of sup, (,<)|F,(?)
— t|/t for various sequences {¢,} tending to zero.

1.5. On convergence of empirical probability measures. For an arbitrary separ-
able metric space (S, d), the following property is sometimes useful to establish
weak convergence on S (cf. Parthasarathy (1967), page 47, Theorem 6.6): there
exists a countable class { f} of bounded, continuous functions on S such that for
each sequence »,, »,, ¥, - - - of finite Borel measures on S we have v, — », weakly
if and only if

limn—mo.{fj"dpn = ffjl'dVO’ ] = 1, 2, L
We shall say that {f} is a determining class for weak convergence on S. If
&, &, - - - is a sequence of i.i.d. S-valued random elements with distribution p, the

existence of such a class may be applied to show that
(1.5.1) we —p weaklyas n— o0 P-as.

In fact, by the SLLN we have y,(f) — p(f,) P-almost surely for allj = 1,2, - -,
so that (1.5.1) is an easy consequence of the very definition of a determining class.

In this full generality (1.5.1) is apparently due to Varadarajan (1958). If S is the
Euclidean space (1.5.1) follows immediately from the ordinary Glivenko-Cantelli
theorem. Conversely, if p has a continuous df F on R*, the Glivenko-Cantelli
convergence may be derived from (1.5.1) by means of the Pdlya-Cantelli theorem
(cf. Pdlya-Szegb (1972), page 81, example 127).

It is well known (cf. Prokhorov (1956)) that for complete separable metric spaces
(S, d) weak convergence in the space of all finite Borel measures on S may be
metrized by

r(p, v) =inf{e > 0: p(F) < »(F°) + ¢ forallclosed F C S}.
Here F* :== {x € S : d(x, F) < ¢} is the outer e-parallel set of F. This result was
generalized to arbitrary separable metric spaces by Dudley (1968). Because of

(1.5.1) we therefore get r(u,, p) >0 P-almost surely. As to the speed of this
convergence Zuker (1974) showed that for uniform samples on I*

(152 r(t ) = O(n~V/®*D(log n)7)  P-as.

Dudley (1969) obtained similar estimates for the mean of r(py,, u). For k = 1, he
also related r(u,, p) to the maximum deviation between F, and F:

2°'DF < r(u, p) < 2DF.
From this and the Smirnov-Chung LIL one may infer, using a tail event argument,
that .
lim sup,_, (2 log log n) " 2nzr(p,, p) = C P-a.s.
for some constant ; < C < 1. Hence (1.5.2) is not best possible in this case. Zuker
(1974), Proposition IV. 4.4) proved that for 0 < a < k there is a probability
measure % * on I*¥ and a § > 0 such that for all n, P{p(g,, p©*)n'/@*® > §} >
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8. Tt follows that lim sup,_, (4, p* *)n'/@*® > §P-a.s. We also refer to Fortet
and Mourier (1953), Dudley (1966b) and Zuker (1974) for the convergence of p, to
p in the so-called dual-bounded Lipschitz metric.

Part 2

2.1. Functional limit theorems (invariance principles). The study of invariance
principles for the empirical process originally started with Doob’s (1949) “Heuristic
approach to the Kolmogorov-Smirnov theorems.” Noticing that

(2.1.1) E(a,(?)) =0, 0<t<1,
and
(2.12) E(a,()a,(s)) =t As — st, 0<s,t<1,

are the same as the corresponding moments of a tied-down Brownian motion
B°(¢) = B(t) — tB(1), 0 < ¢ < 1, and that, by the multivariate central limit theo-
rem, the finite-dimensional distributions of a, are asymptotically the same as those
of B°, he assumed (“until a contradiction frustrates our devotion to heuristic
reasoning”) that in calculating asymptotic distributional results for the a,-
processes, one may simply replace the a,’s by B°. The argument for this reasoning
was justified by calculation in the following now classical result by Donsker (1951,
1952):

For each function H : D — R, which is continuous in the uniform topology on
D, £{H(a,)} - L{H(B°)} as n — o0.

Note that there is a slight gap in the last statement, since £{H(a,)} need not be
well defined for a general continuous H. This comes from the fact (see Chibisov
. (1965)) that a, is nonmeasurable for the Borel-o-field of the sup-norm (p — ) metric
on D. In fact, as was pointed out in Dudley (1966a), what has been really proved
by Donsker is that for all such H

(2.13) lim, ,P*({H(e,) < \)) = P({H(B°) <A})
-at all continuity points A of the df of H(B°). Here

P*(B) = inf{P(4): BC A€ Y}, BCY,
denotes the outer measure of P. Note that since Brownian motion has continuous

sample paths, the process B° takes values in a separable subspace of D. Hence the
right-hand side of (2.1.3) is well defined. Anyway, letting

H(f) = supyc, 1| ()] and H(f) = supo<,<1f(2), f € D,

respectively, no measurability questions will occur here. We therefore obtain for all
AER

tim, ..P({n#D, < A}) = P({supoc,ci| B°()] <A})

and

lim,,_,c,ol}?"({n%D,,+ < }\}) = P({supy<,<1B°(t) < A}).
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Though these results look very promising at first sight it is not an easy task to
identify the limit distributions on the right-hand side. For a more detailed discus-
sion of this see 2.2 below. Moreover, the (correct) statement of Donsker’s result in
this form is not quite satisfactory in so far as only real functions of «, are
considered. The so-called functional version, however, could not be formulated
before 1956, when Prokhorov published his fundamental paper on convergence of
random processes and limit theorems in probability theory. In this connection it is
important to know that there is a metric 4 on D such that (D, d) is separable and
complete (cf. Skorokhod (1956) and Billingsley (1968)) and such that the corre-
sponding o-field % (d) of Borel sets in D equals the o-field spanned by the
projections 7, : f— f(£), 0 < ¢t < 1, f € D. In particular this shows that «, for each
n € N is a random element in (D, d) with £{a,} completely determined by its
finite-dimensional marginals. The functional version of Donsker’s result is now
concerned with the weak convergence of £{a,} on % (d) to some limit measure P,,.
We already remarked that the finite-dimensional distributions of «, were weakly
convergent to the corresponding finite-dimensional distributions of B°. Thus, if
£{a,} - P, for some P,, then by the uniqueness theorem necessarily P, = £{B°}.
In order to achieve this convergence it remains to show that in the weak topology
£{a,},n=1,2,- - is relatively sequentially compact (for in this case every limit
point (and such exist) must be equal to £{B°}). It follows from Prokhorov’s (1956)
results that £{a,}, n=1,2,- - - is relatively sequentially compact if and only if
{L{a,} : n € N} is tight. Using an Arzela-Ascoli type theorem for the space D
and noticing that a,(0) = 0 P-as. for all n € N, by Theorem 15.2 in Billingsley
(1968), it therefore remains to show that

(2.1.4) limy_olim sup,_,,P({«, (8) >e}) =0 forall &>0,

where wy(8) = inf,ymax,;,0sc]s_,, #;) and the infimum extends over the finite
sets {} of points 0 =1 <t <--- <t =1 satisfying t, —¢,_, >86, i=
1, - -, r. In practice, however, it is much more convenient to work with the
modulus w7 (8) = sup min{|f(¢) — f(t,)| , | A(t,) — A(?)|}, where the supremum ex-
tendsoverallt — 8 <1, <t <t <t + §; this may always be done if the expected
limit process has sample paths which are left continuous at 1 (cf. Billingsley (1968),
Theorem 15.4 or Gaenssler and Stute (1977), Satz 8.5.6). For the w”-criterion to be
applicable in our case one needs easily verifiable conditions which imply (2.1.4)
(with ' replaced by w”).

CRITERION. Letn,,n = 1,2, - - be an arbitrary sequence of random elements
in D. Suppose that for some constants a, K > 0 and b > 1 and some continuous
nondecreasing function G : I > R

(2.15) P({[n,(8) — m, ()| > &, [m,(1,) — m, (D] > &}) < Ke™*|G(t) = G(1))°
forall0 <t <t <t,<1,&e>0and n € N. Then
(2.1.6) lim;_olim sup,_,.,P({w;(8) >¢}) =0  forall &> 0.
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A proof may be found, e.g., in Billingsley (1968), or in Gaenssler and Stute (1977),
the arguments being completely different. While in Billingsley’s monograph several
useful fluctuation inequalities are central to the proof, it is pointed out in the
second textbook (Remark 8.5.15) that a condition like (2.1.6) (for fixed n without
the lim sup) occurs when studying the realizability of stochastic processes in the
space of all functions with right and left limits. In particular (2.1.6) is true under
the assumptions of (2.1.5). By Chebyshev’s inequality (2.1.5) is easily seen to hold
(with @ = a,; + a,), if for some a;, a, > 0

@L7)  E(n() — m() () — m()I%) < KIG(1y) — G(1,)]"

For G(¢) = t, 0 <t < 1, the above criterion is due to Chentsov (1956). As far as
the uniform empirical process n, = a, is concerned, it is easy to see that (2.1.5)
holds with a; = a, =2, K=6, b =2 and G(f) = ¢, 0 < ¢ < 1. Summarizing, we
thus obtain the following invariance principle for the uniform empirical process.

