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COMPARING THE TAIL OF AN INFINITELY DIVISIBLE
DISTRIBUTION WITH INTEGRALS OF ITS LEVY MEASURE

By PauL EMBRECHTS' AND CHARLES M. GoLDIE?

Westfield College, University of London

Let F be an infinitely divisible distribution on [0, »), with Lévy measure
v. For all real r, define measures », by v.(dx) = x"v(dx) (x > 1), =0 (x < 1). For
0<a<wand — o <r' <a<r<owo,itis proved that ».(x, ) is regularly
varying (at «) with exponent r’ — « if and only if 1 — F is regularly varying
with exponent — a if and only if »,(0, x] is regularly varying with exponent r
— a. If any of this is the case there follow asymptotic relations between 1 — F'
and either of v, (x, ©) or »,(0, x]. The paper characterises those distributions
for which these asymptotic relations hold, some of the characterisations being
complete and others assuming that not all moments of F are finite. The
characterising classes involve regular variation, second order (de Haan) regular
variation, rapid variation, and subexponentiality. An intermediate result is
that when F has finite nth and infinite (» + 1)th moment, [§ x"*'{1 — F(x)}
dx ~ [§ x"*'v(x, ©) dx as t — . The results are applied to generalised gamma
convolutions.

1. Introduction and statement of results. Let F be an infinitely divisible distri-
bution function on [0, ©) with Lévy measure » determined by

f(s) = j e **F(dx) = exp{— as — J a- e_“)v(dx)}, s=0.
0— 0

Here, a = 0 is constant and » is a Borel measure on (0, ©) for which [§ min(1, x)v(dx) <
. Being interested in the tail of », we assume without further comment that » has
unbounded support. Our convention about intervals of integration is that they exclude
{include} finite left {right} end-points, unless qualified as in the first integral above.

In Embrechts et al. (1979) we compared the tails of F and ». Setting F = 1 — F and
7(x) = »(x, ©) we proved that F(x) ~ #(x) as x — o if and only if F belongs to the
subexponential class % that is, 1 — F+«F(x) ~ 2F(x). Now the spectral measure of an
infinitely divisible F is often expressed other than in Lévy’s form ». For instance, Feller
(1971) uses M(dx) = x*»(dx), and also P(dx) given by P[0, x] = a + [§ yr(dy), x=0. A
natural follow-up to our previous paper is to compare F with the tails of these measures,
but rather than treating special cases ad hoc we shall compare F with all tail integrals of
v weighted by powers of x. To this end we define for each real r the measure

0, x=1
vldx) = {x’v(dx), 1<x <o,

and set 7,(x) = »,(x, ©) when finite, and »,(x) = »,(0, x]. For — 0 < p < o let 2 denote
the class of functions R regularly varying at  with exponent p, that is, R on (0, o) is
measurable, eventually positive, and for each ¢ > 0, lim,_... R(¢x)/R(x) = t*.
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Extrapolating from Feller (1971) pages 288, 572-573, one has

PrOPOSITION 0. For0 <a < m,
(1.1) vERG o F eR) = lim, ... F(x)/7(x) = 1.

We give a direct proof of Proposition 0 in an appendix. It also follows immediately from
Embrechts et al. (1979), since by Theorem 3 of Chistyakov (1964), & contains all F for
which FE 2, 0 < a < . From (1.1) one may deduce, using Karamata’s theorem (Feller
(1971) page 283),

CoROLLARY. For 0 < a < o, and for all r, r’ satisfying — o <r'<a<r<w,

(1.2) wERZSF ER o v () ERE,.

If any of the equivalent statements of (1.2) are in force, there follow tail comparisons of
the forms

(1.3) ' F@x)/v(x) > 1, x— o,
(1.4) ' Fx)/mmx) > U, x— o,

for some limits /, I’ depending on r, r’ and «. How far can we enlarge the classes of (1.2)
while keeping the two-way implications in force? Equivalently, what classes of distributions
are characterised by the asymptotic relations (1.3), (1.4)? We call this the characterisation
problem. Most of our conclusions about it are in Theorems 1 and 2 below. Since the
characterising classes turn out to be the regularly varying F, »,.(.) or #,, it is convenient to
turn the problem over, widening it a little, and characterise instead the classes of regularly
varying F, »,(-) and 7, by means of the relations (1.3), (1.4) together with their second-
order variants. In all that follows, u. denotes the £th moment [& x*F(dx). Note that
positive-integer moments of F and » are finite or infinite together:

f x"'IF'(x)dx<oo<=>pk<oo=>f x*v(dx) < oo, k=12, ...
0 0

More generally, for r > 0 a result of Ramachandran (1969) gives »,(1, ®) < o & [§ x"F(dx)
< o, For r = 0 it is of course the case that p,(1, ©) < .

