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A RELIABILITY GROWTH MODEL INV OLVING
DEPENDENT COMPONENTS

By N. A. LANGBERG AND F. PROSCHAN
Florida State University

Earlier papers have shown how to convert competing risk models involving
dependent random variables into models involving only independent random
variables, while simultaneously preserving the distribution of the minimum and
the probabilities of the various failure patterns. In the present paper, we
consider a sequence of such conversions occurring at successive points in
chronological time in which the independent random variables are becoming
stochastically larger. We obtain results which essentially demonstrate that the
limiting distributions in the sequence of dependent models “correctly” corre-
spond to the limiting distributions in the sequence of independent models.

These results have applications in reliability growth models and in bio-
medical competing risk models in which the competing risks are increasing with
age; in these models dependency is permitted among the random variables.

1. Introduction. In several earlier papers, Tsiatis (1975), Miller (1977), and
Langberg, Proschan and Quinzi (1978) show how to convert various competing risk
models involving dependent random variables into models involving only indepen-
dent random variables, while simultaneously preserving the distribution of the
minimum and the probabilities corresponding to certain “failure patterns”. Explicit
equations are presented by Langberg, Proschan, and Quinzi (1978) which yield the
distributions of the independent variables. In a more recent paper, Langberg,
Proschan, and Quinzi (1977) develop statistical estimators of parameters of interest
in competing risk models in which causes or times of death (in the biomedical
context) or of failure (in the reliability context) are not necessarily independent.

In the present paper we present a result which should prove to be basic in
converting reliability growth models involving dependent failure times into equiv-
alent models involving only independent random variables. Analogous applications
exist in the biomedical field in which survival functions may be decreasing, rather
than increasing, with chronological time. (Throughout the paper we use “decreas-
ing” in place of “nonincreasing” and “increasing” in place of “nondecreasing”).
The probabilistic theorem presented will be useful in inference in reliability growth
models involving dependent failure times.

2. The reliability growth model. The notation and terminology are as in
Langberg, Proschan and Quinzi (1978).
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Consider a series system of n components undergoing improvement as time
passes. At fixed chronological time u, 0 < u < u, (4, possibly infinite) component i
has random life length T (u) for i = 1,- - -, n, where T(u), - - -, T,(u) are not
necessarily mutually independent. We say that failure pattern I occurs if the
simultaneous failures of the components in subset  of {1, - - -, n} and of no other
components causes (i.e., coincides with) the failure of the system. Define

£(T(u))

{ I if failure pattern 7 occurs at time u
J otherwise.
Let S(u) and T(u) represent the vectors of component life lengths of two systems
whose system life lengths are S(ux) and T(u), respectively. We say that the two
systems are equivalent in life lengths and patterns at time u (S(u) =,pT(w)) if
P(S(u) > t, &S(w) = I) = P(T(u) > t, §T(u)) = I) for each ¢ > 0 and each I C
(1, - -, n}. (Throughout the paper, [ is always taken to be nonempty.) Thus, two
systems which are equivalent in life length and patterns are such that (i) their life
lengths have the same distribution and (ii) the corresponding failure patterns in the
two systems have the same probability of occurrence.

The main result of Langberg, Proschan and Quinzi (1978) may be restated in the
context of our model as follows:

2.1. THEOREM. For fixed u, 0 < u < ug, let T(u) = min(T(u), 1 <i < n) de-
note the life length of an n-component series system, where T,(u) represents the life
length of component i, i =1, - - -, n. Define F‘u (&) = P(T(u) >t, §{T(w) = I),
F, () = P(Tu) < t, &T(w) = I), F,) = P(T(w) > 1), and o(F,) =
sup{x : F,‘(x) > 0}. Then the following statements hold:

(i) A necessary and sufficient condition for the existence of a set of independent

_ random variables (H;, I C {1, - - -, n}) which satisfy H(u) = ; pT(u), where H(u) =
min(H,(u), I C {1, - -, n}), is that the sets of discontinuities of the F, ; be pairwise
disjoint.