THEOREM 2.1.1.  On (D, B (d)), £{a,} > L{B°} as n — .

One of the most important properties of weak convergence is that it is preserved
under continuous mappings. In our case this means that £{H(a,)} - £ {H(B°)}
for each d-continuous function on D. From the point of application, however, it
would be more desirable to obtain an analogous result for the (larger) class of all
p-continuous functions on D. Surprisingly this is an easy consequence of the
continuous sample path property of B° together with the fact that every d-conver-
gent sequence in D is p-convergent, if the limit belongs to C = C([0, 1]). A proof of
it may either use a general continuous mapping theorem (cf. Billingsley (1968),
Theorem 5.1) or may involve almost surely convergent constructions. To sketch the
second proof, let &, and B° be versions of a, and B°, respectively (defined on some
* p-space (Q, 9, ﬁ’)), such that d(a&,, §°) — 0 (see Theorem 0.1 in the introduction)
and therefore p(&,, B°)— 0 P-almost surely. Hence, by continuity, H(&,) — H(ﬁ °)
P-almost surely and therefore

E{H(,)} = R{H(8,)} - L{H(B)} = £{H(B")}.
(We always have to assume that H is B(d)-measurable). In summary we obtain

COROLLARY 2.12. Let H: D — R be B (d)-measurable and p-continuous at
B°(w) for P-almost all w € Q. Then £{H(a,)} —» £{H(B®)} as n — .

A list of possible choices for H may be found in Sahler (1968) or Durbin (1973).
See also Anderson and Darling (1952). Theorem 2.1.1 may be equally applied to
obtain limit results in the nonuniform case. Since f — f ° F is p-continuous on D
for each df F, and since a,, ° F is a version of ,, Theoremi 2.1.1 implies that for F’s
concentrated on the unit interval, £{8,} —» £{B° ¢ F} as n — 0. The covariance
structure of B° o F is given by

R¥(s, 1) = F(t A\ s) — F(¢)F(s), 0<ts<1l
Furthermore, B° o F is tied down to zero at 0 and 1 and has continuous sample
paths if F is continuous.
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Before moving to the multidimensional case we also mention another proof of
tightness which is indicated in problem 9, page 296 of Breiman (1968). Using the

fact that the ordered sample (U,.,,* -, U,.,) of n independent uniformly
distributed random variables £, - - -, §, has the same distribution as
(S1/Sps1s* " * 5 Su/Sus1), Where S, =30y, i=1,2,--- are partial sums of

independent variables y; exponentially distributed with parameter 1, the crucial
condition (2.1.6) (with n, = a,) will follow from the ordinary invariance principle
for the partial sum process pertaining to the sequence y,, j=1,2,- - - . The
arguments are slightly more involved than those used on page 286 in Breiman’s
book to derive Theorem 13.16 there.

The same representation of the empirical process may also be applied to
construct explicitly versions &, of a, which converge almost surely (cf. 3.1 below).
For a third (though classical) approach we refer to Parthasarathy (1967). We now
turn to the multidimensional version of 2.1.1. For this let £, &, - - - be indepen-
dent R*-valued random vectors with common df F on I*. The corresponding
empirical process B, is now defined by

B,(t) = n2(F,(t) — F(t)), teI*neN,

where F, is the empirical df pertaining to &, - - - , £,. As an appropriate space of
sample functions we consider D, = D(I*) consisting of all real functions f on 7*
such that for each tlim,_,  f(t,) exists for all sequences t,, n=1,2,- - ap-
proaching t in some quadrant with corner t and such that f is continuous from
above. Then it was shown by Neuhaus (1971) and Straf (1971) that, as in the
one-dimensional case, there exists a separable and complete metric d, an D, for
which tightness may be described through the behaviour of a specified modulus of
" continuity. Furthermore the corresponding o-field % (d,) of Borel sets equals the
smallest o-field of subsets of D, for which all coordinate-mappings are measurable.
This implies that B, is a random element in D,. In order to formulate a Chentsov-
type inequality in the multidimensional case, for each interval B = (s, t] =
I*_ (s, t,] and every f, one has to consider the increment f(B) of f around B,
namely

f(B) =A(s 1))

=2, 01" Zp=01(— > f(s, + gt =51 5 S + g(h — 50))
Disjoint intervals (s, t] and (s/, t'] are called neighbours if they abut and if for some
i € {1, -, k} they have the same ith-face I,_..(s;, 4] = I, (s}, #]. Let p be an

arbitrary finite measure on 7*. In dimension k the analogue of (2.1.5) is now as
follows (where 7, are arbitrary random elements in D,):

@18)  P({In(B)l >, [n,(B)] >¢)) < Ke [ u(B U B)]"

for every pair of neighbouring intervals in /*. Note that in dimension 1 the
measure p and the function G correspond to each other in so far as G may be
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viewed as the df of u. Moreover the former continuity assumption on G now
transforms to the condition that p has continuous marginals. In particular, if
M, = B, and p is the distribution of £, Bickel and Wichura (1971) proved the
moment inequality

E(| 8,(B)PI B,(B)) < 3[ (B U BT,
from which (2.1.8) and therefore tightness follow immediately via Chebyshev’s

inequality. Inspection of the finite dimensional distributions now leads to the
following result (Neuhaus (1971), Straf (1971), Bickel and Wichura (1971)):

THEOREM 2.1.3. Let &, &,, - - - be independent random vectors with a continuous
df F on I*. Then L{B,} —» L{B°F} on (D, ®(d)) as n — oo, where B°F is a
centered Gaussian process with continuous sample paths tied down to zero at
1 € I* and the lower boundary L, of I* and such that

Cov(B°F(t), B°F(s)) = F(t \s) — F(t)F(s), tselI*
Here t A\ s = (min(z,, s,), - * + , min(%, 5,)) and L, = {t € I* : min(z,, - - - , 1)
= 0}. Theorem 2.1.3 is also a consequence of Theorem 2 in Dudley (1966a) which

states that £{B,} »,L{B°F} as n— oo, and where, by definition, £{8,}
—,£{B°F} if and only if

@19)  lim,_ Jfd{B,} =1lim,_ [ fdC{B,} = [fdL{B)

for all real-valued, bounded, p-continuous functions on D,(f/~ and [_ denote
upper and lower integrals, respectively). There should be made some further
remarks at this point. First note that the metric 4, was not available for k > 1
before 1971, so that in order to obtain a well-defined distribution of S, one had to

“ find a suitable (large enough) ¢-algebra on D, making B, measurable. For this
Dudley (1966a) considered the smallest o-field S, of subsets of D, containing all
open p-balls S(f,e) = {g € D, :p(f,8) <€}, fE€ Dy, ¢>0. In his thesis
Wichura (1968) proved that &, equals the smallest o-field of subsets of D, for
which all coordinate-mappings are measurable. Thus &, = B (d}), i.e., we need not
distinguish between £{ 8,}|S, and £{ B,}|® (4;). Secondly the continuous sample
path property of B°F ensures that £{B°F} is supported by a (p — ) separable
subspace of D, and hence may be extendeéd to the o-field of all (p — ) Borel sets on
D,. This means that the right-hand side of (2.1.9) is well defined. Moreover, as was
shown by Wichura (1968), when checking w-convergence on $,(= B (d,)), in the
presence of a tight limit measure one may confine oneself to those f’s which are
also §,-measurable. For such an f, (2.1.9) may easily be verified by considering
versions f, and B°F of B, and B°F such that d(8,, B°F)—0 and therefore
o( ,é,,_, B°F ) — 0 almost surely. In fact, by the dominated convergence theorem, for
each real-valued, bounded, p-continuous and S, = % (d,) — measurable f:

lim,_ . [fdC{ B,} = lim,_,[fdC{ B,} = [fdC{B°F} = [fdL{B°F}.