THEOREM 1 Fixr>0.
(a)
Fex<,

0=a<ow» fora=r, v-(x, tx]/{rx"F (x)} — log ¢,

} { for0=a<r, XF(x)/ve(x) > r/a—1,
s

forr<a<o, xF(x)/v(x)—>1-—r/a
(b) When »,(1, ) = oo,

() €ERZ | | fora=0, {F(tx) — F(x)}/{rx"v.(x)} > log ¢,
O<a<sr for0O<a=sr, xF(x)/v(x)—>rfa—1

(c) When v,(1, ©) < oo,

HERT, r<a<we x'F(x)/5(x) > 1 - r/a.

THEOREM 2 Fixr<0.
(a)

FeRS),0=<a<x e = for somek, and x"F (x)/7,(x) > 1 — r/a.
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(b)

HER, - for a =0, {F(tx) — F(x)}/{—rx""7;(x)} — log ¢,
0=a<wm for 0 < a < o, up =  for some k, and x"F (x) /7 (x) = 1 — r/a.

(All limits in the above are as x — o, and where ¢ appears the statement is to hold for
each fixed ¢ > 1. Here and subsequently, every statement about », carries the unwritten
statement with it that ».(1, o) < «.)

The second-order statements above, involving log ¢, bring in the class IT of de Haan
(1970). IT is the class of nondecreasing functions R for which there exist functions A(-) >
0 and B(-) such that for all £ =1,

(1.5) {R(tx) — B(x)}/A(x) — log ¢, X —> oo,

Clearly, B can be taken to be R itself. Then the auxiliary function A is slowly varying
(Seneta (1976) pages 70-71), and it is obvious that (1.5) holds for all £ > 0. The second-
order statements of Theorems 1 and 2 assert that F, or »,(-) as appropriate, belongs to IT
with a specified auxiliary function. The next theorem shows that it suffices merely to ask
for membership of I1. Also in Theorem 3, the equivalence F € II < »y(-) € II (then
trivially & »(1, x] € II) is new, not being a consequence of subexponentiality, as the class
IT is not closed under asymptotic equality.

THEOREM 3.
(a) For r > 0 the following are equivalent:
) Fez%, @@ r()eT,
(iii) imew »-(x, tx]/{rx"F(x)} = log t, allt> 1.
(b) For r > 0 the following are equivalent:
(i) FeIl, (i) »(-) €11, (iii) »-(-) €2,
(iv) lim,{F(¢x) — F(x)}/{rx""v.(x)} = log ¢, allt>0,
(v) lim, o wo(x, tx]/{rx "v.(x)} = log ¢, allt=1.
(c) For r <0 the following are equivalent:
() Fell, (i)wo(-) €I, (i) v € R,
(iv) lim, e {F(tx) — F(x)}/{—rx""7; (x)} = log ¢, allt>0,
(v) lim, . vo(x, tx]/{—rx"" v, (x)} = log t, allt=1.

The proofs of theorems 1 to 3 depend on the following ‘Proposition 1°, which asserts
that when F has an infinite moment, F is asymptotic to 7 in a certain average sense, even
though this may not be so in the pointwise sense that is characterised by subexponentiality.
See also Remark 6.2. Proposition 1 extends to give the second half of proposition 2, both
results being of interest generally in infinite divisibility. (The first half of Proposition 2 is
essentially Feller’s, and is included for completeness.)

