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ON SKEW BROWNIAN MOTION

J. M. HARRISON! AND L. A. SHEPP

Stanford University and Bell Laboratories

We consider the stochastic equation X(¢) = W(t) + BI¥t), where Wis a
standard Wiener process and I%-) is the local time at zero of the unknown
process X. There is a unique solution X (and it is adapted to the fields of W)
if | ] = 1, but no solutions exist if | 8] > 1. In the former case, setting a = (8
+ 1)/2, the unique solution X is distributed as a skew Brownian motion with
parameter a. This is a diffusion obtained from standard Wiener process by
independently altering the signs of the excursions away from zero, each
excursion being positive with probability a and negative with probability 1 —
a. Finally, we show that skew Brownian motion is the weak limit (as n — )
of n7"2Si.,, where S, is a random walk with exceptional behavior at the
origin.

1. Introduction. Recently Walsh (1978) has resurrected a simple but intriguing
diffusion process that It6 and McKean (1965, Section 4.2, Problem 1) called skew Brownian
motion. This is really a class of diffusions X, = {X,(¢), ¢ = 0}, indexed by 0 < a < 1, which
It6 and McKean constructed by the following procedure. Let Z = {Z(¢), t < 0} be a
reflecting Wiener process on [0, «) and consider the excursions of Z away from the origin.
Change the sign of each excursion independently with probability 1 — « so that a given
excursion is positive with probability a and negative with probability 1 — «. It6 and
McKean assert (but do not prove) that the resulting process is a diffusion, and they
compute its scale and speed measures.

As an aid to intuition, it is helpful to keep in mind this construction of skew Brownian
motion by random flipping of Wiener excursions. In our formal development, however, we
shall define X, directly in terms of its scale and speed mesasures. The construction of X,
from its scale and speed has been discussed by Walsh (1978) and will be reviewed in
Section 2 below.

Our primary objective here is to connect skew Brownian Motion with a particular
stochastic equation. Let W = {W(t), ¢ = 0} be a standard Wiener process with respect to
a filtration {4, t = 0} on some probability space (2, & P). Given a real constant 8, we seek
a process X = {X(t), t = 0} which is adapted to {%} and satisfies

1) X(t) = W() + BI¥ (1), t=0,

where I{(.) is the local time at zero of the unknown process X, meaning that
1
(2) 15(¢) = limgyo 3¢ Mmeasure O=u=t|Xw|=e).

Such a process X will be called a solution of the stochastic equation (1)-(2). It will be
shown in Section 3 that there is no solution if | 8| > 1, and there is a unique solution if
[B] = 1. In the latter case, the unique solution X is adapted to the fields {#} of the
Wiener process W and is distributed as the skew Brownian motion X, with parameter «
=(B+1)/2

In Section 4 we show that X, can be obtained as the weak limit of a normalized random
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walk which has special behavior at the origin. We consider a Markov chain {S,} on the
integers which behaves like a symmetric +1 random walk except at zero. Starting from
zero, the process moves up by one with probability a and down by one with probability 1
— a. It is shown that n™"/2S},, converges in distribution to X,(¢) as n — o for all ¢ > 0. This
argument can easily be extended to show weak convergence in function space.

2. Skew Brownian motion. In this section, to avoid trivial complications, we treat
only the case | a| < 1. Our terminology and notation for one-dimensional diffusions follow
Freedman (1971). Let

(3) a if x<O.

.
Let W= {W(t), t = 0} be a standard Brownian motion on some probability space and set
“) Yo(8) = W(Tu(9)), t=0,

where the time change T, is defined by

Ta(t)
(5) t=J du/ei(W(u)),
0 t=0.
Thus Y, is a diffusion in natural scale with state space R (the whole real line) and
infinitesimal variance function oXx). That is, the speed measure of Y, (in Freedman’s
terminological system) is

(6) m.(dx) = 2 dx/c%(x), xER
Next let
_)x/1Q - ), if x=0
@ ra(x) = {x/a, if x<o.
and define X, by '
@ X.(t) = ro(Yu(t)), t=0.
Thus the scale function of the diffusion X, is
_JA-ax, if x=0
©) Salx) = {ax, if x<0,

(the inverse of r,). The construction, given by (4) and (8), of the diffusion X, from its scale
function and speed measure is of course standard in the theory of diffusions, cf., Freedman
(1971), pages 102-106. In specifying the scale and speed for skew Brownian motion, Walsh
(1978) seems to have made some minor computational errors, and we have corrected them.
Walsh gives several other interesting characterizations of this process, and he calculates
the generator and transition density of X,. (We believe that these calculations are correct
with our construction of the process.)

