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AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE PARTIAL
SUMS OF INFIMA OF INDEPENDENT RANDOM VARIABLES

By H. HEBDA-GRABOWSKA AND D. SZYNAL
University M.C.S. of Lublin

Let {X,, n > 1} be a sequence of independent random variables uniformly
distributed on the unit interval. Put X* = inf(X;, X5, - - -, X;;) and S, = X} +
X3+ -+ +X%n>2, 8 =0. The aim of this note is to give an almost sure
invariance principle for S,. Next we extend the given results to the case when
X,, n > 1, are not uniformly distributed but bounded, and moreover, to sums

S, =X 4+ X + - -+ +X{™, where X is the mth order statistic of
Xy Xy, - -+, X))

1. Introduction. The limiting behaviour of the sequence X, inf(X, X,), - - -,
inf(X,, X5, - - -, X,,), - - - has been investigated, for example, in [4], [5] and [6].
The convergence in probability, almost sure and in law for sums S, = Xt + X3
+ - +X* n>2 S =0, where X} = inf(X, X,,- - -, X,) has been estab-
lished in [1] and [3]. We here investigate the rate of almost sure convergence. Our
goal is to give an almost sure invariance principle for the sums S, which implies,
among other things, the functional law of the iterated logarithm [11].

Namely, we are going to prove

THEOREM 1. Let {X,, n > 1} be a sequence of independent random variables
uniformly distributed on [0, 1]. Define the process {S(t), t > 0}, where S is the
random function obtained by interpolating S, — log n at 2 log n in such a way that
S(0) = 0 and for each n > 1, S takes the constant value S, — log n in the interval
{2 log n, 2 log(n + 1)), or alternatively is linear in {2 log n, 2 log(n + 1)), i.e.,

t—2logn t—2logn
1 H=11———— ’ i - IRASNY <14 ,
M S ( 210g(1+1/n)) " 2log(1+1/n)S"+'
if2logn <t<2log(n + 1), where S, = S, —logn,n > 1.
Suppose that g is a positive real function on R* such that
g(x),  g(x)/x| as x — oo
and
(2 Z5.,1/ng*(log n) < oo.
Then without changing its distribution we can redefine the process { S(¢), t > 0} on

a richer probability space, supporting a Brownian motion {X(t), t > 0} in such a way
that '

3) S(1) = X(1) + o((tg(£))7log 1) ass. as t — oo.
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From Theorem 1 one can deduce an invariance principle for the law of the
iterated logarithm and the law of the iterated logarithm for the partial sums of
infima of independent uniformly distributed random variables.

THEOREM 2. (An almost sure invariance principle). Let { X,, n > 1} be a sequence
of independent random variables uniformly distributed on [0, 1]. Then the processes
{S(¥), t > 0} and {X(?), t > 0} of Theorem 1 can be redefined on a richer probability
space without changing their respective laws, in such a way that for 3 >%

4) S(8) = X(¢) + o(t+*B/YNog t) as. as t — 0.

THEOREM 3. (The law of the iterated logarithm). Under the assumptions of
Theorem 2

S, — log n

=1]|=1
[2(2 log n)log log(2 log n)]%

(5) P|lim sup,_,

Generalizations of the above assertions will be given in Section 4.

2. Preliminaries. Let {e(n), n > 1} be a sequence of positive real numbers
strictly decreasing to zero. By {7(e(n)), n > 1} we denote the sequence of random
variables such that

7(e(n)) = inf{m : inf(X,, X,, - - - X,,) <e(n)}.

In what follows we need the following lemmas, for which proofs can be found in
(31

LeMMA 1. The sequence {7(e(n)), n > 1} increases with probability 1, and 7(e(n))
— 00 a.8. as n —> o0.

LEMMA 2. The random variables t(e(n)) — t(e(n — 1)), n > 2, are independent,
and

©6) E[r(e(m + 1) — r(e(m))]* ~ e~ '(m)[ e(m) — e(m — )] pte#(m + 1),
p>2lm>1;
M Sho E[r(em + 1) = w(em)] [e(m) — e(m + 1)] = O(1);
and if e(n) = n~% a > 0, then
®) S _ E[(e(m + 1)) = 7(e(m)) |Pe?(m) ~
S E[#(e(m + 1)) = r(e(m)) ]%e?(m + 1) ~ p! log n,
where a, = 0(1) denotes that a sequence {a,, n > 1} is bounded.
LemMma 3. If .
S(r(e(n))) = X, + inf(X, X)) + - - - +inf(X}, Xy, - - -5 X ()
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then
©) [r(e(n + 1)) = 7(e(n)) ]e(n + 1) < S(7(e(n + 1)) = 1) = S(r(e(n)) = 1);
S(r(e(n + 1))) — S(r(e(n))) <[7(e(n + 1)) — 7(e(n)) ]e(n), as.,n > 1;
(10) =2+ 257 [r(e(m + 1)) — 7(e(n)) Je(m + 1) < S(r(e(n))) — S(7(e(1)))
< 2 [r(e(m + 1)) — 7(e(m))]e(m), as.,n >2;
(11 S(r(e(n = 1))) < 8, < S(7(e(n))),
m &[(e(n — 1), 7(e(n))).
LEMMA 4. For e¢(n) = n™% a > 0,