ProrosiTION 1. Suppose that for some nonnegative integer n, y, < © but y,+1 = oo.
Then

0

(1.6) f e *x"*'F (x) dx ~ f e x5 (x) dx, s} 0,
0

0
t & t
1.7) f X" F (x) dx ~ f x5 (x) dx ~f X" 1% (x) dx, t— o,
0 0 0

PROPOSITION 2.  For any infinitely divisible F on [0, ), lim inf._... F(x)/7(x) = 1. If F
has an infinite moment then lim inf._... F(x)/7(x) = 1.

To return to the characterisation problem, when r > 0 Theorem 1 has solved (1.3) for
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all / € [0, ] and (1.4) for all I € [0, 1). When r < 0, (1.3) is trivially satisfied, with / = 0,
and the limit in (1.4) has to be at least 1, as a consequence of the first half of Proposition
2 and the obvious inequality 7,(x) = x"7(x). Theorem 2 has solved (1.4) when r’ < 0 for
all I’ € (1, ), under the assumption that not all moments of F are finite. We are left with
the !’ = 1 cases of (1.4), both for 7’ > 0 and ' < 0, and the !’ > 1 cases of (1.4) for r’ > 0.
Remarks about the latter will be found in Section 6. For the I’ = 1 cases we give some
solutions, complete in case r’ < 0, in Section 5. These involve so-called ‘rapid variation’.

The contents of the ensuing sections are that Section 2 gives proofs of Propositions 1
and 2, Section 3 gives proofs of Theorems 1 and 2, and Section 4 proves Theorem 3. Section
5 is on ‘rapid variation’, as mentioned, and Section 6 contains complements and remarks,
including an application to ‘generalised gamma convolutions’ which have recently become
important in infinite divisibility following the work of Thorin and Bondesson.

2. Tail behaviour of the Lévy measure when not all moments finite. The
connections between F and 7 used in this paper will hinge on the following formula. Define
Y(s) = as + [§ (1 — e *)v(dx), s = 0, so that f = exp(—¢). Then for k=1, 2, - .-, and the
suppressed argument nonnegative,

0 < (2)*f® = (m)* 1y’ f}* D

(2.1) _ o | |
= Zf;}) (kj 1) (_)]\P(J+1)_ (_)k—l—]f(k_l_])‘

We need two elementary lemmas. The first uses an idea from Rudin (1973). The second
is stated for a finite measure but can clearly be extended to accommodate measures such

as p.

LEMMA 1. Let M be a Borel measure on (0, ). Let h > — 1 be such that
[& min(x”*', 1) M(dx) < «. Then

s

J e *x"M(x, ) dx = s™*! f mpe (w)u” du, §>0,
0

0

where mp1(u) = [§ e x"' M (dx).
ProOF. The left side is [§ [2 e *x” dx M(dy) by Fubini’s theorem, the condition on
M ensuring finite integrals. In the inner integral, transform to new variable of integration

u = sx/y, and the result follows.

LEMMA 2. Let M be a measure on [0, ®) satisfying M[0, ®) < o, [§ xM(dx) = », and
let m(s) = [§- e™*M(dx), s = 0. Then {m’(s)}?*/m”(s) > O as s | 0.

Proor. Fix ¢ > 0. Then
0 < {m'(s)}*/m" (s)

00 2 oo
={J e‘s‘xM(dx)} / f e *xM(dx)
0 ’ 0
00 2 00
~{J e_s"xM(dx)} /j e *x*M(dx), sl0

(since both numerator and denominator tend to «)
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= j e *M(dx)

by the Cauchy-Schwarz inequality. Thus im sups;o {m’(s)}?/m”(s) < M(c, ») and the
latter can be made as small as desired.

ProOF OF PROPOSITION 1. For u > 0, define 6;(u) = (=)"y YD (u). (=) 1 7f"1(y)
> 0. We shall show that forj=0,1, ..., n,

(2.2) 6;() = o((=)"*f"*?(u)), ulo.
This will imply, by way of (2.1) with 2 = n + 2, that
(2.3) (=)D (WU) ~ Opir (1) ~ ()Y "2 (1)

since f(u) > lasu— 0.
To prove (2.2) consider first, for n > 1, those 6, with 1 < j < n. These are bounded as
u | 0 because
e “x/*y(dx) < J 2*y(dx) <o  for j+1=<n,
)