In summary we see that Dudley’s result is equivalent to 2.1.3.
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Surprisingly much more is known than 2.1.3. For this let
ns
28,0 = Lol (Fa® — ©), (9 € 147!

be the sequential empirical process as defined in 1.3. The functional law of the
iterated logarithm for Z[ is contained in 1.3.2. To obtain a weak limit result notice
that ZF is a random element in D,,, for each n € N. Furthermore, by the
independence of the &’s, for each interval B in I*

n~*E(|j'/*8,(B) — r'/*8,(B)P|m'/*B,(B) — j'/*B(B)I?)

<[ |we) | P | w)

for all 0 < r <j < m < n, which yields the desired Chentsov-type inequality for all
neighbouring intervals in 7¥*! with equal first face (and p replaced by A, ® ). For
the remaining intervals similar calculations as those needed for the B,-process
finally show that

E(1Z7(B)1*|1ZF(B")) < K[(\, ® p)(B U B)]?

for all n € N and every pair of neighbouring intervals in 7%*!. Inspection of the
finite dimensional distributions therefore leads to the following invariance principle
for the sequential empirical process (Bickel and Wichura (1971)):

THEOREM 2.1.4. Let &, &, - - - be independent random vectors with common
continuous df F on I*. Then 2{ZF} — £{Z*} on (Dy,, B (dpy 1)), where ZF is a

. centered Gaussian process with continuous sample paths and such that for all (s, t,) €
Ik+ 1

COV(ZF(Sl, t), ZF(sz, '2)) = min(s,, 32)[F(t1 Nt) — F(tl)F(tZ)]'

Hence ZF is a Brownian bridge for fixed s and a Brownian motion for fixed t.
This is related to the fact that for fixed t, ZF(-, t) is the partial sum process for
l_e,9®) i =1,- - - . Furthermore, since ZF1, ) = B,(t), 2.1.3 is an immediate
consequence of 2.1.4 by the continuous mapping theorem.

For k = 1 Miiller (1970) considered the D-valued process s — Zf(s, :), s > 0,
and proved weak convergence to a process K : s — K(s, -) € D, for which (s, ) —>
K(s, ?) is Gaussian with zero means and the same covariance structure as Z*. The
process ZF defined as ZI(s, t) = n%(F[,, /) — F(), t € I, 0 <5 < 1, involves
the whole sequence £, &,, - - - . By the Glivenko-Cantelli theorem, for every fixed
n, as s — 0, sup,c ;<| ZF (s, t)] = 0 P-a.s. Hence Z'(s, t) can be extended to an
element in D, (for this [x] is defined to be the least integer not smaller than x),
which is equal to zero at the lower boundary of I**!. Since a Chentsov-type
inequality is not available in this case the proof of tightness has to follow classical
lines using appropriate fluctuation inequalities (cf. Billingsley (1968) or Shorack
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and Smythe (1976)). A different method which uses martingale arguments (involv-
ing Brown’s (1971) inequality) has been applied by Neuhaus and Sen (1977) to
obtain the following result.

THEOREM 2.1.5.  Under the assumptions of the last theorem, £{ZF} — £{Z*} on
(Dis1s B(dery), where ZF equals the Gaussian process ZF occurring in 2.1.4.

If one looks at generalized Kolmogorov-Smirnov statistics D,(C, ), the corre-
sponding empirical (€ — ) process

B.(C) = nx((C) ~ w(C). CeC,
has to be considered as a (random) set function on © rather than a function of
points. By the multivariate central limit theorem one obtains weak convergence of
the finite dimensional distributions of B, to those of a Gaussian process B° = B°*
= (B°*(C))c e with zero means and covariance function
Cov(B°(C), B°(C")) = p(C N C) — p(C)u(C), C, C' eC.

However, before stating an invariance principle for the B,-process in this general
setup, one has to clarify in which sense weak convergence should be understood.
One possible way is to look at 8, as a random function in the space % (C) of all
real-valued, bounded functions on € with sup-norm || f|| == sup{|A(C)| : C € C}.
Since (B (C), || - ||) is nonseparable for each infinite system C, this will cause
severe measurability difficulties for 8, when endowing % (©) with the Borel-o-field
of the sup-norm topology on % (C). Therefore it will be more convenient to work
with the smallest o-field S, containing all open || - ||-balls in B (C) (cf. Dudley
(1966a)). Furthermore, when studying weak convergence on nonseparable metric
.spaces (Dudley (1966a), Wichura (1968)), it turns out that the limit measure should
be defined on the whole of all Borel sets rather than on §,. For example, if C is a
compact metric space and C(C) is the separable subspace of all continuous
functions on C, this may be easily achieved if the limit process has a version with
continuous sample paths. On the other hand it is known (cf. Strassen and Dudley
(1969)) from central limit theorems for C(S)-valued random elements (where S is a
compact metric space and C(S) denotes the space of all continuous functions on
§) that a CLT may fail to hold if .S in some sense is too “large” (which is measured
in terms of the e-entropy of S). With this in mind a corresponding limit theorem
for the B,-process might be only expected if © is sufficiently “poor.” For example,
if € = @, the class of all convex closed subsets of 7%, then © is compact under the
Hausdorff metric (by the well-known Blaschke selection theorem). Dudley (1974)
obtained upper and lower bounds for the e-entropy of ©/ which guarantee that for
the uniform distribution on I* the limit process B° has a version with continuous
sample paths if kK = 1, 2 but not if k > 3 (see Dudley (1973), Theorem 4.3). The
corresponding invariance principle for the uniform empirical process (a,(C))ceg,
has been obtained by de Hoyos (1972) (incorrectly) and by Bolthausen (1978):

(2.1.10) £{a,(C): C € C4} >,L{B°(C): C € C5}
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where again weak (w — ) convergence has to be understood in the sense of Dudley
(1966a) and Wichura (1968). The proof of tightness relies on a technique similar to
that employed by Strassen and Dudley (1969) to prove a CLT for the case of
Lipschitz-continuous independent summands in C(S). In the present situation,
instead of continuity Bolthausen’s approach uses the fact that the summands
1c(§) — w(C) are up to the Lipschitz-continuous u(C) monotone in C. To make
this work one has to approximate the elements C in C; from above by sets ém
belonging to a certain finite class @m, such that C and C‘m are within 27" w.r.t. to
their Hausdorff-distance and card (@m) is sufficiently small (see Dudley (1974)). In
Pyke (1975) a result similar to (2.1.10) has been stated for the class C = ¥, of all
convex polygonal regions with at most m(> k) vertices (k > 1 arbitrary).

Quite recently Dudley (1978) obtained a generalization of the D-space to more
general parameter sets.

In Strassen and Dudley (1969) the empirical process B, is also considered as
defined on a set JC of real functions rather than a class of sets, putting

B.(f) = niffd(p, - p), fE€ K.

The corresponding invariance principle then follows from the abovementioned
CLT for C(S)-valued random elements, if JC = S is compact in the sup-norm
topology on I* (see also Giné (1974) and Jain and Marcus (1975)).

2.2. Limiting distributions. As was already pointed out the invariance principle
provides a powerful tool when determining limit distributions of test statistics
which are functions of the empirical process. In practice the statistician has to
choose this function according to the importance attached to a certain property of
" the underlying df F. Accordingly a large literature has evolved to cover the
numerous cases of interest. Since a detailed study of this is beyond the scope of
this survey the interested reader is referred, e.g., to the articles of Anderson and
Darling (1952), Barton and Mallows (1965), Sahler (1968), Rényi (1973), and the
monograph of Durbin (1973).

In this section we shall recall only the basic results for the Kolmogorov-Smirnov
statistics with possible weights. For this let ¢ be a preassigned (reasonable)
nonnegative weight function on I = [0, 1]. Put H(f) = supy,;¥(OAD, f € D.
Then H is continuous in the uniform topology on D for all bounded . We may
therefore apply Corollary 2.1.2 to obtain £{K,*(y)} — £{H(B®)} for all such y’s,
where

Kn+(lp) = H(an) = Sup0<l<l\l)(t)an(t)‘
Similarly for '
’ K,(¥) = supoc,c ¥, (1)

In particular, if Yy = 1, then K,*(y) = n%D,,+ and K,(y) = n%D,,, the normalized
Smirnov and Kolmogorov statistics. Kolmogorov (1933) and Smirnov (1944)
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proved that

tim,  P({nD, <A}) = Ko) = =2 _oo(~Vexp(=22%) if A>0
=0 otherwise;
and
lim, ,P({niD; <A}) = KN =1—exp(-2") if A>0

=0 otherwise.