(12) lim,_, log™'nE{Sn [ r(e(m + 1)) — 7(e(m))Je(m)} = a;

(13) lim,,_mlog_'noz{z',‘n__ll['r(s(m + 1)) - T(e(m))]e(m)} = 2a;
forall 4 >0
(14) log(1/u) — (1 + A)log,(1/u) < log 7(u)

< log(1/u) + (1 + A)logy(1/u), as.,
Jor sufficiently small u, where log,x = log(log,_,x), p > 2, log;x = log x.

Moreover, one can easily prove

LemmAa S. Let X,, U,, V,, Z,, and W,, n > 1, be random variables such that

U +X,<V,<Z + W, as, n> 1
i |
P[lim sup, X, = X] = P[limsup, ,,,Z, = X] = 1,
and
P[lim, U, = 0] = P[lim, W, =0] =1,
then

P[lim sup, ., W, = X]| = 1.
3. Proofs of results. Let us denote
U, = 2,1 [1(e(m + 1)) — 7(e(m)) Je(m),
z, =2, i[r(e(m + 1)) — 7(e(m)) Je(rn + 1),
U=U,—-EU, Z/=Z2Z,—-—EZ, n>2,
and’ ‘

Y, = {[*r(e(k + 1)) — r(e(k))] — E[(e(k + 1)) — 'r(s(k))]}s(k),
k> 1
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We first prove an almost sure invariance principle for sums U,; = >721Y,. To do
that it is enough to note that the sequence {Y,, k > 1} satisfies the conditions of
Theorem 4.4 [11]. Indeed, we have EY, = 0, k > 1, and by (6) and (13)

s = 3n716%Y, = 06’U, ~2alogn - o as n — oo.
Moreover, we see that
22,1/ 8(2) gy dFy (7) < Z7L:EY,/8%(s3)
< 2"2‘,’,°,2{E['r(e(n + 1)) — T(s(n))]4
+ E4[ m(e(n + 1)) — 7(e(n))] }e“(n)/gz(sf).
But, for &(n) = n~°, a > 0, by (6) we have
E[(e(n + 1)) — f(e(n))]4e4(n) ~an™!
and
E4r(e(n + 1)) — (e(n))]e*(n) ~ a’n ™%,
Therefore, by (2)
32,1/ 8(52) psg(s2)y? dFy,(¥) < CE53.,1/ng*(log n) < oo,
where C is a positive constant. Hence, we see that the sequence {Y,, n > 1}
satisfies the assumptions of Theorem 4.4 [11].
Let now U’ be the random function on R* u {0} obtained by interpolating U, at
s2 in such a way that U’(0) = 0 and U’ takes the constant value U] in the interval

s, 52, 1), n > 1. From the above mentioned theorem of [11], it follows that there
exists a Brownian motion {X(?), ¢ > 0} such that

U@ =X + o((tg(t))%log t) a.s. ast — oo.
The same assertion is true for the random function U* on R* u {0} obtained by
interpolating U, — « log n at s2 in a similar way as U’. To see that it is enough to
note that by (8) and by (12)
U,— alogn= U, + EU, — alogn, and EU, — alogn = 0(1).
Furthermore, taking into account (13) and using the assumption (2) one can
prove that
U@ — U*@) = o((tg(t))%log t) a.s. ast — oo,
where
U(t)= U, — alogn if 2alogn <t'<2alog(n + 1),
n > 1. Hence, we conclude that
15) U(t) = X(1) + o((1g())log 1) = Z(1) as.t—> o,
where Z(¢) is the random function on R* u {0} defined on the basis Z, in the same
way as U(?).
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Now note that (10) yields
Z, + S(m(e(1))) — 2 < S(7(e(n))) < U, + S(7(e(1))) as.

< S(1(e(n))) — a log n
< U, — alogn + S((e(1))) as.
Let now S, denote the random function on R* y {0} which takes the constant

value S(7(e(n))) — log n in the interval <2 log n, 2 log(n + 1)), n > 1. Then, by (15)
and (16) we conclude that

(17) (1) = X(¢) + o((1g(t))7log 1) ass., 1 .
From (17), putting e(n) = n~! and after using (11) and (14), we get (3).

