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THE EMPIRICAL DISCREPANCY OVER LOWER LAYERS AND A
RELATED LAW OF LARGE NUMBERS'

By F. T. WRIGHT

University of Missouri-Rolla

Let {X.} be a sequence of independent random variables which are
centered at their means; let {T:} be ani.i.d. sequence of 8-dimensional random
vectors with common distribution y; and let {X;} and {T%:} be independent.
With Zthe collection of lower layers, a necessary and sufficient condition for
the almost sure convergence of supre «| Y%=, xz (Tk)/n — p(L)]| to zero is
given. In addition, this condition on p is shown to imply that supLe «| 5.,
XixL(Tr)|/n — 0 a.s. provided the X, satisfy a first moment-like condition.

" Rates of convergence are also investigated.

1. Introduction. Let {f,} be a sequence of points in Rg, the 8-dimensional reals; let
{X+} be a sequence of independent random variables (We think of X, as being associated
with ¢, for k=1, 2, ...); let & be a nonempty collection of subsets of Rg; let xa(:) denote
the indicator of the set A; and let

Sw(A) = Y1 Xixalts), for ACR; and M = supac.|Si(4)|/n.

The collection & of primary interest here is .%, the collection of lower layers. A Borel set
L is a lower layer provided x € L and y < x imply that y € L, where < is the usual
coordinate-wise ordering on R This choice of & is motivated by the study of the
consistency properties of an isotone regression estimator (see Wright (1979)). We will
consider conditions on {t;} and {X;} which imply that MY — 0 a.s. We express the
conditions on {X,} in terms of F(y) = sup:P[|X:| = y]. It is well known that } i~ Xi/n
— 0 a.s. provided

©

1) E(Xk)=0fork=1,2,...,F(y)—>0asy—>ooandj y|dF(y)| < .

0

For the case 8 = 1, Brunk (1958) proved that M — 0 as. for any sequence {t:}
provided the random variables {X,} have zero means and satisfy the rth order Kolmogorov
condition for some r = 1. Hanson, et al. (1973) have shown that these assumptions on the
sequence {X,} can be replaced by (1). For 8 = 2, Wright (1979) gave an example to show
that some conditions must be imposed on {t;} if M  is to converge to zero. The conditions
studied in that paper are most easily understood in the case in which {#:} is the realization
of a random sequence. So we assume throughout this note that {7%} is an i.i.d. sequence
of B-dimensional random vectors with {X,} and {7} independent. Denoting the common
distribution of the T} by u, he has shown that M ;¥ — 0 a.s. provided {X,} satisfies (1) and
the continuous singular part of u vanishes. Smythe (1980) extended this result and gave a
very nice proof using a theorem due to Steele (1978) concerning the empirical discrepancy.
Smythe has shown that the condition on u can be weakened to assuming that u., the
continuous part of u, does not charge the boundary of any lower layer. (Brunk, et al. (1956)
have shown that the Lebesgue measure of the boundary of a lower layer is zero.) This
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result is clearly not optimal since, in the case 8 = 2, the distribution p which is uniform on
{0} x (0, 1) assigns positive probability to the boundary of the lower layer (—x, 0] X R,
but the desired result should hold since {0} X (0, 1) is linearly ordered. In fact, Theorem
8 of Wright (1979) shows that M ;¥ — 0 a.s. in this situation if {X,} satisfies (1).

By modifying the work of Dehardt (1971), we obtain a sufficient condition for this
convergence which is optimal for these random {7%}. In particular, it is shown that the
condition on p can be weakened to assuming that neither y nor any of its marginal
probabilities have continuous parts which charge any strictly decreasing graph. This
condition on p is also shown to be necessary and sufficient for the convergence to zero of
the empirical discrepancy over lower layers. The rate of convergence of P[M ;¥ = €] is also
investigated.

2. Results. The empirical discrepancy of T4, T, ..., T, and p over & is defined by
) Dy = supaew|un(4) — wA)|,

where p.(A) = Yi-1 xa(T%)/n. Examining the proof given for Theorem 1.1 of Smythe
(1980), it is clear that for {X,} satisfying (1), D7 — O a.s. implies that M ;¥ — 0 a.s. (For
example, if € denotes the convex sets in Ry, then this observation combined with Theorem
6.1 of Steele (1978) shows that M ¥ — 0 a.s. if supaecu.(dA) = 0.) So we wish to find an
optimal condition on p which implies D ;¥ — 0 a.s. This will be accomplished by establishing
an analogue to Dehardt’s generalization of the Glivenko-Cantelli Theorem.

