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ON SOME TWO-SEX POPULATION MODELS

BY SOREN ASMUSSEN
University of Copenhagen

Let M, be the number of males and F, the number of females present at
time ¢ in a population where births take place at rates which at time ¢ are
mR(M,, F,) and fR(M,, F,) for males and females, respectively. Assume that R
has the form R(M, F) = (M + F)h(M /(M + F)) with h sufficiently smooth at
m/(m + f). A Malthusian parameter A and a random variable W such that
e MM, —> mW, e " F, - fW a.s. are exhibited, the rate of convergence is found
in form of a central limit theorem and a law of the iterated logarithm and an
asymptotic expansion of the reproductive value function V(M, F) = E(W|M,
= M, F, = F) is given. Also some discussion of an associated set of determin-
istic differential equations is offered and the stochastic model compared to the
solutions.

1. Introduction. A number of deterministic and stochastic models describing
the development of a population with two interacting sexes have been considered
in the literature. See, for example, the surveys by Keyfitz (1971) and Pollard (1971,
1973 Chapter 7, 1977) and the extensive list of references therein. The treatment of
these models has, however, intrigued demographers for quite a while, and there
appears to have been considerable difficulty in handling sex, as opposed to other
relevant features of the population, such as age.

It is, of course, of interest to discuss which features such models should
incorporate in order to be of use in applications. In the present paper we follow a
different path and attempt to answer some crucial mathematical questions about
models which, although too simple to be of any great practical applicability, do
incorporate the feature of genuine sex interaction in its purest form. That is, we
disregard phenomena such as death, formation and dissolution of couples
(marriages) and the structure of the population according to age, parity, location,
etc. The state of the population at time ¢ therefore is completely described by the
number M, of males and the number F, of females present, or, equivalently, by the
total population size N, = M, + F, and the sex ratio, which we represent by
X,= M,/N,.

In deterministic theory, going back to Kendall (1949), the development of
(M,, F,) is usually described by a system of differential equations,

(L.1) M, = mR(M, F), F, = fR(M, F).

Here R is the marriage function and m and f the male and female birth rates. Our
discussion starts in Section 2 with a brief review of some of the suggestions for
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728 SOREN ASMUSSEN

explicit forms of R and of the general discussion of properties of R. The main point
is to introduce the basic assumption,

M
M+ F) = Nh(X),
used in the rest of the paper. It states that for given sex ratio, R is linear in the total
population size.

In Section 3, we then study the equations (1.1), in particular the behaviour of the
solutions ¢t — o0. Let z = m/(m + f) be the relative proportion of male births, and
let A=(m+ f)h(z). If X, = z, it follows at once from (1.1) and (1.2) that
X, = z, N, = Nye™ solves (1.1). In general, one might hope that X, — z sufficiently
fast to ensure exponential growth at rate A in the sense that

(13) e MM, — mV (Mo, Fo), e NF, > fVo(M,, Fy)

for some function ¥, of the initial population. Indeed, this is so. More precisely, we
find that

(12) R(M, F) = (M + F)h(

M+ F

and we give an explicit expression for A in terms of 4. In demographic terms, A is
the Malthusian parameter of the model and Vy(M, F) the reproductive value of a
population of M males and F females. See, for example, Fisher (1930).

The rest of the paper then deals with a stochastic version of the model. This is a
pure birth process, where individuals are born at rates which at time ¢ are
mR(M,, F)) and fR(M,, F,) for males and females, respectively. In Section 4, we
first show the stochastic analogue of (1.3),

(1.5) - eTMM, > mW, e NF, » fW,as.

(with 0 < W, < o a.s.), and next find the rate of convergence in (1.5) in the form
of a central limit theorem and a law of the iterated logarithm. Our final result,
proved in Section 5, then gives a stochastic version of (1.4), viz.,

(1.6)
Vo(M,F)/ (M + F) - h(x) asM — 0, F — oo,

(14) VM, F) = (M + F)h;;( ) = NAX(X)

M
M+ F

where Vo(M, F) = E(Wo|M, = M, F, = F) is a natural extension of the reproduc-
tive value function to the stochastic model.

The precise assumptions (essentially smoothness conditions on k) for the above
results are given in the body of the paper and Section 6 contains a concluding
discussion, incorporating bibliographical remarks.