0

0< (=) ™) = f
0

0 < (=)= (y) = f e X" IR (dx) < pns1—j < ® for n+1—j=n.
0
Since (—)"*%f"*?(u) — o, (2.2) is established for these j.
When n = 1, the positive quantity —f’(x) is bounded by u; < o, so that 6, («) is at most
(=) " D(u). If we can show

24) )P (w) = o((=)" "2 (w)), ulo,

it will follow that 6, = 0(6,+1), which implies the j = n =1 case of (2.2). But (=)" "'y (u)
— ad7 is the Laplace-Stieltjes transform of the assumed-finite measure x"»(dx), and so
(2.4) follows from Lemma 2, or indeed is easy to prove directly. (Here, 87 equals 1 if n =
1, otherwise 0.)

There remains the j = 0 case of (2.2). When n = 1, ©y(x) is at most u; (—)" "' f"*V(u),
since Y/ (1) < ¢’(0) = w3 < . And (=)"*'f"*V(u) = o((—)"** "+ (1)), just as for (2.4), so
(2.2) is proved for this case. The final sub-case is when n = j = 0, and here

Oo(u) = ¢/ (u)- {—f'(u)}
= {f'W)?/f(w) ~ (' (@)}* = o(f"(u))
by Lemma 2. This completes the proof of (2.2).
From (2.3),

s—n—2f (_)n+2f(n+2)(u)un+1 du ~ s—n—2J’ (_)n+l¢(n+2)(u)un+1 du, S‘l,O
0 0

An application of Lemma 1 now proves (1.6). To deduce (1.7) we use the ratio Tauberian
theorem of Korenblum (1955). Korenblum shows that if A;(-) are positive nondecreasing
functions on (0, «), 2;(0+) = 0, i = 1, 2, such that A, satisfies
- (@2.5) ' m, . A(y)/h(x) =1

I<y/x—1
then

(2.6) f e “hy(x) dx ~f e “hy(x) dx, s)0,
0

0
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implies A1(x) ~ A(x) as x — o, In the present case we take A (x) = [§ t"'F(¢) dt, ha(x)
= [§ t"*'%(t) dt, then (2.5) holds because for 0 < x < y,

hi(y) = (y/x)"** f " F(ty/x) dt < (y/2)" 1 (x).

0

Since (1.6) may be written, on integrating by parts, as (2.6), Korenblum’s theorem gives
the first asymptotic equality of (1.7), and the second follows immediately.

Note. Theorem 3 of Feller (1963) implies a stronger version of Korenblum’s result, in
which (2.5) is replaced by a weaker condition. However Feller’s proof is incorrect, in that
in line 8 the statement F®(.) = F®(.) holds only at continuity points, rather than
everywhere as claimed, and that is not enough to justify the sequel. Stadtmiiller and
Trautner (1979) prove that among functions £; of dominated variation, condition (2.5) is
necessary and sufficient for Korenblum’s implication to hold. Thus Feller’s result is in
error, and indeed Example 1 of the last-mentioned paper provides a counterexample.

ProoF oF PROPOSITION 2. As in Feller (1971) page 571, we may factorise F = F+Fy,
with F and F, infinitely divisible, their Lévy measures being the restrictions of » to [0, 1]
and (1, «) respectively. Let G be the distribution function obtained by normalising »,, viz.
G(dx) = u 'w(dx), where p = »(1). Then F, is the compound Poisson distribution
Y0 e *(u*/k!)G®. For x > 0,

F(x)/v(x) = Fo(x)/{pG(x)} = exp(—pG(x)),

the second inequality from Feller (1971) VIIL.10, Example 31. The first statement of the
proposition follows.

For any finite ¢ < lim inf,_,. F(x)/7(x) we have F(x) = c¥(x) for x = xo = xo(c). If F
has an infinite moment then for suitable fixed n the integrals in (1.7) tend to infinity with
t, and so are asymptotic to the corresponding integrals in which the lower limit of
integration is xo. But of the latter integrals, the one involving F is at least ¢ times the one
involving 7, hence ¢ < 1, and the second part of Proposition 2 is complete.