Doob (1949) showed that K, and K" occur as the distribution of supy¢ <11B°()|
and sup,,<;B°(?), respectively. If y(#) = d+ ct)"!, d, d+ ¢ >0, then the dis-
tribution of K,*(¢) is related to the probability that the sample path of B° crosses
the line y(7) = d + ct. Doob (1949) proved the latter to be equal to exp(—2d(d +
¢)). The corresponding distribution for the two-sided case has been considered, e.g.,
in Durbin (1973), page 22. If () = 1 for 0 < a < ¢ < b < 1 and 0 otherwise, we
arrive at a statistic which was proposed by Manija (1949) for detecting discrepan-
cies over a central portion of 7. Rényi (1953) derived limit results for various s,
such as Y, ()=1"% W@ =1 =", Yy,(H=01 -0, 0<a<t<b<],
which give additional mass near 0 and 1. That the boundedness of y is essential
(though not necessary) in order to obtain a nondegenerate limit distribution may
be seen from ¢ = ¢, with @ = 0. According to a result of Daniels (1945) (for a nice
proof see Rényi (1973)),

P({supocicit "' (Fu(1) — 1) > }) = (1 + e)”' forall >0,

ie.,

lim, , P({K;} (1) > ¢e}) = lim, (1 + en™2)"' =1  forall &>0.

The same holds true for the function y(#) = (#(1 — t))‘%, 0<a<t<b<1 when
a =0 or b= 1. Remarkably enough it may be shown (see Theorem 2.5.2 below)
that a,supy_,(#(1 — t))"%a,,(t) — b, has a nondegenerate limit for a suitable
sequence of norming and centering constants a, and b,. The case 0 <a <bh <1
has been investigated before by Anderson and Darling (1952).

In 2.5 below we shall establish sufficient conditions on arbitrary ¢’s so that, e.g.,
LK (W)} - L{supoc,cW(DB°(D)}. It is clear that the limit distributions of
K.*(y) and K,(§) occur as the solution of the corresponding one- and two-sided
boundary-value problem for the Brownian bridge B°. Equivalently, using Doob’s
(1949) transformation

B(r)=(1+ t)B°(1—fr—,), t> 0 (in distribution);

this is related to an associated boundary-value problem for Brownian motion B.
For general ¥ an attack on this was made in Durbin (1973) and in the literature
cited there. Rates of convergence for the boundary-value problem may be found in
2.3 below. The case of a df F with possible points of discontinuity has been
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considered by Schmid (1958) and Carnal (1962). It turns out that the probabilities
in question converge also in this case, but the limiting distributions are no longer
independent of F. Actually, they only depend on the values of F at the discontinu-
ity points but not on the form of F on the intervals in between.

If the underlying random variables &, §,, - - - take their values in the k-dimen-
sional Euclidean space R¥ according to a df F similar limit results are available, at
least for bounded y. In particular, for ¢ = 1 the weak convergence result for K, ()
has been obtained already in 1958 by Kiefer and Wolfowitz (without using the
multidimensional invariance principle of course). It should be noted, however, that
even for continuous F’s the limit df depends on F and is still unknown, except for
trivial cases.

2.3. Rates of convergence. Recall that for two p-measures p and » being defined
on the o-field of Borel sets of a separable metric space (S, d) their Prokhorov
distance is defined by

r(p,v) = inf{e > 0: w(F) <»(F’) +¢ forallclosed F C S}.
It is known that for each sequence 7y, m;, m,, - + + of S-valued random elements,
E{m,} > £{no} if and only if r(E{m,}, £{m}) >0 as n - . In particular, if
S=D, n=B° and 1, = a, for n > 1, then by 2.1.1 r(2{a,}, 2{B°})—0.
Concerning the rate of convergence, we mention the following results by Miiller
(1970) and Komlds-Major-Tusnady (1975). See also Dudley (1972).

THEOREM 2.3.1.

Miiller: r(E{a,}, E{B°}) = (‘)(n‘%log n).
Komlés et al: r(E{a,}, E{B°}) = @(n‘illog n).

While Miiller’s proof involves intricate methods of nonstandard analysis, the
second result follows from a deep strong approximation theorem. In fact, by
Theorem 3.1.1 below, one can find versions &, of «, and B? of B° (defined on an

A

appropriate p-space «, 9, lﬁ’)) such that for some constants C, K, A > 0:

ﬁ({sup0<,<1]&,,(t) - B2(1)| > n‘%(C logn + x)}) < K exp(—Ax)
forall x € R.
In particular for all sufficiently large R we thus obtain

(2.3.1) P({supoc,<ild, (1) — B3(1)| > Rn~Tlogn}) = 0(n™").
Furthermore, for any closed F ¢ D and any ¢ > 0
P({a, € F}) = B({4, € F})
‘ < 'ﬁ({é: € FE}) + lﬁ’({sul)o<t<1|&n(t) - é:(t)l > 5}),

so that by setting e = Rn ‘%log n the desired result is an immediate consequence of
. 1
(2.3.1). In their 1974 paper Komlos et al. showed that the order n~zlog n cannot be
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improved. (2.3.1) may also be applied to obtain rates of convergence for a large
class of continuous functionals of a,. For this purpose let H : D — R be a function
which satisfies a Lipschitz condition of the following type:

|H(f) = H()| < L supoc, il i) — ()}, f,8 € D.
Assume further that H(B°) has a density which is bounded by a constant M > 0.
Then for each A € R
P({H(a,) < A}) — P({H(B) < A})
< lﬁ’({H(o‘c,,) < A, SUPgg, 1|, (1) — B2(D)| < Rn~7log n})
+0(n~h) — B({H(B}) <A})
< B({H(B) < A + LRn"3logn}) + 0(n~") — B({H(BS) < A})

< MLRn~logn + O(n~Y).
By symmetry
P({H(a,) < A\}) — P({H(B®) < A}) > — MLRn~2log n — O(n"),
so that in summary
SUP_ o crc + ool P({ H(a,) < A}) — P({H(B°) < A})| = O(n~7log n).

It is easy to see that the assumptions on H are particularly fulfilled for the
functionals

H(f) = supoc, 1 f(t) and  H(f) = supog,<i| f(2));
whence by the above considerations
SUP_ o crc 4ol P({P7D§H < A}) = KM = O(n~7log n).
It follows from the results of the next section that in these cases the exact order is
1 . .
O(n~2). Though the functional H(f) = [} f*(¢) dt does not satisfy the Lipschitz
condition the strong approximation result may equally well be applied to obtain
1 o L.

the same O (n ™ 2log n) rate of convergence for the Cramér-von Mises statistic H(a,)
(Csorgo (1976)). »

As a third application we consider the problem of estimating rates of conver-

gence in the so-called boundary-value problem. For this let g, and g, denote two
(reasonable) functions on I such that g,(f) < g,(¢) for all ¢t € I. Let

0.(a,b) = P({g,(¢) < a,(t) < gy(t) forall a<t<b}),
0 < a <b < 1, be the probability that the sample path of a, lies between g, and g,
on (a, b). As before it is then easy to see that
0.(a,b) < P({ () — &, <B°() < &x(1) + &,
forall a<t<b})+ 0(n")
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and

0,(a, b) > P({g,(1) + &, <B°(1) < £,(1) — ¢,
forall a<t<b})+ 0(n")

(uniformly for all possible choices of g, and g,), where ¢, = Rn_%log n and
= r(R) > 0 becomes large with R.
If we put g,(¥) = — g,() = — A, A > 0, then the above inequalities yield the
result

SUPAIP({5UP </ cslan(D)] < A)) = P({sup,,<slB()] < A}) = O(n~?log n)
(because £{sup,.,|B°(?)|} has a bounded density), and similarly for
SUP,,<»®,(f) by setting g, = — 0 and g, = A. If, e.g., g,() = — g,(H) = — A(1 —
1) and b < 1 we obtain an estimate of the convergence rate for a Rényi-type
statistic, namely

o, ()]
SUPAIP({SuPa<z<b1__t‘ < )\}) - P({supa/(l—a)<t<b/(1—b)|B(t)| < }‘})|
= @(n‘%log n).
Notice that in the second term the time interval transformed into (a/(1 — a),

b/(1 — b)) and B° has to be replaced by Brownian motion B. This follows from
the fact that

B(t)=(1+ t)B°(1—_:_—t), t > 0, in distribution.

The last results improve on estimates by Nikitin (1972) who, instead of the more
.powerful Koml6s-Major-Tusnady inequality, used a certain Skorokhod-embedding
procedure which is discussed in 3.1 below.

2.4. Exact distributions. The results of 2.2 and 2.3 imply that for estimating tail
probabilities for certain test statistics of a,, one may consider the corresponding
limiting distributions instead, at least if the sample size » is large enough. For small
n, however, one should work with the exact distributions themselves.