- X,

2. The marriage function. Some of the explicit forms of R(M, F), suggested
by Kendall (1949) and others are: MF (random mating); M (male marriage
dominance); F (female marriage dominance); (M + F)/2 (arithmetic mean); (MF)%
(geometric mean); MF /(M + F) (harmonic mean); and M A F (minimum). Most of
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these models are based on certain intuitive ideas concerning the mating
mechanism, while the motivation for others, such as the geometric mean model,
seems more to be mathematical convenience, for example, that equations related to
(1.1) can be solved explicitly. The analysis by Kendall makes it reasonable to
exclude the random mating model since it leads to infinite population size in finite
time (and is hard to interpret in large populations). As a first motivation for (1.2),
one can then note that (1.2) holds in the remaining examples, with 4 as specified in
the following table:

MF

R(M,F) M F . (MF): T+ F  MAF
h(x) x 1-x 1 x(1=-x)  x(1-%x) xAd-x)
() 2x 20 -x) 1 L4 (x(1 — x))7 2x(1 = x))7 2x A (1 — x)]

=}

(the function h* differs by a constant from A} of Section 1 and is specified in
Section 3). The second motivation for (1.2) is provided by axiomatic discussions
such as those of Pollard (1971) and Fredrickson (1971), based upon certain logical
rules for marriage and leading to requirements of a more general type, among
which (1.2). One could think of the sexes being uniformly distributed in the
population and of each individual having a limited milieu, within which the partner
is chosen (this limited milieu should be compared to the reasoning behind random
mating, implying that within a short period of time the number of contacts of any
individual with the opposite sex could in principle be arbitrary large). Seen from
the standpoint of one sex only (say the male sex) the idea of a limited milieu would
lead to

M
2.1) R(M, F) = M4>(M+ F).
Formulations (1.2) and (2.1) are, of course, equivalent, the correspondence being
h(x) = x¢(x).

The precise conditions on 4 are stated in the respective theorems. They are little
restrictive, essentially smoothness conditions like Holder continuity on suitable
intervals I C (0, 1),

(2.2) [h(x,) — h(x3)] < c|x; — x,|? Xy, X, €1
(with 0 < p < 1). In order to avoid trivialities, we also need
(2.3) h(x) > 0, 0<x< 1

Further axiomatic discussions such as those in the above references would limit
the class of functions h somewhat, however. For example, it would not seem
unreasonable to require that
24) R(M, F}) > R(M, F,), F, > F,

(2.5) lim,  R(M, F) = ¢cM with0 < ¢ < c0.
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Note that in the formulation (2.1), these axioms correspond to ¢(x)fc as x
decreases from 1 to 0. From either formulation, it is easy to conclude that

(2.6) h(x,) < h(xl)—);—2 when0 < x; < x,,
1

h(x) < cx = h'(0)x,

1 -
2.7 h(x,) < h(xy) 7 _i? when0 < x; < x,,

h(1—y) < & = —h'(l)y

(with 0 < d < ). Here formula (2.7) is derived by interchanging the role of males
and females. Beyond the highly unrealistic models corresponding to arithmetic
mean or one of the sexes being marriage dominant, this would exclude also the
geometric mean model. However, these models are formally included in what
follows since none of the conditions (2.4)—(2.7) come up.

3. The deterministic differential equations. The existence and uniqueness of a
set (M,, F,) of solutions to (1.1), given the initial values (M, F), is well known
assuming Lipschitz type conditions ((2.2) with p = 1), see Kamke (1962) Chapter
IIT or argue directly from (3.1), (3.2) below. In the present section, we study the
asymptotic behaviour of this set of solutions as ¢ — oo with (M, F;) fixed. Passing
from the variables (M,, F,) to (N,, X,), equations (1.1) can be written as

(3'1) Nt = N,h(X,)(m +f)

(32) X, = (z — X)h(X,)(m + f).

It also follows from (1.1) that the derivative of fM, — mF, vanishes so that
fM, — mF, = fM, — mF,, which is equivalent to
(33) Nfz = X,) = N(z = Xp).
Therefore, if X, is known, N, can be computed from (3.1) or (3.3). In this manner,
the investigation of (1.1) reduces to the study of (3.2).

Assume without loss of generality that 0 < X, < z. Then, by (3.2), X, < X, <z
for all ¢.

Choosing 8, > B8, > 0 such that B, > h(x)(m + f) > B, when X, < x < z, we
get

Biz—X) > X, > By(z— X),(z— Xp)e ™" <z — X, < (z — Xp)e P,
Thus, X,7z and X, < z for all ¢+ < co0. Define

1 1 1 . _
k(y) = h(z)- —y(h(z) ~3G) ),h (x) = eSH0 &,
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Note that (2.2) with p = 1 ensures the integrability of k£ at z. We can rewrite (3.2)
as

9 h(z) 1 _ Xs 9
A= XXy 7ox 7o x kX,

and integration from 0 to ¢ yields
At = —log(z — X,) + log(z — X,) + log h*(X,) — log h*(X,),

3.4 z =X, = (z- X, Z:((;:;)) e ™,
(3.5) N, = N, Z:g")) e,

Here (3.5) is obtained by combining (3.4) with (3.3). Note that since X, — z, we
also have h*(X,) —> h*(z) = 1 so that (3.5) contains (1.3) as a corollary with
h3(x) = h*(x)/(m + f) in (1.4). :

Noting that (3.4) and (3.5) follow by symmetry if z < X, < 1 and are trivial if
X, = z, we have proved the first part of the following result.