3. The characterisation problem. It is convenient to split the proofs of Theorems
1 and 2 into Lemmas 4, 5, and 6. First, though, Lemma 3 extends the monotone density
theorem, cf. Seneta (1976) Example 2.7. For proof one may use a minor extension of the
proof of de Haan (1977) P5.

LEMMA 3. Let U, be continuous and strictly increasing, and U, € Z§ , 8 > 0. Let U,
be eventually positive, monotone, and [§ Ui(t)Ux(dt) € #'3s, y + 8 > 0. Then U, € #°,
and indeed

(3.1 Ui(x) ~ (1 + v/9) J Ui(t) Uz(dt)/ Uz (x), X .
0

LEMMA 4. Fix r > 0, and suppose there exists a € [0, r] such that
(3.2) x"F(x)/vi(x) > r/a— 1, x — 00,
Then (i) ifas*r, FER=, and (i) ifa#0, »(-) ER,.

Proor. If @ = 0 then x"F(x) — , so that [§ x"7F(x) dx = =, [.] denoting integer
part, whence pg3+1 = . If a = r then we may assume »,(1, ©) = oo, for otherwise (ii) is
trivially true. This assumption implies that » have infinite ([r] + 1)th moment, whence F
also. If 0 < a < r then since [§ x""»,(x) dx = =, (3.2) gives [§ x!"VF(x) dx = », whence
again pj+1 = . So we may take it that the condition of Proposition 1 is in force for some
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n satisfying 0 = n < [r].
Define N(t) = [6 x"*'"»,(x) dx, this being finite because ».(x) = 0 for x =< 1. It will be
important that

(3.3) J’ tIN(t) dt = .
1

Equivalently, by Fubini’s theorem, [T x""».(x) dx should be infinite. But this is estab-
lished by employing »,(x) = [{ ¢'vo(dt) in a further use of Fubini’s theorem, and recalling
that [ £**'»(dt) = =. Note that therefore N(¢) — « as t — o,

In (1.7), we shall substitute

(3.4) vo(x) = —x v (x) + 1 f y " .(y) dy, x>0

for vo(x). Now t " 2N(t) < ¢ [5 x-x7"'»,(x) dx, and the latter is o(1) as ¢t — o because
[2 y " '5,(y) dy is finite. This justifies the integration by parts,

f ¥y v(y) dy = I Yy "N'(y) dy
(3.5)
= —x"""N(x) + (n + 2) J’ ¥y " °N(y) dy.

From (1.7), (3.4) and (3.5),

J’ x""F(x) dx ~ —N(¢t) + rf {—x_lN(x) + (n + 2)x™*! J’ ¥y " °N(y) dy} dx
1] x

0

(3.6) =—N(t) +r j (d/dx) {Jc"“’2 J’ ¥y " 3N(y) dy} dx
1] x

= —N(t) + rt™*? J’ x"°N(x) dx,
t

the last step being justified by the fact that x**2 [ y ™ °N(y) dy — 0 as x | 0, which is an
easy consequence of N(y) — 0 (y | 0). Both [ x™*' F(x) dx and N(t) tend to o with ¢, and
hence from (3.2), [ x™** F(x) dx ~ (r/a — 1)N(t), with the appropriate interpretation when
r/a —1is 0 or «. Combining with (3.6),

3.7) t*? f x " °N(x) dx/N(t) > 1/a, t— .

Consider first the case a = 0. By Karamata’s theorem (Feller (1971) page 281), (3.7)
gives [¥ x " °N(x) dx € 2§, and N(¢) = o(t™** [ x " °N(x) dx). By (3.6), [6 x""' F(x) dx
€ # &), and so by Lemma 3, FE 2.

Now assume a > 0, so that (3.7) and Karamata’s theorem give N €2 72— . By another
result of Karamata (Seneta (1976) page 18), and (3.3), we find a < n + 1. Therefore Lemma
3 may be applied to the defining formula of N, yielding »,(-) €2\~ . Finally, if r # a, (3.2)
give FERX.
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LEMMA 5. Fixr#0.If r >0, assume v,(1, ©) < «. If r <0, assume F has an infinite
moment. Whatever r, suppose that for some a € [0, ©),

(3.8) x'F(x)/v(x) > 1—r/a, x— o,
Then (i) ifa#r, FERS, and (i) ifa#0, 7 EAZ.