(i) The distributions of Hy(u), I C {1, - -, n}, are uniquely determined on the
interval [0, a(F,)) as follows:
1) G,, (1) = P(H (u) > 1) = exp[ — [((dFE,/F,)]

H@(l,j)(tivu(au(l’j))/[F;J(au(l’j)) + fu(au(l’j))],

0 < t < a(F,), where FF, is the continuous part of F, 1, {a/l,))} is the set of
discontinuities of F, ; and f, (a1, ))) is the size of the jump of F, ; at a (1, )).
(Note that G, ;, F, ;, and F; may place mass at infinity.)
The survival probabilities G, ; =1 — G, ; for H,(u), the time until a shock
occurs which simultaneously destroys subset I, for I C {1, - - - , n}, are obtained
by solving the identities:

(2'2) ch(l,~ .. ,n)au,l(t) = F;;(t)’ t>0,
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and _ _
(23) I ;14G, 446G, = F, (1), t>0.

Thus at each fixed instant u of chronological time, we may “replace” the original
series system of dependent components by a set of mutually independent sources of
shock; a given source of shock fails a corresponding subset of components.
Moreover, the replacement is so chosen as to yield the same joint distribution of
failure pattern and system life length as possessed by the original system. Finally,
the distribution of the time of each type of shock occurrence is explicitly specified
in (2.1).

Suppose now that the system is experiencing reliability growth; specifically,
assume that:

@) G_u,, is increasing in u, 0 < u <y, for each I C {1, - - - , n}, so that Hy(u) is
stochastically increasing in u, 0 < u <y, for each I C {1, - - -, n}. That is, each
type of shock is occurring with decreasing frequency as chronological time passes.
This, in turn, implies that the system life length 7(u) is stochastically increasing in
u. Since G_u /(?) is monotone increasing in u < u,, it follows immediately that the
G_u, /(?) converge to inf sup, . u<qu_u, /(x) for each ¢t >0, I Cc{1,---,n}; call
this limit G,(#). G,(?) is a survival function, with mass possibly at infinity.

Three basic questions now arise:

(1) Does the joint distribution F, ; of failure pattern and life length converge to a
joint distribution as ¥ — u, for each I c {1,- - - , n}?

(2) Assume such limits (call them F;) exist. Does it follow that when F, replaces
F, ; and 3 F, replaces F, in (2.1), the resulting survival function is G, (as we would
hope)?

(3) Does the system lifelength distribution F, converge to a lifelength distribution
F as u — u,. If so, does F satisfy (2.2), where the subscript # is omitted?

In the next section we prove that under mild, reasonable conditions, affirmative
answers exist for all three questions.

3. Limit results in the reliability growth model. In this section we give con-
venient sufficient conditions to yield affirmative answers to questions (1), (2) and
(3) at the end of Section 2, and present proofs of our results.

We are considering the model of Section 2. We make the following two
additional assumptions:

(ii) The sets of discontinuities of the G, ; are pairwise disjoint for each fixed time
point u, 0 < u < u,.

(iii) The sets of discontinuities of the G, are pairwise disjoint. The main result
may now be stated: .

3.1. THEOREM. Assume the reliability growth model specified in Section 2 and
assume (i), (ii) and (iii). Then ]

(V) lim,_,, F, (¢) exists for each t > 0 and each I C {1, - - -, n},

@) lim,_,, F, () = F(?) for each t > 0 and each I C {1, - - - , n}, where the F,
(replacing F, ) satisfy (2.3) with subscript u omitted,
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(3) lim, _Lquu(t) exists and = F(t) for each t > 0; moreover, F;,(t) is increasing
upward to F(t) as u increases upward to uy, where F (replacing F,) satisfies (2.2) with
subscripts u omitted.

To prove Theorem 3.1, we will make use of

3.2. LeMMA. Let u, be an increasing sequence converging to ug. Then for each
t>0andI C{l,---,n} limsup,_, F, (1) <Fy").

PrROOF OF LEMMA. By (2.3), we may write:
Fuk, (1) = :OHJ;éIG_u,‘,J G, < f:oHJ;eng aG,
since each (7,4”, ; < G,. Next note that
f?onlaelal aG, ;= f?o[gu,‘, (1) — éuk,l(x—)] d, [1 - HJ#IGI('X)]
< f:o[auk,l(t) - 5uk,1(x)] dx [1 - HJ;&I(?J(")}
But by the Lebesgue dominated convergence theorem,
limy oo /2] Gy 1(2) = Gy 1(¥) ]y [1 = 1,0, G(%) ]
= f?o[él(t) - 51(3‘)] d, [1 - H.IaélG_J(x)]
= fthJ;élG_J(x) dG,(x) = Fl(’),

by assumption (iii). The desired conclusion now follows. []
We may now prove Theorem 3.1.