THEOREM 1. Assume that 0 < X, < 1 and that conditions (1.2), (2.3) and (2.2)
with p = 1 and I the closed interval with endpoints X, and z hold. Let (N,, X,) be
solutions of (3.1), (3.2) corresponding to a set (M,, F,) of solutions to (1.1). Then
X, — z monotonically and e""N, — Nyh*(X,). More precisely,

Xo— 2z
h*(Xo)
Furthermore, if h has a derivative h'(z) at z, then

X, — Xo—z VW
3.7) X, =z+ ki AP ( 2 Z) Me’z’" + o(e™ M),

3.6 X =z+ e ™+ O(e ), N, = Noh*(Xy)e™ + O(1).
t t 0 (1)

h*(X,) h*(Xo) ] h(2)
(38) N, = Noh*(Xp)eM — Ny(X, — z) };1((22)) + o(1).

To complete the proof, note first that (3.6) follows immediately from (3.4), (3.5)
once we observe that as x,y — z, then k(y) = O(1), h*(x) =1+ O(x — 2). If
h'(z) exists, these estimates can be strengthened to k(y) = — h'(z)/h(z) + o(1),
h*(x) =1 + (x — 2)W'(2)/h(z) + o(x — z) and (3.7), (3.8) follow.

ReEMARKS. Of course, further assumptions on well-behaviour of A at z will yield
further refinements of (3.6), (3.7), (3.8). In connection with the minimum model
with z = %, we note also that existence of one-sided derivatives at z suffices for
(3.7), (3.8), if one replaces h'(z) by the left derivative for X, < z and the right
derivative for X, > z.

In Section 2, the function A* has been computed (with z =%) for the various
examples considered there. From the above considerations, a straightforward
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method to obtain explicit solutions is to compute 4*, solve (3.4) for X, and insert in
(3.3). For example, in the harmonic mean model, (3.4) yields a quadratic equation
for X,. More elegant methods may, of course, exist in this and other specific
examples.

Even if no explicit form of 4 is assumed, some information may still be obtained
concerning the properties of A*. Of particular interest is the behaviour of A* at one
of the boundaries, say at 0. As was argued in Section 2, the typical case is (2.6). If,

Fig. 1.
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furthermore, A(x) = cx + O(x?) as x|0, then h*(x) =dx®, where a = h(z)/cz.
Note that by (2.6), « < 1, with @ = 1 if and only if 4 is linear on [0, z]. As is seen
in the geometric mean example, A*(x) may have a nonzero limit as x|0 if (2.6) is
violated. This type of behaviour does not correspond nicely to intuition and it will
occur if and only if [31/h(y) dv < 0. Also the (typically unique) point y at which
h* attains its maximum, has a simple description as a solution of A(y) = A(z). The
situation is illustrated in the following figure.

For the same h, we have taken three values z,, z,, z; of z and plotted the
corresponding A*-functions Af, h¥, h¥. Note that the z, have been chosen such that
h(z,) = h(z,) and that h attains its maximum at z;.

4. Limiting bebhaviour of the stochastic model as t — oo. The process
(M,, F)),,, in question is a time-homogenous continuous time Markov process
with state space {1,2,- - -} X {1,2,- - - }, where the only possible transitions
from state (M, F) are to (M + 1, F) or (M, F + 1), with intensities mR(M, F),
respectively fR(M, F). We let 7(n) be the time of the nth birth (male or female)
and 7(0) = 0. The process is then completely described by two independent
sequences Y{, Y;,- - -, ¥V, V;, - - - of random variables, where the Y} are i.i.d.
0 — 1 variables with P(Y, = 1) = z and the V, are i.i.d. with P(V, > v) =e7% in
the following way: M,q, M.y, -+ is a random walk, ie, M, =M, +
Yi+ -+ +Y,. Also, N ,y=No+n, F,,=F+n—Y — - —Y,, and the
sojourn times U, = 7(k + 1) — 7(k) are given by

1
(m + f)R(M, iy, Fry)

Ue = wV,, wherey, =

Note that conditional upon IC = o(Y], Y;,- - - ), the U, are independent and
exponentially distributed with E(U,|J3(C) = p,. It will be convenient to consider the
centered variables Y, = Y/ — z instead of the Y} themselves. Then