Let # be a collection of real valued, Borel functions defined on R; and set

ffdun—J'fdu"

With .# the collection of all functions which are uniformly bounded by a fixed constant
and are monotone in each variable separately (such functions may be nondecreasing in
some of the variables and nonincreasing in the others), Theorem 2 of Dehardt (1971) states
that I;¥ — 0 a.s. if and only if . does not charge any strictly monotone graph in Ry. There
is a slight error in this result, but it can easily be corrected. A Borel set B in R, is said to
be a decreasing graph (d.g.) provided B n (-, b] C 3(—x, b] for each b € B. (Here
(—, b] denotes the set {¢: £ € R, t < b}.) Furthermore B is said to be a strictly decreasing
graph (s.d.g.) provided B n (—o, b] = {b} for each b € B. Of course, these really are
decreasing or strictly decreasing graphs with respect to the ordering s < ¢ provided s; < ¢;
fori=1,2,..., k. A monotone graph (strictly monotone graph) is a decreasing graph
(strictly decreasing graph) with respect to this coordinate-wise partial order or one of the
other 2* — 1 partial orders obtained by reversing one or more of the inequalities s; < ;.
Forl=k=Bandl1=i<ix<.-- < <P, let i, .., denote the distribution of
(T, T, ..., T{¥). It can be shown that I ¥ — 0 a.s. if and only if for each k € (1, 2,
.oBlandl =i << - < =B, Wi, ., does not charge any s.m.g. in R,.
Dehardt (1970) has shown that I';¥ — 0 a.s. implies that p. does not charge any s.m.g. in
R;. However, if f is a monotone function defined on Ry, then f*(¢, &, ..., &) =
f(t, t,, ..., t;) is a monotone function on Rz and so it follows that this new condition is
also necessary. (The needed modifications of Dehardt’s proof of sufficiency are given in
the proof of Theorem 2.) We now give an example to show that this new condition is in
fact stronger than the original one.

I = supfe.n

ExXAMPLE. Let 8 = 3, let T and T be independent with T'(" a continuous random
variable and let T? = — T{". Now .2 is continuous and u;2(B,) = 1 where By = {(t;, t): &
= —ty} is a s.d.g. in R,. Furthermore, any s.m.g. contained in By X R, the support of y, has
no more than one point with a given first coordinate. Consequently, 1 does not charge any
s.m.g.

To show that D,? converges to zero we need only consider the indicator functions of
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lower layers, which are nonincreasing in each variable. So throughout the remainder of
this note we take .# to be the collection of all functions which are uniformly bounded by
a fixed constant and are nonincreasing in each variable. It would seem reasonable to expect
that I;¥ — 0 a.s. if and only if

(3) foreachk€ (1,2,...,8}andl=i<i<:-- <=,
(Miys,,. . . i) c does not charge any s.d.g. in Ry.

This is in fact the case. It is interesting to note that the proof Dehardt gives for the
necessity of his condition shows that D ;7 — 0 a.s. (and consequently I ;¥ — 0 a.s.) implies
that u. does not charge any s.d.g. in Rg. Furthermore, if L is a lower layer in Ry, then L*
= {(t, toy ..., tg): (i, tiyy . . ., L) € L} is a lower layer in Rz and so (3) is also necessary for
DZ—0as.

THEOREM 1. Let {T}} be iid. with distribution p. I,¥ — 0 a.s. if and only if (3) holds.
Furthermore, if {(X,)} satisfies (1) and is independent of {T:} and if (3) holds, then M i
— 0 a.s.

Proor. For the first claim the necessity has already been shown and the proof of the
sufficiency is much like that given for Theorem 2 of Dehardt (1971). However, a stronger
result will be proved in the next theorem.

As was noted earlier, the first conclusion combined with the proof given by Smythe
(1980) for Theorem 1.1 establishes the second conclusion.

