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ON THE WILLIAMS-BJERKNES TUMOUR GROWTH MODEL I

BY MAURY BRAMSON AND DAVID GRIFFEATH

University of Minnesota and University of Wisconsin

Williams and Bjerknes introduced in 1972 a stochastic model for the
spread of cancer cells; independently, this model has since surfaced within the
field of interacting particle systems as the biased voter model. Cells, normal
and abnormal (cancerous), are situated on a planar lattice. With each cellular
division, one daughter stays put, while the other usurps the position of a
neighbor; abnormal cells reproduce at a faster rate than normal cells. We treat
here the long-term behavior of this system. In particular, we show that,
provided it lives forever, the tumour will eventually contain a ball of linearly
expanding radius. This also demonstrates the ergodicity of the interacting
particle system, the coalescing random walk with nearest neighbor births. Our
techniques include the use of dual processes, and of different numerical
computations involving the use of imbedded processes.

1. Introduction. In a 1972 paper, Williams and Bjerknes [20] proposed -a simple
stochastic model for the spread of cancerous cells. Based on biological considerations, they
restricted attention to the basal layer of an epithelium, thereby obtaining a two-dimen-
sional setting. The cells, normal and abnormal, are situated on a planar lattice. With each
cellular division, one daughter cell stays put while the other usurps the position of a
neighbor. Splitting of each normal cell is assumed to occur at exponential rate 1, whereas,
due to “carcinogenic advantage,” each cancerous cell splits at rate k > 1.

Assuming the lattice to be Z?, these axioms give rise to a simple continuous time
Markov chain on the state space S, = {finite subsets of Z?}. (Actually, the hexagonal
lattice was preferred in [20], though the square and triangular lattices were considered as
well. Our results apply to all three lattices; Z* is chosen largely for notational convenience.)
If we let £2 denote the set of sites occupied by cancer cells at time £, given that the original
cancerous population occupies A € Sy, then the processes (£¢) .0 are Markov. Their jump
rates are given by

A;>Au{x} (x & A) atrate k|{y€A:|y—x| =1},

1
) A—>A—-{x}(x€A) atrate |{y€Ay—x| =1},

where | A | is the cardinality of A € S, and || x || is the distance from x to 0 (|| || = Euclidean
norm). For simplicity, Williams and Bjerknes restricted attention to the process (£9)
starting with a single abnormal cell at the origin. They noted that if 7, is the time of the
nth jump of (£)), and if S, = | £Y |, then (S,) is a simple random walk with positive drift
(x —1)/(k + 1) on {1, 2, . - - } and absorption at 0. Hence, letting 7% be the hitting time of
(£)) for the trap @ (= total recovery), the gambler’s ruin formula yields

(2) Pty <®) =P(S,=0 forsomen)=k"'1<1.

Thus P(t% = ) > 0, and on {r$ = o} the question arises: how fast does (£7) grow, and
what is the geometric nature of £} for large ¢? Unable to obtain rigorous results beyond (2),
Williams and Bjerknes resorted to computer simulations. Some tantalizing Monte Carlo
graphics, a few of which are included in [20], led the authors to formulate surprising
conjectures concerning the growth rate of the tumour and the dimensionality of its
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174 MAURY BRAMSON AND DAVID GRIFFEATH

boundary. Their simulations showed that the abnormal region was more or less a single
“blob,” the average radius of which grew faster than linearly, and the boundary of which
seemed to have asymptotic dimension greater than one.

Shortly thereafter, Mollison [14] gave a rigorous proof that the Williams-Bjerknes
conjectures were wrong, that |£7|"? grows at most linearly in ¢, and hence that the
boundary of £} remains one-dimensional in the limit as ¢ tends to . Mollison’s proof is
based on comparison of (£7) with a process (£7) for which recovery is impossible, i.e., where
transitions A — A U {x} are as in (1), but no transitions A — A — {x} take place. By a
change of time scale, (£}) may be thought of as the Williams-Bjerknes model with k = oo,
Hammersley [7] had shown that the maximal radius of this process without recovery grows
at most linearly, and since there is a joint realization of (£?) and (£7) such that P(£) C
£ Vt) = 1, the same result must also hold for (£?). More precisely, it can be shown that
there is a constant C < o such that

(3) P@At* <o £ CDaVtz=t*) =1,

where Dr & {x € Z% || x| = R}.