As in 2.2 we shall recall only the basic results. A comprehensive account of these
results and related problems may be found in the monograph of Durbin (1973) and
in the literature cited there. Again let £, &, - - -+ be independent uniformly
distributed random variables. For the distribution of D, and D, we need to
compute

P({D,t <A})=P({F,(t) <A+t forall 0<r<1})
=1 — P({F, crosses the line y(z) = A + t})
and
P{D, <A)=P({-A+t<F() <A+t forall 0<z<1})
= 1 — P({F, leaves the region y(1) = %A + t}).
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Many different techniques have evolved to attack this problem, even in a more
general setup. Let us first mention the basic result by Epanechnikov (1968) and
Steck (1971) (for a new and elementary proof see Pitman (1972)). For this let

0<U,.,<:--<U,., < 1denote the ordered sample pertaining to §,, - - - , &,.
THEOREM 24.1. IfO0<u; <uy< -+ <u,<land 0<v, <v,< -+ <,
< 1 are given constants such that u; < v; for alli =1, - - - , n, then

P({4, < U, <v,i=1,--,n})=nldet[(v,—w) "'/ (j—i+ 1)!],

where x, = max(x, 0) and the matrix element is taken to be zero if j <i — 1.

As an immediate application of this result one obtains the probability that the
empirical df lies between two other df’s G; and G, say. Suppose that G, is
left-continuous and G, is right-continuous on (0, 1). Then it follows from 2.4.1 that

PGy, G) = P({G\(?) < F,(1) <Gy(r) forall 0<¢<1})
= n!det[(v,. —uw) Y G-+ 1)1],
where v; = G, '((i — 1)/n) and 4, = G, '(j/n), and where G, ' and G, ' denote
the left- and right-continuous inverses of G, and G,, respectively. In particular, by
setting for each 0 < A < 1
G()=00<t<1 and Gy#)=0,r=0
=1r=1 =min(l,#+A),0<r< 1,

then P({D,” < A}) = P,(G,, G,), where in this case v, =1 and u; = (j/n — A),.
Similarly for D,. The distribution of D,* has been given in terms of an incomplete
Abel sum for the first time by Smirnov (1944) and later, but independently, by
 Birnbaum and Tingey (1951). They show that

(241 P((D; <A) = 1-x2fg (7)1 - A~ -,’;-)"_"(A + —,l’l)i_',

0<AKL
For the proof note that D,* < A if and only if
U.,>1-A=-2=%" forall i=nn—1,---,K,

where K is the integer uniquely determined by the relation K + 1 > nA + 1 > K.
Since the joint distribution of U, .,,- - -, U,., has the density n! on 0 < ¢, < ¢,
< - - - <t, < 1and 0 otherwise,
P({D,” <A})

= n!fi\Tor-a/m " ff"-*)l—(q—x)/nff)‘“ co [edxydxy - - dxgdxy - - dx,,

which after some calculation yields the right-hand side of (2.4.1). Dempster (1959)
considered the problem of calculating the probability that F, crosses a general line
y(@&)=A+ct, A\ >0, A+ c > 1. See also Durbin (1973). Takédcs (1967, 1970)
obtained (2.4.1) from a general result (the proof of which is based on the classical
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ballot lemma) on the fluctuations of sample functions of stochastic processes with
interchangeable increments and step functions as its sample paths. We also refer to
a discussion of Vincze (1970), who gave an approach similar to Takacs (1967) but
using a generalized version of the ballot lemma due to Tusnady and Sarkadi (cf.
Vincze (1970)). Finally, Nef (1964) derived (2.4.1) for values A =r/n,r =
0,1,---,n, from the distribution of Z (r), where Z,(r) denotes the number of
(horizontal) intersections of the graph F,(-) with the line y(¢) = (r/n) + t. Notice
that D,* > r/n if and only if Z,(r) > 1.

The distribution of D, has been given in terms of Laplace transforms by Darling
(1960). Using the fact that in distribution nF, is a Poisson process with parameter n
conditioned to be n in ¢ = 1, Durbin (1968, 1973) derives a transition matrix H,
with P({D, < A}) given in terms of the [nA + 1]th diagonal element of the
corresponding n-fold product Hy. Massey (1950) obtained P({D, < A}) as a
solution of a certain difference equation.

In order to derive the LIL (1.2.2) for D,, Dvoretzky, Kiefer and Wolfowitz (1956)
made substantial use of the following large deviation theorem, which in this form is
best possible according to the fact that

lim, ,,P({n2D, > A}) = P({supoc,ci| B°(1)| > A})
=2exp(=22A%)(1 + 0o(1)) as A— oo.

THEOREM 2.4.2. (Dvoretzky-Kiefer-Wolfowitz). There is a universal constant c¢
such that for all X > 0

- (242) P({n%D,, > }\}) < c exp(—2\?).

The proof uses the expression (2.4.1) for the df of D,". Using martingale
arguments Wellner (1977c) showed the left-hand side of (2.4.2) (with 4\ instead of
A) to be less than or equal to the first absolute moment of a truncated gamma

(n, 1)-variable. From this he obtained an estimate similar to (2.4.2) but with 1/50
instead of 2 in the exponent.

Much less is known in the case of multivariate random vectors. Kiefer (1961)
showed that for each k > 2 and every ¢ > 0, there exists a universal constant
¢ = c(g, k) such that for all n € N

(2.4.3) P({n7D, > }) < cexp(— (2 — )Y, A>0.

Kiefer (1961) also gave an example which shows that (2.4.3) in this form is best
possible. Moreover it is sharp enough to yield the LIL (1.2.2). If F is the uniform df
on I?, the limiting process B° of a,, is the standard Brownian sheet B tied down at
1 € I? and the lower boundary of I? (see 2.1):

B°(t,, t,) = B(t,, t,) — t,;1,B(1, 1), 0<y <L

Goodman (1976) obtained a lower bound for the tail probability of
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sup0<,l_<,B°(t,, ) =8"
P({S’ > A}) > (2A% + 1) exp(—2A?), A>0.

Note that in one dimension P({S” > A}) = exp(—2A?). The proof of Goodman is
interesting in so far as it uses a result of Kuelbs (1973), which relates k-parameter
Brownian motion to a 1-parameter Brownian motion taking its values in the space
of all continuous functions on 7*~!. See also Paranjape and Park (1973b) and Orey
and Pruitt (1973).

The exact distributions of various other statistics based on the empirical df are
discussed, e.g., in Durbin (1973). See also Csaki (1974b).

A completely different representation of exact distributions may be obtained
from calculating the corresponding series expansion. The first result in this direc-
tion is due to Smirnov (1944), who showed that for all 0 < A < O(n %)

P({n:D,r <A})=1- exp(——2>\2)[1 - ﬂ + (‘)(n_')}.
3n2
In an unpublished paper Karplevskaia (1949) proved that

JR _ 5 20 (2N _3
P({nZDn <)\})—l—exp(—2>\ )[1—;+ in (1 3 )+@(n 2 ],
and Chan Li-Tsian (1955) gave one more term of the expansion. We also refer to
Lauwerier (1963) for a complete series expansion in terms of inverse powers of n.
The asymptotic expansion of B{n%D,,} is again due to Chan Li-Tsian (1956). For
further details see Gnedenko, Koroluk and Skorokhod (1960). Finally, we mention
the work of Sanov (1957), Hoeffding (1965), Hoadley (1967), Stone (1974) and
- Groeneboom (1976), who investigate the first order asymptotic behaviour of
P({ u, € A}), where 4 is a fixed class of probability measures on the sample space.

2.5. Weak convergence of the weighted empirical process. In this section we
establish the weak analogue of the LIL for the weighted empirical process as
considered in 1.4. For this let ¢ always denote a positive continuous function on
(0, 1) approaching oo at the endpoints of I. The p -metric is defined by

(> 8) = p(¥f, ¥8) = supo, . ¥()IA1) — g(D)I.

Since (D, p,) fails to be a separable metric space, weak convergence w.r.t. the
py-metric (v, —,») has to be defined again in the sense of Dudley (1966a). The
convergence £{a,} —,£{B°} for certain of these p,-metrics plays an important
role in statistical applications when studying asymptotic distributions of statistics
based on ordered observations, such as linear rank statistics and linear combina-
tions of order statistics. See Pyke and Shorack (1968) and Shorack (1972).