Note. If a > 0 then we must have r < a, as the left of (3.8) is positive. If a« = 0 then it
must be the case that r < 0, and the right of (3.8) is to be read as + .

Proor. The proof will need F to have an infinite moment, and we show that for r >
0 this is implied by (3.8). For suppose otherwise, that is, » > 0, so that a > 0, and all
moments of F(dx), and hence of »,.(dx), are finite. Then for any fixed ¢ > 0,

f x*1F(x) dx ~ f x*1F(x) dx — oo, k— o,
0 c
J' 175 (x) dx ~ f x¥175(x) dx — oo, k— o,
1] c
so that (3.8) implies
J' x*'F(x) dx ~ (1 — r/a) J’ 215 (x) dx, k— oo,
0 0
k! f x*F(dx) ~ (1 —r/a)(k — )" f x5 (dx), k— o,
0 0
(3.9 e~ (1 —r/a) f x*v(dx). k— o,
0

However, letting the argument in (2.1) tend to 0+, and retaining only the last term
(j = £ — 1) in the sum, we find that ux > [ x*»(dx). This contradicts (3.9), in which
O0sl-r/a<l.

Thus, whatever r, there exists an integer n = 0 such that p, < ©, pp+; = %, and so
Proposition 1 applies. Also, whatever r, v,(1, ) < oo, this being again by assumption in one
case, automatically in the other. For r > 0 the assumption »,(1, ) < c implies »j(1, )
< o, and hence ;3 < ® as remarked in the introduction, and so n = [r]. Define N(¢) =
[6x™*7"%,(x) dx and proceed by analogy with the previous lemma.

LEMMA 6. (a) If r >0, (1, ®) = o, »,(-) € R, then F(x) = o(x"v,(x)) as x — o.
(®) If r > 0, »(1, ) < 0,7, € R, then F(x) = o(x "7 (x)) as x — .

REMARK. This lemma may seem to treat a very special case. Intuitively, its separate
proof is necessitated by the comparative lack of information available from assuming only
slow variation of ».(+) or 7,. Thus 7 need not be regularly varying, or even subexponential,
so the pointwise link between it and F is not present. Also, ratio Tauberian theorems are
not relevant in part (a), so we resort instead to the Karamata Tauberian theorem (Feller
(1971) page 445), henceforth denoted KT. Note that Lemmas 4 and 5 could likewise have
been proved by multiple use of KT, starting from (1.6). Instead, we started from (1.7),
obtaining that by merely a single use of Korenblum’s ratio Tauberian theorem.

Let 2% denote the functions regularly varying at 0+ with index p, that is, R(s) € 2"
< R(1/x) € 2.
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PRrOOF oF LEMMA 6. (a). Slow variation implies that for any € > 0, v.(y) = o(y°) as
y — o, so that

o o y
0 >f v(y)y e dyzf f uvo(du) y 7 dy,

and the latter is seen to be € '7,—(x). Letting % be the smallest integer satisfying 2 = r, it
follows that »,_;(x, ®©) < o, so that ux = ®, gp—1 < . In (2.1), all terms on the right are
bounded as s | 0 except that for j = 2 — 1, which tends to . Therefore

(3.10) (D Ps) ~ (=) P (s)-f(8) ~ (=) YD () ~ Yuls)

where for every real b we define y;(s) = [§ e **vy(dx), s = 0. Consider first the case of
integer r, for which ¥, = ¢,. By KT, ¥,(s) ~ ».(1/s). Therefore (=)*f ¥ € 2§", and applying
KT to it we find F.(t) ~ (=)*f®(1/t) ~ v.(t) as t - o, where F,(t) = [{ x"F(dx). But

F(x)=—-x"F.(x)+r j Yy 'F(y) dy

which is o(x "F,(x)) by Karamata’s theorem since F, € 2§*. Thus F(x) = o(x "».(x)).
When r is noninteger we consider instead [§ y* " '».(y) dy, which as x —  is ~
(k — r)"'x*"p.(x) by Karamata’s theorem, since ».(-) € 2. By KT,

j e x Yy (x) dx ~T(k — r + 1)-(k — N71(1/8)* v.(1/s), 50
1]

=T'(k — s .(1/s).

