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APPROXIMATION OF PRODUCT MEASURES WITH AN
APPLICATION TO ORDER STATISTICS

By R.-D. REIss

Gesamthochschule Siegen

Firstly, a well-known upper estimate concerning the distance of indepen-
dent products of probability measures is extended to the case of signed
measures. The upper bound depends on the total variation of the signed
measures and on the distances of the single components where the distances
are measured in the sup-metric. Under certain regularity conditions, the upper
estimate can be sharpened by using asymptotic expansions. These expansions
hold true over the set of all integrable function. An application of these results
together with an asymptotic expansion of the distribution of a single order
statistic yields an asymptotic expansion of the joint distribution of order
statistics under the exponential distribution.

1. Introduction. Let d denote the sup-metric on the set of all finite measures on a
measurable space ( 2, &); that is, d(u1, ue) = sup{|pi(4) — pa(A)|:A € &} for finite
measures ;| &, i = 1, 2. Independent product measures are denoted by X% u; (or u* if all
components u; are equal to u). Estimates of the distance between product measures—in
terms of distances between the single components—were frequently proved in the sto-
chastical literature. In Hoeffding and Wolfowitz (1958), (4.4) and (4.5), the following
inequalities are proved for probability measures P and Q:

(1.1) d(P,Q) = d(P*, Q") <k d(P, Q).

The upper estimate is extended to the case of nonidentical probability measures P; |,
Q:|H,i=1,...,k, in the article of Blum and Pathak (1972), Lemma (1.3) (see also Sendler
(1975), Lemma 2.1). A different lower bound was found by Behnen and Neuhaus (1975)
(see proof of Proposition, pages 1351-1352). Combining these two results one obtains

(1.2) 1—exp(— % YE1d(P, @)) =d (X, P, x5, Q) =YL, d(P, Q).

In Theorem 2.1, the second inequality in (1.2) will be extended to the case of signed
measures.

The main objective of Section 2 will be to derive estimates which depend on terms of
the form [ (g — 1)* dP, where g; is a density of @, with respect to P; (in short: g; €
dQi/dP,). These terms are suggested by asymptotic considerations: given a family of
probability measures with real parameter 6, it follows, e.g., from Korollar 2.25 in Witting
and Nolle (1970) that under appropriate regularity conditions the following relation holds:

(1.3) limpen d(P§, Plime-12) = 20(nI'?) — 1

where ® denotes the distribution function of the standard normal distribution N, I is the
Fisher-information at 4, and 5 > 0. Notice that

1 1/2
limke/v 5 (k j (gk - 1)2 dPo) = 'I]Il/z
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where g, € dPgsqp-12/dP,. Thus, there is a close connection of (1.3) to a result which is
given in Reiss (1980), proof of Lemma 6.3: let g, € dQx/dPs. If £/*(gi, — 1) is bounded and
lim infien & [ (g2 — 1)* dP > 0 then

1/2
(14) }d(Pi, Q- 2d>(% <k j @ —1° de) ) +1| =0k,

Concerning historical remarks on the asymptotic normality of order statistics we refer
to Reiss (1975). In that article, asymptotic expansions of the joint distribution of several
order statistics were proved under the assumption that, roughly speaking, the number of
order statistics is smaller than n'/? (with n denoting the size of the sample). Counterex-
amples show that this restriction cannot be omitted if normal approximation is considered.
Theorem 3.4 will provide us with approximations to the joint distribution of order statistics

(under the exponential distribution) in cases where the number of order statistics is larger

than n'/%

2. The basic results. The following theorem extends the right-hand side of (1.2) to
signed measures. Given a signed measure v/, let X = X* + X~ be a Hahn decomposition
with respect to », and || 7| = »(X) + »(X").

THEOREM 2.1. For all measurable spaces (X;, ;) and finite signed measures v/,
i/ 1 =1, ...,k the following inequality holds:
d(Xk v, Xk, W) < 2?=1 I X}:} vill |l Xf=i+1 wil d @i, )

(with the convention that || X 21 v;|| = || X k1w = 1).