Skew Brownian motion appears as a weak limit in a theorem proved by Rosenkrantz
(1975) and by Portenko (1976), although these authors do not attach any name to the
process. Note that Rosenkrantz (1975) uses the terminological system of Mandl (1968),
rather than the Freedman (1971) system employed here. (The scale and speed measures
are defined differently in the two systems.)

3. The stochastic equation. Let (Q, % P) be a probability space and {%, ¢t = 0} an
increasing family of sub-o-fields. Let W = {W(¢), ¢ = 0} be a standard Brownian motion
adapted to {#} and such that W(¢ + u) — W(¢t) is independent of Zif 0 <t =<1t + u < oo.
(This is the usual set-up for the study of stochastic differential equations.) For concreteness,
assume W(0) = 0. In this section we prove existence and uniqueness results for the
stochastic equation (1)-(2).
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Suppose first that X is adapted to {#} and satisfies (1)-(2) for a constant 8 with | 8|
< 1. Let a = (B8 + 1)/2 and define the strictly increasing and continuous function s,(-) by
(9). Next let

1-a) if x>0
(10) flx) =491/2 if x=0,
a if x<O

so that f(.) is the average of the left and right derivatives of s,(-). Observe that s,(-) is
twice continuously differentiable (with second derivative equal to zero) except possibly at
zero, where its first derivative jumps by y = (1 — 2a). Let Y(¢) = s,(X(¢)) for ¢ = 0, and note
that Y(0) = X(0) = 0. From (1) and (2) we have that X is a semimartingale, since Wis a
martingale and /7 is adapted and nondecreasing. Directly applying the generalized It6
formula that appears as Theorem 5.52 of Jacod (1979), we then have that Y is a
semimartingale with differential

dY(e) = fX(O) X +5 v dI()

= fX(®)(dW() + B dIF (1) + 2 y di5(2)
(08) 2

= f(Y()) dW() + f(0)B di5(t) + % y dI5(8)

= f(Y(¢)) dW(?).

(In writing the third equality of (11), we have used the fact that /3(-) increases only when
X(-) = 0.) Moreover, if Y is any process adapted to {#} and satisfying (11) plus Y(0) = 0,
one can apply the generalized It6 formula to conclude that the process X defined by
X(t) = r(Y(2)), t = 0, satisfies (1)-(2). Thus we have that X satisfies (1)-(2) if and only if
Y = r(X) satisfies

(12) Y(t) = J AY (@) dW(w), =0,
[

Now the Theorem of Nakao (1972) says that this stochastic differential equation (12),
with its strictly positive and discontinuous coefficient function f, has a unique solution Y,
and that solution is adapted to the fields {#} of the Wiener process. (In the usual
language of stochastic differential equations, (12) has a strong solution, and there are no
additional weak solutions.) Combining this with our earlier observations, it follows that
(1)-(2) has a unique solution X, and this solution is adapted to {.9"'}"' } as well.

Finally, if Y is the solution of (12), any of several standard arguments can be used to
show that Y is a diffusion in natural scale with infinitesimal variance function ¢Z(-). One
can, for example, use the theorem on page 112 of Gihman and Skorokhod (1972) to show
that Y satisfies (4) and (5) with another standard Wiener process W* in place of W. Thus
Y has the same distribution as the process Y, discussed in Section 2, implying that the
unique solution X of (1)-(2) is distributed as the skew Brownian motion X,,.

Next suppose that X is adapted to {#]} and satisfies (1)-(2) for 8 = 1. (The case 8 =
—1 is treated in a symmetric fashion.) Set a = 1 and define

_Jx if x=0

1 if x<O

(14) flsy=4% if x=0
0 if x>0.