To date, equations (2) and (3) seem to be the only known rigorous results for (£7).
Several authors have studied this process, but have either relied on Monte Carlo simula-
tions ([4], [17]), or considered the limiting cases k = o [16] and « = 1([3], [11]). Among
these papers, the work of Richardson [16] is particularly relevant for our purposes. He

showed that if k = oo, then there isanorm || ||’, defined implicitly in terms of the process,
such that
4) Ve>03t* <o PDu-g:CECDusg)=1—€ Vit>t*

Here, D% = {x € Z% || x|’ = R}. Thus, £ has an asymptotic shape, the “radius” of which
grows linearly in time. An almost sure version of (4) was subsequently proved by Kesten
[12]. Richardson’s methodology relies heavily on the theory of subadditive processes,
pioneered by Hammersley [7] and developed further by Kingman [13]. The impossibility
of extinction is needed to exploit subadditivity directly; this explains the difficulty in
proving a result analogous to (4) for (£7| 7 = ).

Quite independently, the Williams-Bjerknes model has surfaced within the field of
interacting particle systems, where it is known as the biased voter model. Interacting
particle systems are Markov processes on the state space S = {all subsets of Z%}, for some
d = 1. The state A € S is interpreted as the (typically infinite) set of sites occupied by
particles, and the process (£#) represents the evolution in time starting from A. The biased
voter model, first considered by Schwartz [18], is a “spin system” with “flip rates” of the
form

cx(A) =x|{yEA:|y—x| =1} x€A,
=|{yeA%|y—x|=1}| xEA,

for some « > 1. (Intuitively, c:(A) dt = P(£4: = AA{x}).) The voting interpretation is as
follows: £7 is the set of sites occupied by voters in favor of some proposition, while voters
on Z¢ — ¢ are against the proposition. Each individual changes opinion at a rate
determined by neighboring voters, the rate being proportional to the number of neighbors
with the opposite opinion. But, “for” voters have more influence than “against” voters by
a factor of k > 1. When A is finite (and d = 2), (¢2) is simply a Williams-Bjerknes process.
For infinite A, one expects convergence of £ to Z¢ as t — ®, in some appropriate sense.
Partial results along these lines were obtained by Schwartz [18]. She proved that 8z and
824, the distributions concentrated at @ and Z¢, are the only invariant measures for the
system {(£%); A € S}, and showed that

(5) PErE )= 8za as t— o

(=> means weak convergence) for certain infinite initial configurations A. It seems intui-
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tively most plausible that almost sure convergence to Z¢ should occur starting from
arbitrary infinite A; but even the weaker question as to whether (5) holds for all A, i.e.,
whether

(6) lim; .. POE &) =1, A infinite,

has remained unanswered.

Our purpose in this paper and its sequel is to resolve some of the outstanding problems
concerning the Williams-Bjerknes model and its infinite counterpart, the biased voter
model. The main result of the present paper is a companion to (3), stating that (£79)
eventually contains a ball of linearly expanding radius provided the tumour survives
forever. Our methods apply equally well in any dimension, so our theorems will be stated
and proved for general d = 1. We remark, however, that the one-dimensional results are
quite elementary; they are discussed in [6].

THEOREM 1. Let (£7) be the d-dimensional Williams-Bjerknes model with carcino-
genic advantage k > 1. There is a constant ¢ = c(d, k) > 0 such that

(7) PAt <o D, CEVEZt*|1E=0)=1

As an easy consequence of Theorem 1, we will obtain an almost sure result for the
biased voter model.

THEOREM 2. Let {(£2); A € S} be the d-dimensional biased voter model with bias
k> 1. For any A € S, A # &, (7) holds with 0 replaced by A. For any infinite A € S,
P(r4 = ) = 1. Therefore,

8 P(lim, o7 = Z%) = 1.

(Any finite subset of Z* will eventually be permanently occupied.)