To start with the discussion assume first that £{a,} —,2{B°} and let H : D —
R be defined by H(f) := lim sup,_y(¢)f(¥) A 1. Since H is continuous in the
py-metric £{H(a,)} > L{H(B®)} as n — oo. Assume furthermore that /(r)t — 0 as
t -0 (a condition which turns out to be necessary in the situation considered



EMPIRICAL PROCESSES 227

below). Then H(a,) = 0 P-almost surely for all » € N and therefore H(B°) =0
P-almost surely. This means that for each ¢ > 0 the function &/ ~! is in the upper
class of B°. Since B° and B have the same local behaviour near zero &) ~! is also in
the upper class of Brownian motion B, i.e.,

(25.1)  limP({supo,,e""W(t)B(r) > 1}) =0  forall &> 0.

Using the classical Kolmogorov test (see Itd and Mc Kean (1965)), O’Reilly (1974)
showed that for ¢ ! nondecreasing in a neighbourhood (0, y) of zero, (2.5.1) is
equivalent to the condition

(25.2) 3t 'exp(—eh*(r)) dt < 0 forall e >0,
where h(f) =t~ 3~ (¢), t > 0.

THEOREM 2.5.1 (O'Reilly). Let g = ¢~' be a continuous positive function on
(0, 1) bounded away from zero on [y, 1 — y] for some y > 0, nondecreasing (nonin-
creasing) on (0, y] ([1 — v, 1)). Then
(2.5.3) fot 'exp(—eh(f)) dt < o0 forall e>0,i=1,2
is both necessary and sufficient for £{a,} —,£{B°}, where h\(t) = t_%x,b_'(t) and

1
hy(f) = t7 3y~ (1 = 1),

Notice that for symmetry reasons the convergence for i = 2 is needed to handle

the critical point # = 1. The same result has been obtained by Chibisov (1964) for

the class of weight functions ¢ = ¢ ~' which are regularly growing of order 1/2 in
neighbourhoods of 0 and 1.

To give also a short idea of the sufficiency part of the proof, one first selects
versions &, and B of a, and B° such that p(a,, 1§°) — 0 almost surely as n — oo. It
" is enough to prove that p,(d,, B °) — 0 in probability. :[‘he boundedness condition
on y now guarantees that sup . .,_,¥(¢)|&,(#) — B°(#)] >0 almost surely as
n — oo. Secondly, to handle the critical point 0, say, it remains to show that «, and
hence &, have in the limit the same sets of upper class functions as standard
Brownian motion B. As shown by Chibisov (1964), the last statement is valid if
instead of a, it is valid for the processes

P,(t) = n%('l”—’f—tl - t), 0<zr<1,

where N, is a Poisson process with parameter n. We shall delay a discussion of this
until Section 3.1. Since P,, for each n € N, is a process with independent incre-
ments, standard maximal inequalities may be applied to show that, if (2.5.3) holds,
then for alle > 0

(2.54)  lim,_glim sup, , P({y(?)|P,(t)] > & forsome 0<t<s})=0,

which is the desired result.
Wellner (1977¢) considered the class of weight functions ¢ having finite second
moment [§y*(¢) dt. Instead of the Poisson arguments his proof is based on the fact
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(cf. Puri and Sen (1971), page 42) that W,(¢) = a,(¢)/(1 — 1),0 <t < 1, forms a
martingale in ¢ for each fixed » € N. Consequently Doob’s martingale inequality
may be applied to the discrete time parameter martingale W, (k/m), k =
1, - - - ,[mf#], to obtain an estimate of the tail probability of
SUP; <4 <o (k/m)|a,(k/m)|. Letting m tend to infinity, he arrives at the following
inequality:

(2.5.5) P({supo,<o¥ (D, (1) > 4e}) < eT'E(IT,|1(i1,15c))s

where T, = n‘%E;'_, »; is a specified sum of i.i.d. rv’s y; having zero expectations
and Var(y,) = [Sy*(¢) dt. By Chebychev’s inequality, the right-hand side of (2.5.5)
is less than or equal to e ~2E(T?) = ¢ ~2/%*(¢) dt, which can be made arbitrarily
small by letting § — 0. This is closely related to an earlier result by Pyke and
Shorack (1968).

The corresponding result for the sequential empirical process ZF is contained in
Wellner (1975). In this case the condition [{y?(#) df < oo has to be replaced by the
condition [3[3*(t,, t,) dt; dt, < oo, and the monotonicity of ! by the monoton-
icity of ¢ ~I(¢;, -) and ¢ 7I(-, ).

As in the functional LIL (cf. Corollary 1.4.2) the case (f) = Y(t) =
1 - t))‘% is again excluded from the above considerations. In particular it may
be seen from Chibisov (1964) that sup,.,.¥o(f)|@,()] — oo in probability as
n — oo. Surprisingly, as was shown by Jaeschke (1975), there exist nonnegative
norming constants a, and b, such that the distribution of a, sup,,;¥o(?)|@,(?)| —
b, has a nondegenerate limit as n — oo.

THEOREM 2.5.2. (Jaeschke). Let L(x) = exp[—e *7~2], x € R and
a, = (2log log n)%, b, =2loglogn + 3 logloglog n (if defined).

Then

limn—moﬁ{an Sup0<t<l¢0(t)an(t) - bn} =L
and

Hmn—»ooﬁ{an Sup0<t<1‘l’,0(t)|an(t)| - bn} = L%

Notice that the constants a, and b, as well as the df L2 with L as in the above
theorem are exactly the same as those given by Darling and Erdos (1956) in their
now classical result on the weak convergence of the maxima of normalized partial
sums pertaining to a sequence of i.i.d. random variables.- In fact, using Breiman’s
representation of the ordered sample U, ., < - - - < U,., (cf. the remark after
2.1.2) the proof of 2.5.2 proceeds by showing that for each 0 < #, < 1 both

B{an SUPp< <1, o(t)e, (1) — bn} and B{an Supro<t<|‘1’o(t)an(t) - bn}
have the same limit as £{a, max,c,, [k 2S5 (NG) — NG — 1) — D] — b,},
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namely L%, where N = (N(?)),cg, is a Poisson process with parameter 1. The first
result of 2.5.2 then follows from the fact that a, supyc,<, Yo()e,(?) — b, and
a, sup, ., ¥o(H)a,(t) — b, are asymptotically independent.

In particular Theorem 2.5.2 implies that in spite of 1.4.2 and 1.4.3 there is still a
weak version of the LIL for the weight function y(#) = (#(1 — )" =.

COROLLARY 2.5.3.
E(t)—t
(2¢(1 — t)log log n)%

sup0<,<ln% — 1. inprobability as n — oo.

We also mention a result of Hira Lal Koul (1970) in the case of constant weights
which may depend on the time index n. For this let (c,),<;<, be an arbitrary
triangular array of real numbers. Put s? == 37_,cZ and let

Ln(t) = Sn_127=lcin(1[0, t](gi) - F(t))’ 0<t< l’
where ¢, §&,, ... are independent with common df F on I. It is easy to see that as
for the ordinary empirical process a Chentsov-type inequality (see (2.1.7)) is also
available in this case (with G = F). So, in order to obtain an invariance principle
for the processes L,, one merely has to find conditions on the constants c;,, which
ensure the convergence of the finite-dimensional marginals. By the Cramér-Wold
device and by the Lindeberg-Lévy theorem for triangular arrays this will follow, if,
for example,

(2.5.6) 5,2 max, ¢, >0 as n—oo.
In summary we obtain

THEOREM 2.5.4. Suppose that F is a continuous df on I. Then, if (2.5.6) holds,
£{L,}) >L{B°°F} on (D,®(d)) as n— .

2.6. Empirical processes with random sample size. In many applied probability
models statistical inference has to be made on the basis of observations £, - - - , £,
where the sample size # is in itself a random variable. For example, » might be the
number of observations obtained within a fixed period of time. In this section we
are first concerned with the weak convergence of the process ,B,{,: = By where F'is
a df on I* and N,, n € N, is some sequence of positive integer-valued random
variables such that N, — oo in probability as n — oo. Previous work on this field
has been done for the sequence of partial sums of i.i.d. random variables, starting
with Anscombe (1972), Rényi (1960), and Blum et al. (1963). There the sequence
N,, n € N, was assumed to satisfy the following condition:

(2.6.1) N,/n— v in probability for some positive rv ».

For the empirical process the following is known.
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THEOREM 2.6.1.  Suppose that (2.6.1) holds. Then for every continuous df F on I*:
Pyke (1968), Fernandez (1970): 2{ By } > 2{B°° F}, if k=1 and v=1
Csorgs (1974): R{ By } > 2{B° > F}, if k=1 and v >0 arbitrary.
Sen (1973a): £{ By } > L{B° ° F}, if k>1 and v >0 arbitrary.