(4.1)

My+ Y 4 +Y, +nz Y, + - +Y,  My— Ny
Yo = N, +n S It TN a T Ne+n
0 0 0
(4.2) Y, + -+, = O(n2**) foralle > 0,

using the law of the iterated logarithm for (4.2).
Our first result is (1.5) with Wy, = W/(m + f):

THEOREM 2. Assume that conditions (1.2), (2.3), and (2.2) with p > 0 and 1
containing a neighbourhood of z hold and let A = (m + f)h(z). Then there exists a
random variable W such that 0 < W < oo and

(4.3) X, =z+o0(), N, ='W+ o(e")as.ast - oo.
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Proor. Combining (4.1), (4.2) and (2.2), one obtains A(X, ) = h(z) + O(k™9%),
where 8 = p(3 — &),
_ 1 _ 1
T i + DG + h(Xy) — Ao + K)
Thus 3¢ Var(U,|I30) = SCu? converges a.s., and conditioning upon IC, it follows

by standard criteria for convergence of sums of independent mean zero variables
that 3P { U, — .} converges a.s. Also from (4.4) and the well-known relation

(4.4) + O(k~17%).

(4.5) »_1k™! = logn + Euler’s constant + 0(%),

it follows that
NSioom — log(No + n) = SPeik=" — log(Ny + n) + 2_q0(k™'~%)

has a limit as n — oo. Therefore W is well defined by
(4.6)
Ar(n+ 1) = AZ%_o{Up — e} + AZh_om = —log W + log(N, +n) + o(1)
and e M"*DN . — W. Choosing the paths to be right-continuous, we have
N, = N, when 7(n) < t <7(n + 1), so that e ™MN, = e V"IN, . e M=7D)
as t — oo, since 0 < ¢t — 7(n) < 7(n + 1) — 7(n) - 0 by (4.6). Similarly, X = 2,
as is obvious from (4.1) and (4.2); and X, — z from X, = X, when 7(n) <t < 1(n
+ 1)

We next show that (from the point of view of distribution) the remainder terms
in (4.3) are of magnitude e /2 and /2 respectively. This should be compared to
relations (3.6), (3.7), (3.8) for the deterministic model.

THEOREM 3. In addition to the conditions of Theorem 2, suppose that

(4.7) h(x) = h(z) + (x — 2)I(z) + O((x — z)?) as x — z
and write
A
X, =z +—2— N, = WeM + (We)7B,
(WeM)2

Then (i) the limiting distribution of (A,, B,) exists and is the two-dimensional normal
distribution with mean zero and covariance matrix

-z —z(1 -z #(2)
(ﬁ ) ) NS (1 -5
p Y% —2z(1 — z):—l((g 1+ 2z(1 - z)(%)

and (ii) for all (a, B) # (0, 0) and
C, = ad, + BB, o> = o} + B>} + 2aPp,

1 1
lim sup,_,.C,/ (2¢* log ¢)> = 1, lim inf,_C,/ (20*log?)? = —1 as.

t—>o0
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ProOF. We first remark that the central limit theorem for 4, alone in (i) as well
as the case 8 =0 in (i) are almost immediate from similar results on sums of
independent random variables by reference to (4.1) and (4.3). The main new
difficulty entering here is to obtain precise estimates of the remainder term A, (say)

in (4.6). The notation used will indicate that I';, ', - - - are (finite) constants or
random variables adding up to log W, that A}, A2, - - - are remainder terms of the
same magnitude as A,, and that E}, Enz,- - are remainder terms of lower

magnitude. First, let Al = (Y, + -+ +7Y,)/n and use (4.1), (4.2), (4.7) to write
h(X,w0) = h(z) + Ak'(z) + O(k~179),

1 1 1(z) AL
b = i + Ok™C79) where f, = s = 5 h((z)) S

>\22¢°=n+1{Uk - :U’k} = + AZP n+lek(Vk -1 = Ai + Enl

kn+lN +k

(say),
where = 1/NN, + k) = O(k~G~9). Since SPk!*2e2 < oo, it follows that
Srkat 2 ‘e (V, — 1) converges and using Abel’s lemma, e.g. in the form of part (i) of

Lemma 2 of Asmussen (1976), we can conclude that E! = O(n“%"). Next, in the
formula

n n ~ n 1 h z Al
Ah—ote = A2h_ol m — &} + Zhoo N, + k h((z)) 2/c-oN _’;_ %’

the first term can be written as I'; + EZ, where
Ty = Aol i — ), EF = —AE%o,a{ e — i)
= 27.,,10(k7%9) = 0(n=0-9),

the middle term, using (4.5), can be written as log(Ny + n + 1) + T, + E2, where
T, is constant and E = O(n~!), and the last term as T'; + A2 + A%, where