The proof of Theorem 1 relies on the additive nature of {(£7)}, and the resultant
duality theory (cf. [8], [9] or [10]). In particular, the dual interacting system {(£7)},
comprised of coalescing random walks with nearest neighbor births, provides the key to
the analysis. Each particle in£# attempts to jump to any one of its 2d neighboring sites at
rate 1/2d, and also attempts to give birth to a new particle at any one of its neighboring
sites at rate (k — 1)/2d. Whenever a particle attempts to occupy a site which is already
occupied, the two particles coalesce. We also make use of certain Markov chains {(X7); x
€ Z?%), which are imbedded in {(£#)}, to obtain estimates for certain occupational
probabilities which are relevant to the demonstration of Theorem 1. The processes (X7)
were previously exploited in [18]. The system {(£#')} is not without interest in its own
right: its countervailing effects of coalescence and nearest neighbor birth suggest a stable
ergodic theory. Using Theorem 2, we can obtain a ‘“complete convergence” result for

{(€1)):

THEOREM 3. Let {(£2)} be the system of coalescing random walks on Z° with nearest
neighbor births, of rate k. There is a unique invariant measure v for the system{(£3);
A €S — {D}}; v satisfies

9) Péte.)=v as to>oVAES- (T}

Section 2 contains the main steps in the derivation of Theorem 1. Proofs of several of
the necessary lemmas are relegated to Section 3. Finally, in Section 4 we prove Theorems
2 and 3, and make some concluding remarks.

In a subsequent paper we will show how to use Theorem 1 and a modified version of
Richardson’s technique to prove that (¢£7 | 7% = ) has an asymptotic shape. As in [16], the
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shape is defined by means of an implicit norm || ||*. The Williams-Bjerknes process,
conditioned on nonextinction, thus grows like a || | *-ball with linearly increasing radius.

2. The proof of Theorem 1: main steps. An explicit graphical representation of
{(£#); A € S} will be exploited throughout the remainder of the paper. This approach is
due to Harris [9]; the reader is referred to his paper or [6] for more details concerning the
construction. Start with the “space-time diagram” Z¢ x T. For each site x € Z¢ and each
neighbor y of x, draw an infinite sequence of arrows with 8’s on the head: 8. «,, from (y,
T1,) to (x, 71,), from (y, 72,) to (x, 72,), etc. The values 71,, 72, — 71,, -+ - are taken to
be independent exponential variables with mean 1/2d. Similarly, for each x and neighbor
y of x, put arrows without &'s on the head: .« from (y,7%,) to (x,7%,), from (y,7%,) to
(x, 72,), etc., where the 72, occur at rate (k — 1)/2d. Say there is a path up from y, s) to
(x, t), x,y € Z% 0 = s < t < o, if there is a chain of “upward vertical” (i.e., increasing in
time with fixed spatial coordinates) and directed “horizontal” (fixed time) edges in the
resulting diagram which leads from (y, s) to (x, ¢) without passing “vertically” through a
8. The &'s may be thought of as obstructions to the flow (or “percolation”) of liquid. Some
pictures of graphical representations for similar systems may be found in [6]. Now, define

&4 = {x: there is a path up from (y, 0) to (x, t) for somey € A}..

A little thought reveals that (£7') is the biased voter process starting from A, with bias .
In particular, if A = {0}, then (£?) is the basic Williams-Bjerknes process. This construction
has the useful feature that the entire system {(£')} is defined on a single probability space
in such a way that additivity holds, i.e.,

(10) ¢B=¢tu¢fP VABES, t=0.
Hence, there is monotonicity:
(11) ¢c¢? VACB, t=0,

a property which will be used repeatedly.

Let us now proceed to the proof of Theorem 1. B € Sy is a box centered at 0 if B = Bg
= {(x1, ++, xq): |x;| = R V i} for some R = 1, and is a box if B = B,r = Br + x (Br
translated by x) for some R = 1, x € Z% The basic strategy will be to establish two claims:

(a) the process (£? | 7% = ) covers a box B, for some random x € Z¢ at some random
time og < © P — a.s., for arbitrary R > 0; and

(b) If B is a very large box, then (£7) grows (at least) linearly for all large times with
overwhelming probability. Let us formalize (a) and (b), and show how they yield (7). We
state (a) as a lemma, the proof of which will be deferred to Section 3. (The proof is not
difficult.)

LEMMA 1. Let R > 0, og = min{¢: £} D B, r for some x € Z%}(= = if no such x, ¢ exist).
Then,

(12) Por<o|ry =) =1,

Linear growth is expressed by means of the events
Efe={(3t* <o B, CEMVEz=t*c'<c} x€Z%¢>0,A€ES,.

Our main task will be to prove the following version of (b):

ProprosiTION 1. There is a ¢ > 0 such that for any € > 0,

(13) AR<w: PEN=1-e

The proof of Proposition 1 is rather involved, requiring a number of preliminary steps.
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Assuming Lemma 1 and Proposition 1, however, Theorem 1 follows quite easily.