The assertion of Theorem 2 follows immediately from Theorem 1 with g(¢) = ¢4,
B >3

To prove (5) we observe, analogously as previously, that

Y, 1
2;,‘°=,P[|s—”l(log log s7)? > e} < C=%_(log log s7)/ns} < oo

Hence
(16) Z, — alogn + S(r(e(1))) — 2

where C is a positive constant. Hence, we conclude that {Y,, n > 1} satisfies
Kolmogorov’s law of the iterated logarithm ([6], page 260 or [8] page 376), i.e.

U, — EU, 4 |
_———l 3 3 .
(25210g log s7)?

Using the above quoted properties of U, and Z, we have

P|lim sup,,_,

) -a
lim sup, ,,——— =1

b;
where a, = a log n, b, = 2(2a log n)log log(2a log n). Using now (10) and Lemma
5 one can get

P =P

N —
N —

n

Z
lim sup, , ,—— = 1} =1,

1

Strem) —a, _ ],

b;
Putting e(n) = n~! (a = 1) and using (14), we have
'r(e([n(logzn)_('+")])) < n < 7(e([ n(log n)HA])) a.s.

for all A > 0 and sufficiently large n. Hence,
S('r(e([ ”(1082”)—(1+A)]))) - a[n(logzn-)(l “)] c

(18) P|lim sup,,_,

1 n dn
bi[n(logzn)- as+ A)]
< Sn __l‘an < S(T(e([n(log nl)l+A]))) — a["(lOE")HA]C’/‘
b'% b[zn(log n)l +4 ]

+d,, as,
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where
1
€ = (b[n(log,n)"'“’ 1/ b,)?,

1
cr/x = (b[n(logn)HA]/bn)z’
1
dn = (an - a[n(loggn)' (“"‘)])/b%’

1
dr: = (a[n(logn)HA] - a,,)/b,%.
Substituting into (18) we obtain (S) as ¢, > 1, ¢, > 1,d, -0, d, - 0 as n — oo.

4. A generalization. We now give generalizations of the results in Section 1
and at the same time reinforce some results of [2] and [3].

Let {Y,, n > 1} be a sequence of independent positive random variables with
the same distribution function F. Suppose that for any e > 0, P[Y < €] > 0. Now
we shall establish an almost sure invariance principle for the sums Y, + inf(Y,, Y,)
+ - +inf(Y, Yy - 0, Y.

Let us set
G(t) =inf{x > 0: F(x) > ¢}.

It is obvious that G is a nondecreasing function. In what follows we put e(n) = 1/n
and G < C, where C is a positive constant.

Let {X,, n > 1} be a sequence of independent uniformly distributed random
variables on [0, 1]. Then the sequences {G(X,), n > 1} and {Y,, n > 1} are the
same in law, i.e., for n > 1, G(X,) and Y, are identically distributed. Thus the
asymptotic behaviour of

S,=Y,+inf(Y,, Y,) + - - - +inf(Y}, Y, - - -, Y,)
is equivalent to that of

S, = G(X)) + G(inf(X,, X,)) + - - - + G(inf(X,, Xp, - - - , X,))).
Let us put
h(u) = e“G(e™™), H,(u) = [3h?(v) dv, p>1
and
Ve=Zh=1[m(e(m + 1)) — 7(e(m))]G(e(m + 1)),

W, = Z,_1[7(e(m + 1)) — 7(e(m))] G(e(m)),

where e(n) =n"', n > 1. '
We shall use the following statements [3]

(19) EV,=3%,_,G(1/(m + 1)), EW, =37 _,G(1/m);
(20) o, =3, 2mG*(1/ (m + 1)), o*W, =2}, 2mG*(1/m);
(21) EV, — H(log n) = 0(1), EW, — H(logn) = 0(1);

(22) oV, — 2H,(log n) = 0(=",_,G*(1/m)),

oW, — 2H,(log n) = 0(Z",_,G*(1/m));
(23) =2+ V,_y <S(r(e(n)) — S(r(e(1))) < W, _,, n>1
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a.s.