- woo 1 - _FQ©
A N )

—

1"(k) Y,

B = h(( ))2k=,,+,x(k) Y, & = :((Z)) S1_ik(n + 1),

Note that k(n) = n~! + O(n~?2), which makes T, well defined and A> — 0, A? —
0 a.s. It will be slightly more convenient to work with A2, A?  defined as above by
replacing k(n), respectively k(n + 1), by n~ L. Then it is easy to see that 33 + A“
A3 + A} + E?, where E! = o(n™"). Combining the above estimates with (4.6), it
follows as the first step of the proof that

(4.8) AM(n+1) = log(Ng+n+1) —logW + A, + E,

where —log W =AS( U — py} + I + T, + T3, A, = — A2+ A} + AY and E,
=—E‘+E2+E3+E4—o(n2“)as
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If n — o0, t - o0 such that 7(n) < ¢t < 7(n + 1), then We™/(n — 1) - 1, so that
1 1
we can replace the normalizing factors (We*)2 by (n — 1)2. Furthermore,

weM = WM™ (1 + O(r(n + 1) — 7(n))} = WM™ + O(ny,V,)
= WM™ + O(V,) = WeM™ + O(logn) = WM™ + 0(),

using the Borel-Cantelli lemma to estimate V. Therefore, the assertions of Theo-
rem 3 are equivalent to that (i) the limiting distribution as f — oo of

(4, B)) = (n%(X,r(nH) - 2), n‘%(NdnH) - WeNr(n+l)))

(with n = n(f) as above) exists and is as asserted, and (ii) lim sup C,/(20” log
log n)% =1 as, liminf = — 1 a.s., where C, = a4, + BB,. We claim that

A: = n—zl-A'l' = A"l + O(I’l_%), Bn” = —n%An = B,: + O(n_z)

and that, therefore, we can consider 4,, B,’, C,’ = a4, + BB, rather than
A,, B, C,. Indeed, for 4,/ this follows from (4.1), (4.2), while for B,’, inserting (4.8)
in the definition of B,, the claim boils down to n%Af, = O(n~*). From the proof
below of the law of the iterated logarithm for C,’, it follows by taking a = 0, that
even n%A,z, = O (loglogn/ n%), but the provisional bound O(n~¢) could also easily
be derived directly.

By the Cramér-Wold device (Feller (1971) page 522), the central limit theorem
will follow if we can show that C,” is asymptotically normal with mean zero and
variance o2. The second step in the proof is thereby completed by reducing it to the
study of C,’, which is simply a sum of independent mean zero variables. Indeed,

1 —in w Y, w vV, —1
(4.9) G/ =nxmn 12:k-lyk + TZEk-n+l—k_k + 732k-n+l_]v’;_+7€ >
h(z h(z)
where 7, = a — B h((z)) , 2= —p8 h((z) , 73 = 3. Note that

o2 =VarC/ = z(1 —z) (13 + 13) + 13 + o(l) = o®> + o(1)

and the central limit theorem for C,” as n — oo (nonrandom) follows easily from
standard criteria adapted to infinite sums (in fact, one can even estimate the rate of
convergence, see (4.10) below). That this still holds subject to the random indexing
n = n(¢) is (noting that e~ “n(f) > W) an assertion of the type of Anscombe’s
theorem. The details of proof, which involve a use of maximal inequalities similar
to the one in the use of the law of the iterated logarithm below, can be found in a
forthcoming monograph by the author and H. Hering.

Summing the third moments in (4.9) and using the Berry-Esseen theorem yields

(4.10) SUP_ o coc ool P(Cy < c0,) — ®(c)| = O(n™3).
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This and related estimates will be a main tool in the proof of the law of the iterated

logarithm for C,”. To this end, we note that if D,, D,, - - -+ are random variables
such that
(4.11) ZR1SUP_ o cacoo P(D, < d) — ®(d)| < oo,

then lim sup D, /(2 log r)% <1 as, with =1 if the D, are independent. Indeed,
from well-known tail estimates of ® and (4.11) it follows easily that SP(D, >
172 log r)%) converges for n > 1 and diverges for n < 1. The details have been
spelled out in Lemma 1 of Asmussen (1977). Letting first D, = C§ /0g with
1 < ® < o0, (4.11) follows at once from (4.10) so that lim sup Cg./(20% log r) < 1.
Let @ <n < @ *!. Then it follows after some elementary calculations that
IYl + ...
@r/Z