Proor. Because of

(u1 X p2)(A) = j ul(Ax,) dpa(x2)

for A € o X o, and
[#71(Az) — mi(As) | = d vy, 1)
we obtain
dus X pz, v1 X po) =< || pz| (w1, pa).
Thus, we also get
d(v1 X pg, 11 X ) < || 1| d (w2, p2)

whence the triangular inequality implies the assertion for 2 = 2. By using the induction
scheme and noting that

d(xB v, x 2 W) = d((X 51 v) X vprr (X 1) X fhr+1)
and
% vl [ aen | = [ X 5 ]
the proof can be completed in a straightforward way.
For probability measures p; = P; we state the following
COROLLARY 2.2. For all probability spaces (X;, o, P;) and finite signed measures
vi/sli, i =1,...,k, the following inequality holds:
d(x% v, X%, P) < exp[2 Y51 d(P;, v)] T d(P;, v).
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ProoF. Since foreveryj=1,..., k&
7]l = PAX;) + P(X;) + 2d(P,, vj)) =1+ 2d(P;, )
we have foreveryi=1,..., k&
I %51 %]l = TT%=1 (1 + 2d(Py, %)) < exp[2 Bje1 d(Py, )]

Thus, Theorem 2.1 implies the assertion.

REMARK 2.3. The lower bound in (1.2) can also be derived from the following
inequalities which are due to Kraft ((1955), Lemma 1):

2 172
(24) 1- J’ (pg)"?du=d(P, Q) = (1 - (J (pg)*”* du) )

for probability measures P, @ if u is a o-finite measure, p € dP/dp and ¢ € dQ/du.
Applying (2.4) to p; € dP;/du, q;: € dQ:/du; we get

d(x%, P, Xk Q)=1- f:l f (pi (Ii)l/2 du;

=1-[[L, (1 —d(P;, @)Y =1—exp[— % Yt d(P, @)*].

In (1.2), the upper bound is equal to Y%, d(P;, @:), whereas the lower bound is smaller
than % Y%, d(P;, @)% In particular cases (e.g., in cases which are dealt with in Section 3),
sharper estimates can be proved which, roughly speaking, depend on (3%, d(P;, @:)%)'2
For this purpose, we prove

THEOREM 2.5. Let (X;, o, P;) be probability spaces, vi/<; signed measures with v;(X;)
=1land g €dv/dP;fori=1,...,k Letf,=g — 1. For everym € {0, ..., k} and X%,
of-measurable functions y the following inequality holds (if the integrals given below
exist):

2.6) ' f vd Xk vi— J’ Y ko Z1si,<...<i]sk H{:l fi,om)d X%, P;
= [y | ¥ dOxte P expiEte P B P

where m; denotes the ith projection, the term for j = 0 is equal to one, and Pi(f}) = [ f?
dP;.

PROOF. Since Pi(f;) = 0 it is easy to see that the functions IT}., fiem,1=i<...<
i<k j=1,...,k, form a multiplicative system with respect to X %, P;. Put

hm= E;n:-O 215i1<~-.<ijsk H,J=1 fi, ° Ti,.
Using the identity
f=1 1+a)= Zfso Eisil<--~<ilsk HL,I a;

which holds for all real numbers a;, i = 1, ..., &, and applying the Schwarz inequality we
obtain

‘f¢dx5=1ﬂi—J¢hde?=1PilSfl\l/l|hk—hm|de=1P,~

172 172
= [J YV dxk Pi:l [J’ (he — hm)? d Xy Pi:l
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1/2
= [J’ ¢2 d x§=l Pz:| [2}=m+1 215i,<~~~<z]sk Hi=1 P;,( iz,)]l/z-
Thus, the assertion follows from the inequalities
. 1 .
215;,<...<i,sk I ai 51_7. (Eg;l |a:|)’

and

13
o

z 1
S — exp(z)z™ for z = 0.
i m!