Considering the collection { f: f(¢) = x.(¢), L € £}, it is seen that the first part of the
theorem extends the work of Blum (1955), who has shown that if u is absolutely continuous,
then D¥ — 0 a.s. To see that this result extends Steele’s theorem, note that for B a s.d.g.
in R, with 2 < B8, B* = {(by, by, ..., bg): b, biy, ..., b)) € B} isad.g. in Rg; for B*ad.g.
in Rg, B* C L with L the lower layer Uyep+(—, b]; and (i, 5,. . . ,i)c < (fe)in, &2, . . ., ix. SO
if u. does not charge the boundary of any lower layer then (3) holds. Furthermore, the
second part of Theorem 1 extends the work of Smythe (1980) and Wright (1979). This
condition on p is optimal in the sense that it is also necessary if the {X,} are identically
distributed and nondegenerate. For, if MY — 0 a.s., then

My =sup{S.(L—L):L'CLwithL, L' € ¥}/n— 0 as.

Any Borel subset B’ of a s.d.g. B can be written in the form L — L’ with L' C L and L, L’
€ %, in particular B’ = (Upep(—o, b]) — (Upep((—, b] — {b})). Let D° be the set of points
t € Rg with p({¢}) > 0 and note that the T, which have values in D are distinct with
probability one. So for any s.d.g. B in Rg, M2 = Yi-1 X% xnp(Tk)/n as. If p.(B) > 0 then
M3 does not converge to zero a.s. Finally, note that if M;¥ — 0 a.s., then, with 1 < £k < 8,
l=siu<i< ... <ip=<p, and L(k) the lower layers in R,

SupL e (k) ' Z/"l=l X/ XL((T;L.‘)9 T}iz)’ sy T_(,*ik)) '/n -0 a.s.,

since L* = {(ty, ta, ..., tg): @iy, iy - - ., L) € L} is a lower layer if L is.

Wright (1979) investigated the rate of convergence of P[M ;¥ = €] to zero since this gives
an indication of the rate of consistency of the isotone regression estimator studied there.
It is of interest to establish the rates given there under this less restrictive condition on p.
These results are analogues of known results giving rates of convergence in the law of large
numbers. If, for some r > 1, {X,} satisfies

4) E(X;) =0,and y’F(y) > 0asy > ,

then p(n, €) = P[|n7' Yi-1 Xi| = €] = o(n™"*") for each € > 0. This is a special case of
Theorem 2 of Franck and Hanson (1966) and was proved in the identically distributed
case by Baum and Katz (1965). If {X,} satisfies

(5) E(X,) =0and F(y) < O(exp(—cy)) for y= 0 and some ¢ > 0,
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then p(n, €) converges to zero exponentially; that is, for each € > 0 there are constants
M(e) > 0 and p(€) with 0 < p(e) < 1 for which p(n, €) = M(e)(p(e))" forn =1, 2, .... This
is a special case of Theorem A of Hanson (1967) and was proved in the identically
distributed case by Cramér (1938).

THEOREM 2. Let {T:} be iid. as p and suppose that (3) holds. Then q(n, €) =
P[I}¥ = €] converges exponentially to zero for each € > 0. Furthermore, if {X,} satisfies
(4) and is independent of (T}, then r(n, €) = P[MZ = €] = o(n™"™") for each € >0 and if
{X,)} satisfies (5) rather than (4), then r(n, €) converges exponentially to zero for each €
> 0.

Proor. We first show that q(n, €) converges to zero exponentially for each € > 0. The
proof is patterned after that given for Theorem 2 of Dehardt (1971) and begins by proving
several lemmas. Dehardt has shown that with &(., .) the Lévy metric on 4, #(A) = { fa:
f € M} is compact if A is a bounded rectangle and £, is the restriction of f to A, and that
fr, f € M and 8(f,, f) — 0 imply that £, (t) — f(¢) at each continuity point of f. (See his
Lemmas 7 and 8.) Brunk, et al. (1956), have shown that the discontinuities of an f € # lie
on a countable number of decreasing graphs. So if 4 does not charge any decreasing graph,
then Ta(f) = [a dfu is continuous in the metric § for each Borel set A C R;.