+7,
Cn” < G%C"r + IT]'@é{ e’l (1 - %) + Mrl} + I""Zlblr2 + |T3IMI‘3’

where

M = 07" ’maxg ., cer+

e +1Yils

Y,
2 _ 1)/2 k
M? = @U+V/ max9,<,,<9m|2',‘c_e,+l—k ls

v, —1

A{3 = ®(r+1)/2maxGr er+l|2';c_er+l_—-—|.
<n< No+ k

Letting a‘(®) = lim sup M/ /(2 log r)% and using the law of the iterated logarithm
for Y, + - - - +7Yg, we get

lim sup, _,,C;// (2 log log n)? = lim sup, ., MaXe ¢,cer+1Cy/ (2 log r)?
< % + |n|(@2(1 — z))%(1 - %) + |7,107aX(©) + |r,]a¥(®) + |r,|a¥(®).

To prove the lim sup < 1 part of (ii), it is thus sufficient to show that a‘(@) — 0
as ©/1. The a’(®) are estimated by the same method, which we exemplify for
i=3.Let

1 1 1 V - 1
2 _ @r+igert — w-leU+/2get k
w, © 2k=e'+|(No N k)z’Dr w, @ 2= 1 No+ k
and note that w?> — © — 1, Var D, = 1. Using the Berry-Esseen theorem, one can
1
easily prove (4.11) so that S P(|D,| > n(2 log r)z) converges for n > 1. If £ > n(©
1
— 1)2, then £ > nw, eventually and thus, using a version of Levy’s inequality,
S, P(M? > &2 log r)? + w2'/2) < 32 ,2P(w,|D,| > &2 log H)7) < co.
Thus a3(®) < £ a*(®) < (® — 1) and the claim follows.
In the proof of lim sup > 1, we approximate C4% by
2r+1 Yk

, e V,—1
D ! o= @r 719_2r22192r—l 1 Yk + 7’222_92" 177 + 7’32219‘2" 1 —5‘_— .
r + +1 ) Ny + k
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Then it is easy to check that w? = Var D/ — ¢*(1 — 1/0@) as r — oo and, using the

Berry-Esseen theorem, that (4.11) holds for D, = w,~!D/. Thus, since the D, are
1 1

independent, lim sup D,/ /(2¢% log r)z > (1 — 1/©)2. Furthermore

Y, vV, —1
2r -2rg@* ! k
Cg ro—= Dr/ + O Tl ”2 -1 Y+ Tzzk e+l A + ’T3Ek=ezr+|+1—'——No i

Estimating 7, = O 2«1, (V, — 1)/(N,y + k) as above or appealmg to Chow and
Teicher (1973) one can prove that lim sup|7,|/(2 log r)z <1/ ©2. Similar estimates
of the two other terms under the bracket can be obtained and yields

1
lim sup,..., 7'/ (2% log log )? > lim, . C42r/ (20% log 1)}
1
© 003 )

Letting ®1oo completes the proof of lim sup = 1 and the proof of lim inf = — 1
follows similarly or by symmetry.

REMARK. One-sided analogues of (4.7) do not suffice to determine the be-
haviour of B, (but clearly of A,) in Theorem 3. This should be compared to a
remark in Section 3 on the deterministic case. The behaviour of B,, say in the
minimum model with z = %, could however be studied with similar methods.

5. An asymptotic formula for the reproductive value V(M, F) = EWM, =
M, F, = F). Besides the relation to the concept of reproductive value of a
population, the function V is of considerable theoretical interest. Thus we have:

ProOPOSITION 1. The process e “I7(M,, F)) is a nonnegative martingale W.I.t.
F, = o(M,, F,; 0 < s <{) and e NV(M,, F,) > W a.s. Furthermore, V solves the
difference equation

(51)  AA(M,F) = (M + F)h( Mﬂi F)

[mV(M + 1, F) + f/(M, F + 1) — (m + f)V(M, F)].

Proor. The first assertion follows from general martingale theory since
E(W|F) = EMTe™ W = e MV(M,, F,)

(here and in the following E*> ¥ denotes expectation in a process with M, = M, F,
= F). The martingale property is equivalent to AV = AV, where 4 is the infinitesi-
mal generator of the transition semigroup, and this equation is simply (5.1).

In the deterministic case, e “™Vy(M,, F,) was constant, cf. (3.5), and the form of
V, was derived from equations (1.1). The counterparts of these equations in the
stochastic case are

(5.2) EM, = mER(M,, F,), EF, = fER(M,, F)),
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which cannot be reduced by the same methods. We leave it as an open question
whether equations (5.1) or (5.2) are of any use for the study of ¥ and use instead
the methods of Section 4 to prove the following result:

THEOREM 4. Suppose that conditions (1.2), (2.3) and (2.2) with p > 0 and 1
containing a neighbourhood of z and of x € (0, 1) hold. Then V(M,, Fy)/ Ny — h*(x)
(with h* defined as in Section 3) when

M,

M+ F, - x.