PROOF OF THEOREM 1 ASSUMING (12) AND (13). Note that

() E2c C {15 = o},

(ii) E2. is a tail event, and

(iii) E2. CE2, if AC B (by (11)).
Also, E2, = E§. for any x, and by translation invariance of {(¢2)}, P(E%.) = P(E2;%)
(A — x = the translate of A by — x). Thus,

(iv) P(E5s*) = P(EE?) ¥ x € Z°.
Assume Lemma 1 and Proposition 1. Given € >0, choose R so that (13) holds. By (12), (13)
and (i)-(iv), we have

P(EQ, 18 = @) = T f Ploxe ds, £ = A)P(ED)

s

=Ya f P(or€ds, £,=A)P(ES:

= P(or <) P(EG%
= P(1p =) (1 —e).

Since € is arbitrary, P(E{% | v = «) = 1. Finally, since Dr C Bg for any R, (7) follows (with
a slightly smaller ¢). [0

The remainder of this section is devoted to the proof of Proposition 1. We will estimate
the probability that £2% contains the box Bry, for all times ¢ = ¢;, where R(0) = R and R (¢)
grows approximately linearly in ¢ By choosing ¢; and R (¢) appropriately, and by letting R
— oo, we will show that this probability tends to one, thereby demonstrating (13).

Now, let

R=B+y,

where y is a positive constant, depending only on « and d, which will be identified in
Section 3. We will let 8 approach o, so that R will also. For k=0, 1, ..., put

Br=2"8,  si=2vdBu/p,

where p > 0 is another constant, depending only on k and d, which will be prescribed in
Section 3. Introduce a sequence of increasing times

tk=2;¢=18j (k=0,1,---; t0=0,
and a corresponding sequence of boxes Br)y, where
R(E) =B + v.

We consider the probability that for all £ = 1, £2% covers R(k) if t € [, t+1], an event
which is represented by the shaded region of the space-time “cross-section” in Figure i.
Let

kr = min{k = 1: Bry) Z £P* for some t € [t, tr+1]) (= o if no such ¢ exists).

Note that {kp =} C E&%, where ¢ = 8/t, = u/4«/3 is the slope of the right dotted line in
Figure i (as a function of ¢). To prove Proposition 1, it therefore suffices to show that
P(kr <) = 0as R— o, For k = 1, write

Fy = (3t € [t, tir1]: Brw Z &%),
G = {Bra C £57).
Note that
P(kp =k) < P(Fi 0 Gi—1) < P(Fy| Gr-),
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and therefore that
P(kr < ) =< Y1 P(F|Gr-1).
Applying the Markov property at time £, and using (11), we get
P(F4| Gi-1) = Znobau-r PERS = A| Gu1)P(3E E [54, 354]: Brewy Z §7)
= Yaosrgy PR, = A| Ga-1)P(3t € [s, 35]: Brasy Z £P70-)
= P(3t € [ss, 35 ]: Bray € £P70-0) = pr(k).
Hence, Proposition 1 will be proved once we have shown that
(14) limp... Yi=1 pr(k) = 0.
Next, define
Uy, = 44408

where d’ = d + 1 and @ is a small positive number which will be chosen later. To obtain
(14), we subdivide [s:, 3s:] into intervals I, of equal length:

Loy = [Sk1, Shue1] O=sl=u -1,

where sp; = s + (l/ur)sp+1, 0 = I < ui. Such a partition is illustrated in Figure ii. Also,
introduce the events

Hpi = {Bra Z £5540}

Hy; = (3t € Ii. Bry  £P7¢-0) 0 {Brpy C fﬁfi“’_" n if;{ii";"}-
Observe that

pr(k) = P([U;H},; ] U [U,H,,))
(15)
= uk[max,P(Hk,l) -+ max,P(ﬁk,z)].

The verification of (14) is accomplished with the aid of the following two estimates.

LEMMA 2.
(16) max,P(Hy,) < (2R (k)% p, f24 72k +00+k

where 1 is a constant depending on only k and d.

PROPOSITION 2. There are constants Cy < « and A > 0, depending only on « and d,
such that for B = v,

) max;P(H;) < (2R(k))%-2Cre™Fr1,
The arguments for (16) and (17) will be presented in the next section.
PROOF OF PROPOSITION 1 ASSUMING (16) AND (17). By (15)-(17), if 8 = v, we have
Si-1Dr(k) < Y51 ur(2R (k) [u1 B34 7R +EE 1 9 Cpe™MF-1]
= 2dulﬂ24—0ﬂ Z;::l (2kﬂ + Y)d4_kd+ CA2d+l4aﬁ Zz—l (2kB + ,Y)d4kd’e—)\2""/3.