Note that these definitions extend (9) and (10) to the case a = 1. Let Y(¢) = s(X(¢)) for ¢t
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= 0. Exactly as in (11), we now apply the generalized It6 formula to obtain

(15) Y() = J fX(®) dW), =0
0

From (13) we see that Y(.) is nonpositive and continuous with Y(0) = 0, while (15) says
that Y is a martingale. Thus Y(-) = 0 almost surely, meaning that

(16) Xt =0 forall ¢=0 almost surely.
Now let M(¢) = —inf{W(u):0 < u < ¢t} for ¢ = 0. From (1), (2) and (16) it follows that
(17) X(t) = M(¢), t=0.

Here is the argument. From (1) and (16) we have () = M(t) for all ¢. If strict equality
holds for some ¢, then it must hold for some ¢ that is a point of increase for 1&-). But this
means that I3(-) increases at a time ¢ where X(£) > 0, contradicting (2).

It is well known that the process X(¢£) = W(£) + M(t) satisfies (1)-(2), meaning that X
= M when X = W + M, and we have shown above that it is the only possible solution.
Finally, it is well known that X = W + M is one representation for a reflecting Wiener
process on the upper half-line, and this is how one defines the skew Brownian motion X,
when a = 1. )

For the negative result, suppose that X is adapted to {#} and satisfies (1)-(2) with 8
> 1. (The case 8 < —1 is treated in a symmetric fashion.) Let

_jJa-px if x<O
(18) s(x)_{(l+,8)x if x>0

and
1-8 if x<O0
(19) f(x) = {1 if x=0
1+8 if x>0.

Let Y(¢) = s(X(¢t)) for ¢t = 0. Applying the generalized It6 formula as in (11), we again have
dY(t) = f(X(¢)) dW(t), and hence Y is a martingale. But Y is nonpositive by (18) and Y(0)
= X(0) = 0, so it must be that Y(-) = 0 almost surely. This implies X(-) = 0, which
contradicts (1)-(2). We conclude that there can exist no solution X of (1)-(2) with | 8| > 1.

4. A random walk result. Let {Sy, S;, ...} be a Markov chain on the integers with
Sp = 0 and transition probabilities

P{Sisi=Si+1[So,...,S) = {11/2‘ a ‘ofthflf;sg

P{Sk+1=Sk—1|SO,...,s,,}={0‘ if Sp=0

Y otherwise.
Fix t > 0. We seek to show that

(20) n"2Stg — 9 Xalt) as n— o,

for which it suffices to show

(21) E {exp(ipn~"*Stmn)} — E {exp(ipXa(t))}

as n — o for all real p. This can be done without calculation in the following way. It is easy
to verify that

aP(| S| = m), if m>0

P(Sy=m) = {(l—a)P(ISkl =Im]), if m<0
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which implies that

(22) E {exp(ion ™" *Snn)} = an(p) + (1 — a)¥n(—p),

where

(23) ¥n(p) = E {exp(ipn™""*| Spun |)}-

From the explicit results of Walsh (1978), (3)) we obtain the analogous formula
(24) E {exp(ipX.(t))} = a(p) + (1 — a)i(—p),

where

(25) ¥(p) = E {exp(ip | X.(?) |)}.

(This is of course obvious from the Ito-McKean construction of X,.) Walsh (1978) shows
that | X.(¢) | is a reflected Wiener process on [0, «). Similarly, | S.| is an ordinary reflected
walk on the nonnegative integers. Thus using standard results on random walks, we have
that n 7% | S.g | converges weakly to | X,(¢) |, which implies

(26) Yn(p) > Y(p) as n— oo,

Combining (22)-(26), we have (21) and hence (20). This argument can easily be extended
to show convergence of all finite-dimensional distributions (not just one-dimensional
distributions), and weak convergence in the function space D[0, ») can then be proved
using the moment criterion for tightness on page 128 of Billingsley (1968).

The result (20) can also be extended to a Markov chain {S.} having a more general
type of behavior at the origin. Suppose that, starting from zero, the chain {S.} moves to
a new state distributed as an integer-valued random variable Z. It can be shown that (20)
holds with a« = EZ*/E | Z|.
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