(5.3) M, - oo, F, - o in such a way that X, =
Proor. We use the notation of Section 3, with the same sequence Y, Y, - - -
for all M, F,. The constants in the inequalities are always independent of M, F,

(but many depend on x). Let

Wonety = Nymane 0D = (No + n + DI e
Conditioning upon IC yields
(5.4)
n 1
EMo.FO(W,,(n+1)|‘JC) = (Ng+ n+ I)Hk=0(l — I/Tk-l-l)
= (N, + n+ DI (1_ A )
° =0\" T (N, + (X o) (m + J) + A )’

The idea of the proof is to observe that W, — W, prove that indeed,
(5.5) EMoFoWy = lim,_, EMoFoEMoFo(W, . 11|5()

and show that for large M, F,, we can replace X, in (5.4) by its expected value
(My + kz)/(Ny + k) = x,, (say). The asymptotic expression for V" will then come
out by elementary calculus. To this end, define for some fixed ¢ > 0

T=sup{n:|Y,+.---+Y,,|>n%+°}
C(My, Fy) = 721 - —2 ) c (M, F) = I 1———>‘—)
n (21} k=0 l/p'k+>\ ’ Yoo [ 1) k=0 l/p'k+>‘ 4
" A
D,(My, Fp) = Wiz nn+1 l—m-

Note that the right-hand side of (5.4) is (N, + n + 1)C,(M,, F,)D,(M,, F,) and
that 7 < oo a.s. by the law of the iterated logarithm. We shall need below the fact
that even ET# < oo for all 8 > 0. See, for example, the more general results by
Strassen (1965). For C,, the elementary estimates

(5.6) Co (M, Fy) < C,(My, Fy) < 1,C (M, F;) — 1 subject to (5.3)
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will suffice, while more care is needed when treating D,. Preparing for an expan-
sion of log D,, we first note that for £ > T it follows from (2.2) that

([ My+ Y[+ +Y
h(Xogo) = h( No+ k

_ Yl + -+ Yk _ 1
= h(xk + N Tk ) = h(x,) + E;
where |E}| < v,k°/(Ny + k), 8 = (3 + €)p. Also from (5.3) and (2.3), we must
have h(x,)(m + f) > £ for some £ > 0 and all M, F,, k. Without loss of generality,
we can assume that |E}| + A/(N, + k) < £/2 (say) for all Ny, k and it then
follows for k > T that

S 1
(5.7 /i +X  No+k nix)m+f)+ EL+ A/ (N + k)

h(z)
(No + k)h(x;)

+ EZ,

where |EZ| < y,k%/(Ny + k)'*7. Write further

Ny +
(5.8) ETM__L = E3 3" 1 log—2
No

n
+ E*
k=0 (Ny + k)h(x,) k=ON, + k

Then 0 < E? < y; log(T + Ng)/No,| EY| < v4/ Ny Assume without loss of general-
ity 0<x <2z 0<X,<z so that x,7 and let I, = [x,_,, x,), i(y) = 1/h(z) —
1/h(y). The Lebesgue measure m(1,) of I is

No(z — Xo) — No(z — Xp)
(No+ K)(No + k- 1) (N, + k)? *

m(f) =

where |E?| < ysm(I,)/ N, By (2.2),

) _ X))
SUp,, ,.ez 2 —)’1 5 —zyz < E®
where E® < y4/ Nj. Therefore,
I(x No(z — X,) I(x lf
(5 9) zk-o ( k) = n 0( 0) ( k) = 2”_ (Ik) ( k) + E8

No+ Kk k-O(N0+k)2 zZ = X

- “'-l(y)dy+E8+E9= z l(y)afy+E‘°+E"

xoz XOZ
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where lEsl < Ys/No’lE?l < E6,|EIOI = IES + E9| < YIO/Ng’IEnul < yuN§/(Ny +
n)?. Combining (5.8), (5.9) yields

A n h(z)

=TAn e ——— — E?
=7 Wy + Dh()(m + 1)~ “E (N, + K)h(x,)
No+n I(x,)
=1 0 4 _ n kKl _ _ g3
og + E h(z2)Z% -0 Ny + K E
N, +
= log—2 - log h*(x,) + E2 — h(z)EN — E®

Ny
where |E'?| < y,,/ N&. Using (5.7),

n A
log D,(My, F;) < — k=TAn+ 1T A

A

13
AR (N + R m ) T L

— 2=

where |E 3| < Z&|EZ — 0 subject to (5.3), say by dominated convergence. Com-
bining with C, < 1, we have thus proved that

EMoFo(py, n+ 1)l IC)

No+n

T+ No\”
S (No+n+1)-1- o h*(X,)e EPHEC+R@E! . ( ~ °) ,
0

EMo FOW < lim inf”_)wEMo’ FOEMO' Fo( W‘r(n+ ])I%)

_ga g f T+ Ny s
< Noh*(Xo)e EU+E E(_—]V;——) .