Both sums are convergent, and of the same order as their 2 = 1 terms, uniformly in 8 for
B bounded below by a positive constant. Therefore,

d o\ B
Yi-1 Dr(R) = O(%) + O(ﬁd<§) )

—0 as B x,
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provided 8 > 0 is chosen small enough that 4° < e*. [
In the next section we will complete the derivation of Theorem 1 by presenting the
proofs of Lemmas 1 and 2 and Proposition 2.

3. The proof of Theorem 1: details.

Proor oF LEMMA 1. Fix R > 0. Set
of = min{t: £} D B, r for some x € Z¢}
(= o if no such x, ¢ exist);

or = of". By translation invariance, o}’ has the same distribution as oy for each y € Z¢.
Let P(0f’ = 1) = p. Clearly p > 0, since each {y} € Z¢ communicates with any B, . Using
the Markov property and (11), we have for any n = 0,

Pn<or=n+1)=YawPE¢r=A,0r>n)Poh=1)
= Yo P(én=A,0r>n)Plor=<1)
= pP(or > n, 75> n).
Thus,
Plor>n+1,73>n+1)<Plor>n+1,13>n)
= (1 - p)P(or >n, %> n),
and hence by induction,
P(or>n,t3>n)< (1 —-p)"
Let n— o to get P(or = @, 75 = ©) = 0, or equivalently, P(or < |7 = ) = 1.0
ProoF oF LEMMA 2. For Hy, to take place, some site x € Br) must be infected at
times sg,; and sg,;+1 but healthy at some intermediate time. Thus,
(18)  P(Hp) = (2R(R)* MaXep,,, Pt € I: x & £P70-0,x € £5r0-D 0 £2RE-D),

Consider the graphical representation of {(¢7)}. The event on the right side of (18) can
only occur if an arrow of type § « arrives at (x, t) for some ¢ € I;; and then an arrow of
either type arrives at (x, ¢’) for some later ¢’ € I ;. The probability of this is '

f j (e~ di) (ke di) = [ f e dt][ j ke dt’]
0<t<t'<ui'spn 0<t<uk'skn 0<t'<ui'skn
=(1- e—u;‘sm)(l _ e—xu;‘sm)
< Ku’:2s’2‘z+1 _ #1'824—2(kd’+0,3)+k'
where p; = 16 kd/p’. Using this estimate in (18), we obtain Lemma 2. [J
ProOOF oF PROPOSITION 2. Since
P(Hy,) < (2R(k))® maxeerp P(x & £570-0),
it suffices to show that for 8 = v,
(19) P(x & gortn) < 2Che ™1 V¥ x € Brp), k=1

We analyse the left side of (19) with the aid of a duality equation, which asserts that
(20) PEPnA=0)=P¢'nB=0) A,BE€S,
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where {(£#)} is the system of coalescing random walks with nearest neighbor births
described in Section 1. There are several different approaches to (20); we refer the reader
to [6], [8], [9] or [10] for various proofs. Here we simply mention that there is a graphical
representation of {(££)} precisely like the one for {(£#)} described in Section 2, except
that the obstructions & occur at the tails of the second type of arrow rather than at the
heads. One proof is based on this fact. Taking A = {x} in (20), one has

(1) P(x&¢7) = P& n B=0).

Next, we introduce a certain Markov chain (X%) which is imbedded in(£%), i.e., which
satisfies

(22) X;eé ve=o.

In the graphical representation of {(£#)}, the process (X%) starts at x and displaces
according to any random walk arrow 8§ — it encounters, but only according to certain
selected branching arrows —. Namely, the chain follows any branching arrow which carries
it closer to the origin; if some coordinate equals 0, it also follows a branching arrow leading
to the neighbor smwith the same coordinate equal to 1 (this last condition is simply a
technicality). Clearly (22) holds, since ((X%, £)) is a path up in the space-time diagram.
The jump rates for (X7) are: )

y— zatratex/2d if |z — y|| = 1 and either | z|| < | y||
ory=(y,...,ya)and z = (z1, ..., 24) satisfy
(23) Yi=0,2;,=1forsomei:<i=<d.
y—> zatrate 1/2d if | z — y|| = 1 and the other above
condition does not hold.