ADDENDUM 2.7. For every indicator function y we get

1/2
[m eXp(Zf‘=1 P;(fzz))] (E{Ll Pi(fiz))(m“)/z

at the right-hand side of (2.6).

Hint. Use the equality

1
SUPwext_w, | (X1 1) (A) — J’ hn d X1 P, =§J’ |k = hp|d X1 P;

A

in the proof of Theorem 2.5.

3. Asymptotic expansion of the joint distribution of order statistics. Let M
denote the exponential distribution (with the distribution function G(x) = 1 — e for x
= 0). Let B denote the Borel-algebra of the set of all real numbers R. The rth order
statistic Z.,: R" — R of a sample of size n is defined by Z,..(x1, ..., Xx) = 2-» Where 2z,
< ... < z,, are the components of (xi, ..., x,) arranged in the increasing order. The
starting point of our calculations will be an asymptotic expansion of the distribution of a
single order statistic Z., under M. Denote by P*T the measure which is induced by the

probability measure P and the measurable map T.

LEMMA 3.1. For every m € {0, 1, 2, ...} there exists a constant Cn > 0 such that for
everyre {1,...,n}

| (=T i T m
M+ — Zn— G > B)— | A+YZi L) dN
B

n (m+1)/2
= Cm(r(n - r))

where L,,; are polynomials of a degree equal to 3i, [ L,,; dN = 0, and the coefficients of
L,,; are of order O((n/(r(n — r)))"?).

Supges

In particular,
1/2
2n—r n
32 L., = 3 _
( ) , ,1(x) 6(r(n—r)n)1/2x (r(n_r)) X
and
1 x8 x*

L. - - & a2 _x 2 _ +r?

n,2(x) ey [72 2n—r) 51 (14n* — 10nr + r*)

2 1

2—
2(n nr+r2)].

+%n(2n—r)—r-
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ProoF. We shall only sketch the proof because the method is essentially the same as
in Reiss (1976), Theorem 2.7: let @ denote the uniform distribution on (0, 1), and P, =
Q™[ (n**/(r(n — 1))*(Z,. — r/n)]. Firstly, an asymptotic expansion of the density of P,
is proved which holds true over A,, = [~log(min{r, n — r + 1}), log(min{r, n — r + 1})].
Integrating over A,, we get an asymptotic expansion of P,, which holds uniformly over B
N A,.. An appropriate estimate of P,,(R\A.) is obtained by using the exponential bound
theorem. Combining both results we get an asymptotic expansion of P;,, uniformly over B.
An application of the probability integral transformation leads to Lemma 3.1.

We remark that a detailed proof of the step from the uniform to the exponential
distribution in the proof of Lemma 3.1 is given in Reiss (1977), Section 16.

The results of Section 2 can be applied to the joint distribution of an appropriate set of
differences of order statistics if the exponential distribution M is the underlying distribu-
tion. An asymptotic expansion of the distribution of a single difference can be obtained by
combining Lemma 3.1 and the following

LEMMA 3.3. Put Zy,=0. Foreveryr,s,n€ NU {0} with0=r<s=n
M (Zs:n - Znn) =M""*Zern-r

ProoF. Let m; denote the ith projection from R*"to Rfori€ {1,...,s— r} Applying
the well-known formula

Mn*((Zr.n - r—l:n)/(n -r+ 1))';=1 =M"

we get
M (Zs:n - r.n) =M"* (Ef;f (Zr+i:n - r+i—l:n))
= (M"(Zr+in — Zrvi-1n)i=0)* Y 0=1 ) =M <2f;lrrr-7:£—;j-—f>
= [x =1 (Mn—r* (Zi:n—r - Zi—l:n—r)]*(z‘z’:; 771')
= Mn—r* (Zf;{ (Zi:n—r - Zi—l:n—r)) = Mn_r*Zs—r:n—r-
Givenk € {l,...,n}and0=ro< .-+ <rpa=nletr:=(r, ..., re+),
k
Q= Mn,{((n — ) = ) (z ~Z - G( ~ris )))] ’
ri—rnI-— n—ri 1
and

Lr,i,j = Lr‘—rl_l, n—ri-j

where L, ,; are the polynomials as given in Lemma 3.1.