In particular we see from 2.6.1 that Dy = N,,‘EI Supe 7| B, ()| — 0 in probabil-
ity as n— oco. Csorgd (1973) remarked that the strong version of the Glivenko-
Cantelli theorem cannot be proved in the general setup of 2.6.1.

In many applied models, when statistical inference is based on fixed time period
observations, the counting variable N, may be assumed to be independent of the
sequence £, &, - -+ . Much attention has been given to the case when N, is a
Poisson variate with parameter n. In this case Kac (1949) proposed to study the
modified empirical df.

(2'6’2) F:(t) = n_lzyill(—oo, l](gi), teR

(where F¥ = 0if N, = 0). Note that £} may take on values larger than 1. The main
reason which led to this definition is related to the fact that the process nF;} has
independent increments. In fact, it is only a matter of calculation to show that nF}
is a Poisson process with intensity function nF = nF; (one should always remem-
ber this way of constructing a Poisson process). Let
Bi(t) = mi(FX(1) — F(1), 1€ER,
denote the corresponding (modified) empirical process, a normalized Poisson
_ process. Since in practice every test statistic based on S} will be distribution free
for continuous F’s, we may and do assume that F(¢) = ¢,0 < ¢ < 1. In this case
ay¥ = ¥ (when restricted to the unit interval) is a random element in D. By the
CLT and the convolution property of Poisson variates, the finite dimensional
distributions of a} are asymptotically the same as those of standard Brownian
motion B. Furthermore, by the independence of increments

(2.6.3) E(lar(0) — ag(t)Pleg(ry) — af()P?) = (£ = 1)(1, = 1)
for all 0 < ¢, <t <1, < 1. Since (2.6.3) holds uniformly in n, tightness is now in

force by the same arguments as in 2.1. We thus arrived at the following

THEOREM 2.6.2. On (D, B (d)), L{a}} > L{B} as n > .
Note that

(2.6.4) a¥(t) = (N,/m)Zay (1) + m~3(N, — n), 0<t<1,

whiere T, = n~3(N, — n) is asymptotically 9U(0, 1) by the ordinary central limit
theorem and £{a,} - £{B°} by the invariance principle 2.1.1. We may therefore

obtain versions &, and N, of a, and N, such that p(&, B°)>0and T,=n":
(N, — n) > T almost surely for some Brownian bridge B? and some 9U(0, 1)-vari-
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able 7. Moreover we may assume w.l.o.g. that (a,),en and (1\7,,),,(EN are indepen-
dent, and that T is independent of B°. Hence

A 1 A
ax(t) = (N,/n)?éay; (¢) + T, 0<t<1,

is a version of ¥ with p(&¥, ﬁ) — 0 almost surely, where
B(t) = B°(¢) + T, 0<1<1,

is a version of standard Brownian motion. This provides a different proof of 2.6.2,
which does not use the Poisson argument and, from another point of view, shows
why the limiting process is B and not B°.

If one wants to express the essence of the last discussion, one could say: a
(normalized) Poisson process is a modified empirical process. We now turn to a
converse of this statement: the uniform empirical process is a (normalized) Poisson
process conditioned to be zero at one. For this let (N,(?)),cg, denote a Poisson
process with parameter n, and let 0 <s, <s, < - - - be the associated sequence of
renewal times. It is fairly easy to show (see, e.g., Sections 3.3 and 7.5 in Gaenssler
and Stute (1977)), that (s, - - -, s,), under the condition {s, < 1, s,,; > 1}, has
the same distribution as the ordered sample 0 < U;., < --- <U,.,<lof n
independent uniform random variables &, - - - , §,. In other words, if F, is the
empirical df of £, - -, §, then in distribution nF, is the same as (N,(9))o<,<1
under the condition N,(1) = n. This representation of the sample df has been
already used by Kolmogorov in his fundamental paper (1933). Transforming N,
into the normalized Poisson process

P,(t) = n%(N—"’fQ - t), 0<t<1,

the same fact might be also expressed in terms of the empirical process: the
uniform empirical process a, is, in distribution, the same as a normalized Poisson
process conditioned to be zero at one. Noticing that, in distribution, B° is the same
as Brownian motion B under the condition B(1) = 0, the invariance principle 2.1.1
is therefore equivalent to the following conditional functional limit theorem for the
normalized Poisson process:

(2.6.5) £{pP,|P,(1) =0} - £{B|B(1) = 0} as n— oo.

The same ideas which led to the distributional representation of a, may be used to
construct explicitly a version of a, in terms of (N,(?)),er,- We shall delay this until
Section 3.1.

At the end of this section we still have to make some remarks concerning the rate
of convergence in 2.6.2. As for the empirical process the best known results in this
direction follow from strong approximation results. It may be shown (see Stute
(1976¢)) that (2.3.1) holds equally well for a* (which B, instead of B), so that
again r(£{a}}, L{B}) = (‘)(n”%log n). The same result holds for the class of
Lipschitz functionals as considered at the end of 2.3. In particular, if one defines

D™ =supog,ci[ Fr(t) — t] and Dp} = supoc, | Fr(?) — 1,
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the so-called one- and two-sided Kac statistics, then for example

1 _1
SUP_ o cnc+ ol P({72 D} < A}) = P({supoc,i| B()| < A} = O(n~3 log n).
See also Nikitin (1972). Identification of the limit distributions yields

lim,,_mlll’({n%D,’,"+ < )\ = ( ) /yexp(—u?/2)du, A >0
=0 otherwise,
and
lim,_,P({niD} < A}) = —2,,_0 —1)*/ @k + Dexp[ — (2k + 1)*n?/8)?],

A>0
= 0 otherwise.

The exact distributions as well as the limiting distribution of D** have been
studied by Allen and Beekman (1966, 1967). The limiting distribution of D} was
found by Kac (1949). Csorgd (1972) and Suzuki (1972) obtained various results for
other statistics based on F both in the finite and in the limiting case.

Part 3

3.1. Strong approximation results for the empirical process. As before we denote
by a, the uniform empirical process on the unit interval I = [0, 1]. Since by the
invariance principle 2.1.1 £{a,} - £{B°} on (D, % (d)) we may apply Theorem
0.1 from the introduction to obtain versions &, of a, and B° of B° such that
d(a,, §°)—>0 and therefore p(a,, §°)—>O almost surely as n— co. We have
" already seen that the existence of such a sequence could be well applied in the
various situations of 2.5. On the other hand, since these versions result from a
general existence theorem, they fail to have any of the characteristic properties of
the a,’s, except for equality in distribution.

In this section our main emphasis will be to give an explicit construction of the
a,’s. The first results in this field are due to Breiman (1968), Pyke and Root (1968),
Brillinger (1969) and Rosenkrantz (1969). More recent work has been done by
Komlds, Major and Tusnady (1975), whose methods rely on a rather delicate
dyadic approximation procedure. The earlier proofs were based on the well-known
Skorokhod embedding scheme (cf. Skorokhod (1965)). Because this method is more
illuminating and easier to describe (see also Sawyer (1974)) we shall present it in
greater detail.

For each n €N, let Y], Y}, ... be a sequence of 1ndependent exponential
random variables with mean 1/n; ie., P({Y] > x}) = exp(—nx) for all x > 0.
The Y;”’s then define a Poisson process N, with parameter » in the following way:

N,(t)=k if Zk_,Y"<t and Zklyr >
and N,(1)=0 if 1<Y], teR,.
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The normalized process
P,(5) = m*(N,(1)/n — 1), tER,

converges weakly to Brownian motion on D([0, T']) for every finite T > 0. The
Skorokhod representation is an embedding of a random variable { into Brownian
motion B. Assume that E({) = 0 and E({?) = 1. Then, if the probability space
(R, %, P) is rich enough, one may construct a Brownian stopping time 7 such that
£{¢} = £{B(r)} and E(r) = E({?) = 1. Furthermore, since Brownian motion has
independent increments and satisfies the strong Markov property, one may apply

this to obtain a sequence 74 =0 <! <7} < --- of Brownian stopping times
such that

(.L1)

B(t}) = B(r',),i=1,2, - - - areindependent and distributed as §'=1— Y}
and

(312) 7' =t ,i=1,2, --- areindependent and distributed as T|.