ProOOF OF THEOREM 3.1 (1), (2). Let {#}, 0 < u, < u,, be an arbitrary sequence
converging to #, and let ¢ > 0. By (2.2),

Elc(l,- .. ,,,)Fuk’ l(t) = ch(l,~ .. ,,,)G_uk, I(t)

lim supk—»ooHIC{l,‘ .. ,n)auk, /(2) = lim Squ_m21c(1,~ .. ,n}iuk, £(2).
But _ _
lim supk_,wzlc“, o ,n)Fu,‘, I(t) < Elc{l,’ .. ,,,)lim supk_mFuk, I(t)
< Elc(l, . ,,,)Fl(t),
by Lemma 3.2. Now by assumption (iii) and the appropriate version of (2.2) we
have:
Elc(l, C. ,n)F}(t) = ch(1,~ .. ,n)G_I(t)'
Recalling that G,(¢) = lim, (_;uk, /() from Section 2 and summarizing the inequal-
ities above, we may state:
ch(l,~ .. ,n)(-;_l(t) < Elc(l,‘ .- ,,,)lim Squ.»oofuk, FORS Elc(l,o . ,n)F'I(t)
= ch(l, v ,n)G_I(t)'
The desired conclusions (1) and (2) now follow immediately.
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PrOOF OF THEOREM 3.1 (3). By (2.2), lim,,, F,(f) exists since each lim,_, G, ;
exists. Next note that

F() = Zrcq,- - ,n)Fl(t) =I;cq,. - ,n)G_I(t) =lim, I, q,... ,n)(—;;,l(t)

= limu—mozlc(l, cee ,n)F;l, I(t) = limu—»uof;z(t)’

The monotonicity of F;(t) in u is a consequence of the monotonicity of each G_u I
0

4. Extensions, modifications and generalizations.

4.1. REMARK. In the reliability growth model discussed above, we assumed
that reliability growth was occurring during the interval of chronological time
[0, up). Obviously, the conclusions of Theorem 3.1 may be obtained by assuming
that reliability growth occurs at the time points of any subset U of [0, o) (or, for
that matter, over the entire half-line). As examples, consider:

@) U= {u,2u,3u,- - -}, where u > 0,

G U={0<uy; <u, <u; < ---1}

QU={0,u)) <u <u, <---1},
etc. Moreover, the set U need not be deterministic, but may be random.

4.2. REMARK. In the model of Section 2 and the corresponding result, Theo-
rem 3.1, we assumed that shock intervals from each source were stochastically
increasing with chronological time. It is clear that by reversing inequalities and the
direction of monotonicity, we can obtain a dual to Theorem 3.1 in which the
intervals between shocks from each source are stochastically decreasing with
chronological time. System reliability (or in the biomedical context, organism
survival probability) would decrease with chronological time.

4.3. ReMARK. The model of Section 2 and the limit results of Section 3 were
formulated in terms of reliability growth. An equally important and useful applica-
tion exists in the context of competing risks of death of a biological organism from
a variety of diseases, accidents or other causes. In this context, Remark 4.2 is
especially relevant. We consider a situation in which an organism is subject to
death as a result of any of a number of diseases or combinations of diseases. As
time passes, the organism becomes more vulnerable to each of the diseases. Note
that the model now appropriate differs from the model of Section 2 only in the
direction of the monotonicity; ie., the different types of shocks are becoming
stochastically more frequent, rather than, as in the first model, stochastically less

frequent.

4.4. REMARK. In the reliability growth model, we are able to deduce monoton-
icity of F,, system reliability as a function of chronological time u. However it is
not necessarily true that each F; ; is monotone in u. This is a consequence of the
fact that as some modes of failure become less likely, others may become more

likely.
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4.5. REMARK. Assumption (iii) of Theorem 3.1 can not be obtained as a
consequence of assumptions (i) and (ii). A simple counterexample is available to
verify this assertion.
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