When (5.3) holds it follows by dominated convergence that lim sup I7(Mo, Fy/ N,
< h*(x).

To obtain the lim inf > — part of Theorem 4, we first prove that for fixed
M,, K,

(5.10) sup, EMo FoW? || < oo.

By uniform integrability, this is enough to ensure (5.5). Let fi, = 2u, and define
C,, E', ¥, etc., as above, repeating the estimates with u, replaced by fi,. Then
essentially one has to multiply the main terms by 2, while the order of magnitude



742 SOREN ASMUSSEN

of the E’ and the E' are the same. We obtain
EMoFowt oy = (No+n+ 1)? EMo: FoT[2_ o E Mo: Fo((e=2AUe| ()

< (Ny+n+ 1) EMeFoD (M, Fy)

2 NO 2
< (N0+n+1)(m)

X h*(Xo)ze—f””f"*"(z)i‘i‘E(————T ;:,N" )h.
0

From this and ET™ < oo (5.10) is immediate and we get from (5.5), (5.6)
EMoFoy > lim, (N, + n+ 1)EMe FoC_(M,, Fy)D,(M,, F,)

No

> lim, (Ny+n+ l)N e
0

Xh*(Xo)e—E‘2+E”+h(z)E,','EMo, FoCoo(MO’ Fy)
= Noh*(X,)e E"+E°EMo. FoC (M, Fp).

When (5.3) holds EMe: FoC_ — 1 by (5.6) and the lim inf > -part of the theorem is
proved.

6. Concluding remarks. We first mention possible extensions. Though it would
be of interest to generalize the model to allow for deaths, formation of couples, etc.,
not all questions have been settled even for the present class of models; e.g., we
should have liked to have obtained asymptotic expansions for the variance of W
similar to those of Theorem 4 and more terms in the expansion of the mean.
Besides their intrinsic interest, these questions come up in connection with popula-
tion projection (prediction) and a comparison of Theorem 3 with finer limit
theorems for branching processes (see Asmussen (1977) and the references therein).

One generalization at least seems easy for most parts of the paper. That is, to
weaken (1.2) so that it need only hold in some asymptotic sense and /or to replace
the linear factor N = M + F by a more general function of N, say sublinear which
would lead to subexponential growth. This would probably be an important step
towards making the model more realistic.

Surprisingly few results similar to those of the present paper seem to appear in
the demographic literature. Indeed, treatments such as those of Yntema (1954) and
Goodman (1953, 1968) deal with models corresponding to arithmetic mean and
marriage dominance of one sex, i.e., with no genuine sex interaction. After the
present paper was first submitted for publication, the author’s attention was drawn
to a series of notes by Yellin and Samuelson (1974) and Samuelson (1977a, b,
1978a, b). They give some discussion of the deterministic case, in part related to
Section 3 but in part also using different assumptions on the marriage function.
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The main treatment of stochastic models is that (in discrete time) of Kesten (1970,
1972; see also his 1971 survey), whose main results essentially are similar in form to
Theorem 2. That our proof here is simpler and that Theorems 3 and 4 go somewhat
further, should be considered in light of the fact that our model is much more
specific than the general formulation of Kesten. It is, however, of considerable
interest to ask whether the present models are imbeddable as discrete skeletons
(M5, Fr5)neo,1,2,... in the set-up of Kesten. As far as we can see this is not the
case. More specifically, the assumption (1.6) of Kesten (1972) will not hold if
h(x) — 0 at the boundary, while the assumption (6.3) of his 1970 paper would
imply that Xj is close to z no matter the value of X,. This might be reasonable in
some discrete time models, but is clearly not the case here.

The methods used here are rather different from the standard ones for one-sex
branching processes, which rely essentially on martingales similar to e"“I7(M,, F)
and the independence of different individuals. Some ideas related to those of the
proof of Theorem 2 can be found in Athreya and Karlin (1968). See also Barbour
(1975). In connection with the tail sums in the proof of Theorem 3, see Chow and
Teicher (1973) and Barbour (1974).

Acknowledgments. I would like to thank Jan M. Hoem for bringing a number
of valuable references to my attention and Martin Jacobsen for helpful technical
discussions.
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