(No other transitions take place.) The key observation for our purposes is that (X7) has
uniformly positive drift toward the origin off of some ball D,. It is not difficult to show that
for large values of v, the drift of | X7 || toward 0 is minimized over states in Z¢ — D, at sites
located on the axes, and that this minimal drift is asymptotically (x — 1)/2d as y — .
Since exactly half of the neighbors z of any site y satisfy the first condition in (23), the
total rate at which (X7) leaves any state is (k + 1)/2. Therefore, the minimal expected
displacement toward 0 when a jump occurs, for states in Z% — D,, is asymptotically (1/d
(k —1)/(k + 1).
We now define a family of continuous time processes on [—7, ®) C R by

(24) Z5 = || X3yn | — v,

where a = || x || — y. Each (Z{**) makes jumps at total rate 1, and is, in a sense, a projection
of (X3/u+). For y chosen large enough, we may select y > 0, € > 0 so that (Zf*) has
minimal drift toward 0 of u + € > 0 on [0, »); in this case u and € will clearly satisfy

O<pu<p+e< le—1

€e<———,
p<H dek+1

The constants y and u so chosen are the ones which appeared in the previous section; note
that they depend only on x and d. Using (21), (22), (24) and the inclusions Dz C Bg:
Bg' C Dar, we have for any x € Bg,

Pxg¢P?) =PEiNBr=0)

= P(X? & Bg)
=P(Z*"zR—y)
<= max.=var P(Z{*“ = R — v).
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Therefore, for 8 = v,
(25) MaXce By, P (¥ € £524°Y) < maXes2vas, P (Z5° = Bir-).

(Zf*) has a positive minimal drift toward 0 on [0, ). A large deviations estimate is
needed to assert that the right side is of ordere*1. This will establish (19), and complete
the proof of Theorem 1. A general result which suits our needs is the following.

PROPOSITION 3. Let (Z7) be a continuous time pure jump process, with Z§ = a. (Z&)
is assumed to have independent mean-1 exponential holding times. Let N, denote the
number of jumps made by (Z) up to time t, and let (Y?) be the imbedded discrete time
process, ie., Y5 is the value of Z; after exactly n jumps. Assume that N, and Y¢ are
independent, that

(26) | Yo — Yi|sM<w  Vn
and that
(27) E[Yiu - Y |#]l=s—-n—€  as. whenever Y= 0,

where i, € > 0. (%, is the o-algebra generated by Y§, Y%, ... Y2.) Then, thereisa A > 0
and a C\ < « such that -

(28) P(Zt=B)=Ce ™1 +e™ %) Va8, t.
The proof of Proposition 3 is complicated by the fact that the bound on the drift in (27)

is only assumed on [0, ). So before proceeding to the proof, we show that (19) follows
immediately from (25) and (28).

PROOF OF PROPOSITION 2 ASSUMING ProposiTION 3. For any choice of x, Z& = Z&®
satisfies the hypotheses of Proposition 3, so
MaXe<2vap, P (Z5 = Br-1) < Cre™1(1 + e Moo 2Vdb0)

< Cxe")\Bk—l(l + e*MMk-Z*f&ﬂk))’
which, by definition of s, equals
2C)\e_)‘B"_'.

Using (25), we obtain (19) as desired. 0

Let us now state and prove the preliminary large deviation type results which we will
need to obtain Proposition 3. We now demonstrate Proposition 3, thereby completing the
proof of Theorem 1.

Proor or ProposITION 3. Inequality (28) follows from
(29) E[e¥] = C\(1 + e

by means of a Chebyshev estimate. Inequality (29) is in turn a consequence of the
differential inequality

(30) d%E[e*Z?] = — M E[é%] + Ay + ¥,
which we now proceed to prove. Making use of the independence of N; and Y3, we obtain

d o do, -
7tI«J[e‘Z"]—dt c.e ;!E[e\ 1

(31)
=y e—'gE[emﬂ-em].

n=0
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(The reversal of limits is easy to justify.) Now,
(32) E[e)‘Y:“ - e)\Yﬁ] = E[ef\Y:(e)\(Y‘,’m—Y‘:‘.) -1)]
= E[ef\YﬁE[e)\(Yﬁu—Y:) -1| &1

Linearization of the exponential function at 0, together with (26) and (27), shows that for
A > 0 chosen small enough,