Let S now be the random function on R* y {0} obtained by interpolating
S, — H(log n) at 2H,(log n) in such a way that S(0) = 0 and S takes the constant
value S, — H(log n) in the interval {2 H,(log n), 2H,(log(n + 1))), n > 1

Under the above denotations, using the relations (19)-(23), and combining the
methods and ideas from this note with the ones of the papers [3], [8], [9] and [11], it
can be proved:

THEOREM 1. If g is a positive real function on R* such that g(x)1, g(x)/x| as
X — o0, and

2-an’G(1/n)/g*(2H (log n)) < co,
and moreover, for any A > 0 |
(24) H(logn = (1 + A)log log n) — H(log n)

- o( [2H,(log n)g(2H,(log n))]%log 2H,(log n)),
then we can redefine the process { S(t), t > 0} on a richer probability space supporting
a Brownian motion {X(t), t > 0} in such a way that

S() = X(0) + o((tg(t))%log 1)
a.s. as t — oo.
THeEOREM 2. If for any A > 0, and § >3
(25) H(logn = (1 + A)log log n) — H(log n)
= o([2H,(log n) " *#*log 2H,(log n))
+ then the processes {S(t), t > 0} and {X(t), t > 0} of Theorem 1’ satisfy
S(t) = X(1) + o(¢"*P/*0g 1) as. ast — oo.

REMARK 1. From (19) and (22), it follows that 2 H,(log n) ~ =", _,2mG*(1/m).
Therefore, one can have the conditions and the statements of Theorem 1’ and 2’

expressed in terms of the function G also.
The classical law of the iterated logarithm can be deduced from following

propositions:

PROPOSITION 1. If 5 = ¢*W,, — o0 as n — oo and

©_ [ n*(log log s?) G“(l/m)]/s < o

then
w, — H(l v, — H(lo
|lim sup, _, 22— 2log ) _ 1} [Hm sup, .., L log ™) _

= 1, where D,, = [2(2 H,(log n))log log(2 H(log n))]%.
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PROPOSITION 2. If 52 = 0’W, — o0 as n— oo and
‘,’,°_1[n3(log log sf)zG"(l/n)]/s,‘,‘ < oo,

then

P[lim Sup,_, . S('r(e(n)))D—- H(log n) = 1} =1,

where
S(7(e(n))) = G(X;) + G(inf(X}, X3)) + - - - +
+G(lnf(Xl’ X2’ T Xr(e(n))))‘

THEOREM 3. If {u,, n > 1} is an increasing sequence of real numbers such that:

lim, ,  u, =

lim, ,  H,(log n + u,)/H,(log n) = 1,

n—»oo

lim, , [ H(log n + u,) — H(log n)]/[ H,(log n)]il 0,

and
wa[n*(log log 52)°G4(1/m) | /51 < oo,
then
S, — H(l
P|lim supn_*w-—"——T(—og—n) =1|=1

n

REMARK 2. It can be observed that the assumption
Pl ,[ n*(log log sf)zG“(l/n)]/s,‘,‘ <
can be replaced by
e 1G4 1/n)/st % < o0

for some § > 0. Moreover, we note that instead of the above conditions we can use
more general ones

32, [n7" (log log s2)*G"(1/m) | /57 < o0

or

w76 (1/n)] /570 < 0,
where r > 2,6 > 0.

5. Let {X,, n > 1} be a sequence of independent random variables uniformly
distributed on [0, 1] and S, = X, n > 2, S, = 0, where Xf(m). is the mth
_order statistic of (X,, ©+:,X). If m=1 then we have §, = §, =

2= min(X;, X, - - -, X)), the sum of Section 1.
Define the process { S@), t > 0}, where S is the random function obtained by
interpolating S — mlog n at 2m log n in such a way S(O) 0 and for eachn > 1
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S takes the constant value S, — m log n in the interval (2m log n, 2m log(n + 1)),
or alternatively is linear there. Using the methods and ideas from this note with the
ones of the papers [3] and [10], it can be proved:

THEOREM 1! If g is a positive real function on R* such that

g(x)1, g(x)/x| as x — oo,
and
25,1/ ng*(log n) < oo,
then the processes {S(1), t > 0} with a Brownian motion {X(t), t > 0} can be
redefined on a richer probability space without changing their respective laws, in such
a way that
S(t) = X(1) + o((tg(t))%]og t), a.s. ast— oo.
THEOREM 2! (An almost sure invariance principle). For B > %, and the processes
{S@¥), t > 0} and {X(¢), t > 0} of Theorem 1" we have
S(t) = X(1) + o(t1+P/*og 1), as. as t — oo.
THEOREM 37 If {X,, n > 1} be a sequence of independent random variables
uniformly  distributed on [0, 1] and X is the mth order statistic of
(Xl’ X2’ Y X,)’ then
.§n —mlogn
[2(2m log n)log log(2m log n) |

=1|=1,

P|lim sup,_,

Ni=

where S, = 1_, X™.

The above theorems generalize some results of [10] and their proofs can be
obtained in the same way as the proofs of the statements given in the previous
sections.
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