THEOREM 3.4. Foreveryme€ {0,1,...}
supseg* | @-(B) — (X1 vim)(B) |

n—=ris (m+1)/2 n—ris (m+1)/2
=Cn 2C, Ve, (—m0—— o
exP[ 2 ((ri —riz)(n—r) ) ] ' ((n —ris)(n—r) )

where C,, is the constant as given in Lemma 3.1, and v, is the signed measure with the
N-density 1 + ¥7-1 Ly ).

ProoF. Since Z,., — Zy,_;n, L = 1, ..., k, are M"-independent, the assertion follows at
once from Corollary 2.2, Lemma 3.1 and Lemma 3.3.

We remark that
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n—r (m+1)/2
k T <2941 —(m+1)/2
=1 |7 — = 21 (i — ric1) .
! ((r,- —rid(n—r) ) 2

Applying Addendum 2.7 and Theorem 3.4 we obtain at once

COROLLARY 3.5. Foreveryme {0,1...} andwe€E {0, ..., k}

SupBes*

Qr(B) - f (Ez=0 215i,<...<iusk H:=1 Zj”il (Lr,is,j ° ﬂis)) de
B

< supgest | Q-(B) — (X =1 vim)(B) |

1 m w:
+ [m exp(zﬁﬂ J’ (Z;’Ll Lr,i,j)2 dN)1/2 ( ?=1 J’ (Ej=1 Lr,i,j)2 dN)( +1)/2‘

In the particular cases of m = 1 and w = 0, 1 we obtain the following approximations.
(3.6) supses | @B) — N*(B) | = C1 exp[2Cip0,1p- + 37/ exp[p-/3]p-"%,
and

(3.7  supgest =< (C exp[2Cip,] + exp[p,/31/3)pr

QAB) — J’ (14351 Lyis o m) dN*
B

where

‘_ k n—ri-
R o N [

Notice that the error bound for the normal approximation to @,in (3.6) is better than
that in Theorem 3.4 (applied to m = 0).

The corresponding results for the joint distribution of order statistics—in place of
differences of order statistics—are obtained by straightforward transformations: let g(x)
= ¢ * for x > 0, and

oo () 3)]

i=1

R 1/2 k
pom (- 3 (i) )

(n—=ri-)(n—r) i

and N, the k-variate normal distribution with mean vector zero and covariances (r;/n)(1
— (rj/n) for 1 =i <j =<k Since P,= Q, * T, and N,= N* x T, it is easy to see that
Theorem 3.4 and Corollary 3.5 hold true for Py, N,, (X %1 »;n) * Trand L,,;; Sy, in place
of @, N*, X%, v;n and L, ; where

1/2
nin —ri-)(n—ry) T i1
Sr,i = -
ri — I-1 n—r;, n-—ri-

with the convention that 7, = 0.

These calculations show that Corollary 3.5 is essentially the main result in Reiss (1975)
in the particular case of the exponential distribution. An extension of Corollary 3.5 to other
probability measures can be obtained by using the probability integral transformation as
it was done in Reiss (1975) with the uniform distribution as a starting point. We remark
that the theorem in Reiss (1975) additionally provides us with sharp error bounds in the
case of probabilities of moderate deviation; on the other hand, those cases are excluded
where p,= (log n) 5. If m = 2, then Theorem 3.4 yields that X {-; »; » is an approximation
to @,in cases where Corollary 3.5 is not applicable for any m and w. This gain is achieved
at the cost of the simplicity of the approximation. Whereas X % »; » has a polynomial of
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degree 3km as density with respect to N*, the degree of the corresponding polynomial in
Corollary 3.5 does not depend on %.
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