Let {* =n3(1/n — ¥"),i=1,2, - - - . Because Y is distributed as n~'¥}!, we

obtain in distribution
§ = ”_%(1 - Yx‘l) = ”_%(B("'il) - B('Til—l))'

By independence, for each n € N the sequence of partial sums 3%_,{” has the

same joint distribution as n‘%B('r,i), k=12, --- .In terms of the scale trans-
1
formed Brownian motion B,(f) = n”2B(nf), t € R,, this implies that Y7}
1
+ .-+ + Y7 are jointly distributed as sy =kn~' — n"2B (1), k=1,2,-

where 7/ = n~'rl. Defining N, and P, in the same way as N, and P, but with
. renewal times s;" instead of =*_, ¥, we obtain versions P, of P, for which we will
show that

(3.1.3) sup0<,<T|ﬁ,,(t) — B,(#)] > 0 in probability for all 7 > 0.

W.lo.g. let T = 1. For given ¢ choose k = k(w) such that s <t <s/,,. Then
2,(1) = B,()] < |B,(0) = B(s)] + 1 B(s¢) — B, ()]
1 n n n n n
< na(sfvy = 5¢) + |B(77) — B,(s0)| + |B,(s¢) — B,(2)]-

Because of the continuity of Brownian sample paths and since k < 2n on a set 4,
with P(4,) — 1, it therefore suffices to show that in probability

ni SUPock<22(St1 — 5¢) >0 and sup, ot — 57| >0  as n— .

The first convergence follows from elementary calculatiens. For the second half
SUPy cic2nl e — Sk| < Supl<k<2nn_l|71: -kl +n”! Sup1<k<2n|B("'1:)|’

which converges to zero in probability by the SLLN. This completes the proof of
(3.1.3). The analogous result for the uniform empirical process uses the fact that an
ordered sample 0 < U, , ... U,., < lof n independent uniform random vari-
ables has the same joint distribution as § =s7/s", ., k=1,---,n (see, e.g.,
Breiman (1968), page 285). As Rényi (1973) pointed out the importance of this lies
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in the fact that with its help the investigation of ordered samples can be reduced to
the investigation of sums of independent variables. In our case we may apply it to
obtain a representation of the uniform empirical process in ternis of the normalized
Poisson process ﬁ,,. For this, let s§ = 0 and define &, by

a(n=m(X_4) it sm<i<sr,, 0<r<l
n [’ k+1
Then @, is a version of a,. Furthermore,
A o~ 1
a,(2) = Py(ts51) + n2(syey — 1t
whence, by (3.1.3), it is easy to see that

(3.14) SUPo<,<1|@,() — B;(t)] >0  in probability as n— co.

Here B;(t) = B,(t) — tB,(1) is the Brownian bridge associdted with B,. Using
sharper estimates it is even possible to show that p(a,, B;) — 0 P-almost surely.
Brillinger (1969) obtained a bound for the rate of convergence:

p(d,, BY) = O(e,) P-as., where ¢, = n_%(log n)%(log log n)%.

Kiefer (1972a) showed that even lim sup;_ . o(&, BS)e, ' = C* with probability
one for some specified positive constant C*. Hence for the Breiman-Brillinger-
Pyke-Root approach the results in this form yield the precise raté of convergence.
Pyke also pointed out (see Brillinger (1969)) that the processes B,f are different for
each n. In fact,

B°(1) = B,(t) — tB,(1) = n~2(B(nt) — tB(n)), 0<t<1.

Instead of the Skorokhod embedding the work of Komlds, Major and Tusnady
(1975) is based on a rigorous elaboration of the so-called quantile transformation
technique, which may be found for the first time in a paper of Bartfai (1970).

THEOREM 3.1.1.(Komlés et al.). On an appropriate p-space (2, %, P) there exist
versions &, of o, and B; of B° such that for some constants C, K, A>0
A _1
(3.15)  P({suppc,cil&,(9) — B2()| > n"i(Clogn + x)})
< Kexp(—Ax) forallx € Randn € N.

COROLLARY 3.1.2.
SUPo<,<1lda(2) — é:(t)| = (9("_% log n) P-a.s.

The case k > 1 was dealt with by Csorgd and Révész (1975). They showed that
for the uniform empirical process on I*, one may find Brownian bridges {B,():
t € I*} and versions &, of a,, such that P-a.s.

sup,e | @,(t) — Bo(®)] = O(n~3**D(log n)?),

The more general problem of strong approximation of the empirical process
{ B,(C): C € C} has been studied by Révész (1976) for k = 2 and some specified
class C of sets with smooth boundaries.
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3.2. Strong approximation of the two-parameter empirical process. Although the
results of the last section yield a satisfactory rate of approximation for each single
n, the shortcoming of this representation is that {a, : n € N} does not have the
same joint distribution as {a, : n € N}. Consequently no strong law type behavior
(such as the Smirnov-Chung LIL (1.2.2)) may be derived from a corresponding
result of B°, nor do we get rates of convergence for probabilities involving more
than one a,. To overcome these difficulties Miiller (1970) and Kiefer (1972)
proposed to consider the empirical process both as a function of » and ¢. In 2.1.4
we mentioned the weak convergence of the two-parameter empirical process Z to
a centered Gaussian process Z* with covariance structure given by

Cov(Z*(sy, 1)), ZF(sy, 1)) = min(sy, )[4, A 1, — 111;]
(if k=1 and F(¢f) = ¢). It is clear that a strong approximation result for the
two-parameter empirical process should therefore involve appropriate versions of
ZF and Z*. Instead of this we first consider the process {nza,(f): n €N, 0 <t <

1}as a process of two parameters.
Let K be a centered Gaussian process on R, X I with the same covariance

structure, i.e.,
Cov(K(xy, t;), K(x,, 1)) = min(x), x,))[t; A t, — 4it,],

x>0, 0<¢ <1 Hence K is a ZF-process when restricted to I in the first
1

coordinate. Furthermore, (s, f) - n~2K(ns, ), 0 < s, t < 1, defines a Z-process
for each n € N. In the sequel we shall refer to K as a Kiefer process of first order.
Note that a Kiefer process (on N X I) occurs when summing up independent
Brownian bridges B,°

K(k, t) = =¢_ B (1), keENO<t<I.
Using an intricate multidimensional Skorokhod embedding scheme Kiefer (1972a)
showed that for some version {@, : n € N} of {a, : n € N} (i.e., the &,’s have the
same joint distribution as the a,’s) and some Kiefer process K of the above type

(3.2.1) n~i sup0<,<,|n%&,,(t) — K(n, 1)| = @(n‘%(log n)%) a.s.

Answering a question of Kiefer (1972a), Komlés, Major and Tusnady (1975)
showed that in using a certain dyadic approximation scheme instead of the
Skorokhod embedding the exponent — 1/6 on the right-hand side of (3.2.1) may be
improved to —3:

1 ~ A .
(32.2) SUP; <k <nSUPo< i <1K7 8, (1) — K(, t)| = O(log’n) a.s.
As for the one-parameter empirical. process (see 3.1) the last result follows from a
sharp exponential bound for the corresponding tail probabilities:
(3.2.3)

IP({sup,<k<,,supo<,<,]k%&k(t) ~ K(k, t)] > (Clog n + x)log n}) < L exp(—Ax)

for all x and n, where C, L and A are positive absolute constants.
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The results (3.2.2) and (3.2.3) may be expressed in terms of the ZF- and
Z F-processes as well. For this note that for each n € N

(s,0) > n_%[ns]%&[m](t)
and

(s, 1) > n~2K(ns, 1), 0<s,t<1,
are versions of ZF and Z7, respectively. Thus, e.g., (3.2.2) leads to the result that
there exist versions Z[ and Z[, of ZF and Z¥ such that

A k A k -1
sup,<k<nsup0<,<1|2f(—n-, t) - Z(F,,)(;, t)| = 0(n"2 log? n) as.

The inequality (3.2.3) also yields rates of convergence, e.g., in the boundary-value
problem for the Z[-processes. See Miiller (1970) and Kiefer (1972a). The case of
independent uniform random vectors £, £,, - - - has been considered by Csorgd
and Révész (1975). They show that for some version {4, : n € N} of {a, : n € N}

SUpe i|n2d,(t) — K(n, )] = 0(n*+D/26+D]og2 1) 4

Here K denotes a Kiefer process (of kth order), i.e., a centered Gaussian process
with covariance function

Cov(K(xy, t,), K(x,, t,)) = min(x,, xz)[ f=1 min(f, £5) — I%_, t{té]

where t, = (¢, -+, /)€ I*and 0 < y, < o0, = 1, 2.
The results of the last two sections will be treated in more detail in a forthcoming
monograph by Csérgd and Révész (1977). See also Tusnady (1977).
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