LEmMA 1. If {A.} is a partition of Rg and

j fdp,,.—f fdp Ze]

converges to zero exponentially for each € > 0, and each k =1, 2, ..., then so does q(n,
€).

q(n, e Ax) = P[supfeﬂ

PROOF. Fix € > 0, let C denote the uniform bound on the elements in .# and choose N
so that u(Ug-n Ax) < (6C)'e. Clearly g (n, €) is bounded above by S¥_1q(n, (2N)7'e, Ax)
+ q(n, €/2, Up=n Ax) and the proof is completed by showing that the last term converges
to zero exponentially. But

j fdp. —p) IS Clpn(Ur>nNAr) — n(Ur>nAr) | + €/3,
UpsnAg

and 5o q(n, €/2, Uz nAr) < P[(| tn(Ur>nAr) — p(Ur>nAsr) | = (6C) ‘€] which converges to
zero exponentially since Xi = xu,_ya,(Te) — p(U;>nA)), k + 1, 2, ... satisfy (5). (Any
uniformly bounded sequence of random variables which are centered at their means

- satisfies (5).)

LEMMA 2. If g(n, €, A) converges to zero exponentially for each € > 0 and for each
bounded rectangle A, then so does q(n, €).

Proor. This is a corollary to Lemma 1.

LEMMA 3. If u does not charge any decreasing graph in Ry, then q(n, €) converges to
zero exponentially for each € > 0.

Proor. We consider an arbitrary bounded rectangle A and recall that.#(A) is compact
and that T4 (-) is continuous. For a fixed € > 0, #(A) is covered by neighborhoods N(f)
such that g € N(f) implies that | f4 (f— g) du| < e/4. Let N(f1), N(f2), ..., N(f,) be a
finite subcovering and note that there are “smallest” and “largest” elements in the closure
of N(f;) for each i. Denote these by g;; and gix fori =1, 2, ..., a. So for any g € N(f.),
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8ia(t) = g(t) = gu(t) for each t € A. Notice that [4 (g2 — gi1) dp < €/2 and q(n, €, A) is
bounded above by

L, Y8, P[

f & dlpn — 1) ' = (4a)‘le} .
A

Each of the terms in this sum converge to zero exponentially since X, = gi;(T:)xa(T%) —
fA 8ij d,u, k= 1, 2, e satisfy (5)

LEMMA 4. Let B be a Borel subset of Rg with u(B) > 0 and let p* be defined by p*(A)
= (A n B)/u(B). If ¢*(n, €) = Plsupse«| [ f dut — [ f du*| = €] converges to zero
exponentially for each € > 0 with p¥ (A) = Y i-1 xa(T#)/n and {T}} iid. as p*, then q(n,
€, B) converges to zero exponentially for each € > 0.

Proor. If u(B) = 1, then the result is clear. For 2 = 1, 2, . . . define T} to be the value
of T; where j is the kth index for which T; € B and note that {T'#} isi.i.d. as p*. Now let
J f dp¥ = 0if n = 0 and observe that supse.«| [5 f du. — [5 f du| is bounded above by

(B
I:I.((B)) ffdﬂ:-nn(m - ffdlt*

del":m,.(B) - J'fdﬂ*

where C is the uniform bound on the functions in .#. Clearly, P[C|u.(B) — u(B) | = €/2]
converges at the desired rate and the probability that the first term exceeds €/2 is bounded
by maxy > nu),2q9* (R, €) + P (B) < u(B)/2]. Both of these terms behave as specified.

ForACR,withk<Bandl=<i<ip<-.-- < =<p, define A* = {(ay, a, ..., ag):
(ai, @i, ..., a;,) €EA}. We call A* a 8-dimensional extension of A.

=

supre.«p(B)

+ C|p(B) — u(B) |,

SUupPre. .«

LEMMA 5. IfBisad.g. in Rg, then there is a s.d.g. By in Rs and a countable collection
{B 7} »-1 of B-dimensional extension of s.d.g.’s (with possibly differentkand 1 <i; < --.
< i < ) for which BC By u U ;- B}.

ProoOF. Since the only d.g.’s in R; are singletons the statement is clearly true for 8 =
1 and the proof proceeds by induction. For an arbitrary B, choose B, to be {b € B: there
does not exist b* € B with b* < b or b < b*} and set B’ = B — B. Clearly, By is a s.d.g. in
Rg and B’ = {b € B: there is a b* € B with * < b /or b* = b and b, = b} for at least one
i}. Because of the inductive hypothesis it suffices to show that B’ is contained in a
countable union of B-dimensional extensions of 8 — 1 dimensional d.g.’s.

Forie€ (1,2,..., B} and t € Rs we let ¢, denote (¢, ..., tii, ti+1, ... tg) where, of
course, £; represents the ith coordinate of ¢. Define the nonincreasing function on Rs_; by

fi(t) = sup{b;: b € B’ and b = t} (sup ¢ = —).