(33) E[@Y—Y) 1| &< - M\
for Y5 = 0. On the other hand, for Y5 <0,
(34) E[Ym=Y) — 1] < &M,

Therefore, by (33) and (34), (32) is at most
E[(—AuXpo, ( Y5) + €MX (e, 0(Y3))],
where X. denotes the indicator function. By simple algebra this is at most
—ME[ ] + M + &M,
which shows that
E[eY — &Y = — AuE[ "] + A + €M
Together with (31), this last estimate proves (30), and hence the proposition. 0

4. Additional results and remarks. In this last section, we give the proofs of
Theorems 2 and 3, and make a few remarks.

PROOF OF THEOREM 2. Let 74 = min{t: £ = @} (= o if no such ¢ exists). WithE2,
defined as in Section 2, and ¢ appropriately chosen, we have shown that E{? = {r% =
o} (= means equality up to a P-null set). By translation invariance, E§? = {15 = o} for
each x € Z%. Therefore, making use of (10) and (11), we have

P(14 = o) = P(U.ea{rh = })
= P(U:eaE§? = P(ES,).

Since E{. C {r5 = o}, (7) holds when {0} is replaced by any A € S. If A is infinite, then
by (10),

P(15 < ) < P(N5=y {1875 < 00})
= lim, o P (1873 < c0)

— 13 —|ANB,| _
= lim,_,ok 4" = (,

where we have made use of the gambler’s ruin observation mentioned in the introduction.
For A infinite, (8) now follows as a weaker variant of (7). 0

ProoF oF THEOREM 3. Theorem 2 implies the weaker result:
(35) P(te )= Pri<o)dp+ P(rh=®) 8¢ as t— o,

for any A € S. It was noted in [5] that if the “complete convergence” (35) holds, and if
{(£%)} is the dual system related to {(¢)} by (20), then there is an invariant measure »
such that

Pl € )= Pr5<w) do+ P(re =) as t— o,
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i.e., complete convergence holds for the dual system as well. » is defined by
v=lim_.P(¢ € .).

(A monotonicity argument shows that the limit exists.) In our case, complete convergence
therefore holds for the coalescing random walks with nearest neighbor births, the dual
system for the biased voter model. Since our dual system satisfies

Pirh<w)=1 A=0
=0 A#Q,

we obtain (9). Uniqueness of the invariant measure » on S — {@} follows easily from
ergodicity on S — {&}.0

REMARKS. (i) By keeping track of constants, and by being more careful at various
points in the argument, it is possible to show that one can take ¢ to be any number less
than (x — 1)/2d in Theorem 1. In particular, this involves the use of balls Dg rather than
boxes Br throughout the proof, a somewhat more awkward procedure. We note that
(k — 1)/2d is the correct growth constant whén d = 1. (For d > 1, the correct constant is
greater than (x — 1)/2d.) .

(ii) The key to our analysis lies in the fact that the dual processes (£f) cannot die out.
This ensures that the imbedded chain lives for arbitrarily long stretches of time. A model
which is not susceptible to our techniques is the d-dimensional basic contact system
{(&}, such that for some A > 0,

A—>AU{x}(xZ A) atrate A|{y€A:|y—x||=1}|,
A—>A—-{x}(x€A) atrate 1.

It is known that for A sufficiently large, P(73 = o) > 0, so that on {r = «} one can ask
about the asymptotic “shape” of the set ¢7. Now, since recovery always occurs at rate 1,
£? is not a solid blob. Nevertheless, its frontier should expand linearly in radius, while its
interior should settle down to equilibrium. A result along these lines can be proved in one
dimension; see [6] for example. In higher dimensions, it is not even known whether | £ |
grows like ¢%. The best result, due to Harris [9], states that

0
Pltim inf, o 5> 0)rg = ) =1

for A sufficiently large. Since a basic contact system is its own dual, one cannot find a chain
imbedded in the dual system. Thus, a new technique is needed to treat these more delicate
systems.

(iii) The limiting case « = 1 is critical, so P} < o) = 1. Therefore, the behavior of
£7| 73 = oo for large ¢ is much more difficult to determine. To date, the asymptotics for

E(|&] |13 =)
are not known. Partial results may be found in [1] and [11].

ADDED IN PROOF. See the supplementary references [21], [22] for recent work concern-
ing Remarks (ii) and (iii).

Acknowledgment. We wish to thank the referee for an improvement in the proof of
Proposition 3.
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