(This function is not necessarily finite.) We show that if & € B’, then for some i, b, is a
discontinuity point of f.. Suppose that b, b* € B withb;, = b} fora=1,2,..., kand b, <
bfforj & {i,a=1,2,...,k} withk<pB.Choosei € {1,2,...,8} — {iua=1,2,...,k}
and note that for a < b, fi(a) = fi(by) = b¥. But for b, < c(s < t means s; < ¢; for each
i), file) < b; since by = c with b* € B’ implies that b, < b{y and so b; < b;. Hence, by, is
a point of discontinuity of f; since &} > b,. (Similarly, b%) can be shown to be a point of
discontinuity of f..) The proof of the lemma is completed by noting that Brunk, et al.
(1956), have shown that the discontinuities of each f; are contained in a countable number
of d.g.’s.

LeEMMA 6. If B = 1, then q(n, €) converges to zero exponentially for each € > 0.
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ProOF. Let A; denote the atoms of y and partition R; by (U;4;)°, A, A,, ... It is clear
that g (n, €, A;) converges at the proper rate for each € > 0 and for each j. Define p* as in
Lemma 4 with B = (U;A,)° and observe that u* does not charge any decreasing graph since
the decreasing graphs in R; are singletons. Applying Lemmas 1, 3 and 4, the proof is
completed.

Before considering arbitrary 8, we restate Dehardt’s definition of a flat. A set of the
form {t,, ..., tg):t;, = ¢, ... 8, , = cp-j} is called an i-dimensional flat for i =0, 1,..., B
— 1. Let Ao denote the 0-dimensional flats in Rg which are charged by u (these are the
atoms of ), let Go = U;Aq, let A1 ; be the 1-dimensional flats in Ry for which u(A;,; n G)
>0, let Gy = U;A,, let A;; be the 2-dimensional flats in R for which p(Az,; N (Go U G1)°)
> 0 and repeating this process let As_; ; be the 8-1-dimensional flats for which u(4z-1,,; N
(G() u...u Gﬁ—2)c) > 0.

The proof of Theorem 2 is an induction on B. The result is valid for R; and so we
suppose it is valid for R; withj = 1,2, ..., 8 — 1. By Lemma 1 it is sufficient to consider
q(n, € Go), g(n, e, G:n GY), ..., q(n, € Gg1 N (Go U --- U Gp1)°). Since q(n, € Ao,))
behaves properly for each j, we appeal to Lemma 1 to show that g(n, €, Go) also does. In
considering q(n, €, Gz 0 (Go U - - - U Gi—1)°), we note that the A, ; which make up G could
have been chosen to be subsets of 2-dimensional flats and disjoint. So applying Lemma 1
again, we need to show that g(n, €, Ax; N (Go U - -+ U Gi—1)°) behaves as specified. Define
pEAA) =pA N A0 (GoU + -+ U Gro1))/p(Arj 0 (Go U -+ - U Gy-1)°) and hote that since
n; has support contained in the k-dimensional set A, it may be viewed as a probability
on the Borel subsets of Ry. So according to Lemma 4 we need to show that the desired
conclusion holds for this probability, but this follows from the inductive hypothesis if u% ;,
viewed as a probability on R;, satisfies the k-dimensional analogue of (3). To show that
1%; satisfies the k-dimensional analogue of (3), note that u%,, viewed as a probability on R,
is continuous, its marginals are continuous, and if 1 < « < k and B is a s.d.g. in R, then B
X {(Cr+1, - - - » Cp)} 1S @ 8.d.g. In Rg_prq.

For the last term, define p*(A) = p(A N (Go U -+ - U Gpg—1))/u((Go U -+ U Gg-1)°) and
note that u* as well as all of its marginals are continous. Furthermore, appealing to Lemma
5, we see that p*(B) = 0 for any d.g. B in R, which according to Lemma 3 yields the
desired conclusion.

With straightforward modifications, the proof of Theorem 1.1 of Smythe (1980) can be
used to show that r(n, €) converges to zero at the proper rate. So the proof of Theorem 2
is completed.

It is interesting to note that even though P[D; = €] converges to zero exponentially,
D ¥ does not obey the law of the iterated logarithm for 8 > 2. This latter result is due to
Steele (1977) and the question is still open for 8 = 2.
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