Elementary calculations like those used for Lemma 1 reduce the left side to
s [ Yp(u)u" du. Thus

(3.11) j W) du ~ Tk — r)v(1/s), s}0.

The right of (3.11) tends to « as s | 0, and consequently the left also. We may therefore
weight (3.10) and integrate:

f (_)kf(k)(u)uk—r—l du ~ j tl/k(u)uk_'_l du, s],O.

Again by the method of Lemma 1, the left side is equal to s*™-[§ e **x*""'F,(x) dx.
Combining with (3.11) and applying KT it follows that

j x* " 'F(x) dx ~ (1/T(k — r + 1)} -T'(k — P)t*"n.(8), t—= e
0 .

=k —n7"t"0).
By Lemma 3, F,(t) ~ ».(¢). As in tﬁe integer case we conclude F(x) = o(x ~"v,(x)).

(b). Set & = [r] + 1, F(t) = [T x"F(dx). In this case one may use Korenblum’s ratio
Tauberian theorem—we omit the details—to show

t

t
f xR (x) dx ~ j 2715 (x) dx,
o

[
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from which the conclusion follows by standard arguments.

ProOF OF THEOREMS 1 AND 2. All ‘< statements have been proved in Lemmas 4 and
5, except those in which the right-hand side involves ¢, and the latter are dealt with by
observing that they are of the form (1.5), and so their auxiliary functions are slowly
varying. We turn to the ‘=’ statements. Suppose first that F € 2% . Then from (1.1) and
Karamata’s theorem one finds that x"F(x) /7, (x) > 1 — r/a when r < «, and x” F(x) /v.(x)
— r/a — 1 when 0 < a < r. In the case a = r > 0 the conclusion »,(x, tx]/{rx"F(x)} — log
t will be proved under Theorem 3.

Now suppose 7, or if it does not exist, ».(-), is in2{),. When a 5 r and a # 0 the
relevant limit on the right of Theorem 1 or 2 follows from Karamata’s theorem and
Proposition 0. When a = 0 the relevant results will follow from the more general Theorem
3 below. The cases a = r > 0 were dealt with in Lemma 6, and so the proof is complete.

4. Second-order theory: proof of Theorem 3.

(a). By definition, (iii) = (ii). By de Haan (1977) P4, v, € Il implies % € £, which by
(1.1) implies F € 22; that is, (ii) = (i). Conversely if F €2 then vy(x, ®) ~ F(x), again
by (1.1). Adapting a technique of de Haan (1976) we set L(x) = rx"v; (x) €R5 then on
integrating by parts, ».(x) = —L(x)/r + [§ L(y) y~' dy. whence

vr(x, tx]/L(x) = —r *{L(tx) — L(x)}/L(x) +f {L(ux)/L(x)}u"" du.
1

The integrand tends to z ™' uniformly, hence the whole right-hand side tends to log ¢, and
this gives (iii).

(b) and (c). Of course, (iv) and (v) are just more specific forms of (i) and (ii) respectively,
and either of (iv) or (v) implies (iii). Suppose (i), that is,

4.1) lim, ... {F(tx) — F(x)}/L(x) = log ¢, >0,
for some L € #§. By de Haan (1971) Theorem 4, (4.1) is equivalent to [§ yF(dy) ~ xL(x)
as x — o, The integral has Laplace-Stieltjes transform —f’(s) = ¢/ (s)f(s) ~ ¥/(s) ~

[& e™**»:(dx), hence by two applications of KT, (4.1) is equivalent to »:(x) ~ xL(x). By the
same theorem of de Haan, this is equivalent to

lim, . vo(x, tx]/L(x) = log ¢, t>1.

However, by Karamata’s theorem the relation »:(x) ~ xL(x) is equivalent for each 7> 0 to
v(x) ~ r'x"L(x), and for each r < 0 to 7; (x) ~ (—r ")x"L(x). After obvious details the
proof of (b) and (c) is complete.

5. Rapid variation. Denote by 22 the class of functions R that are measurable,
eventually positive, and such that for all ¢ > 1, lim,_.. R(¢x)/R(x) = 0. We remind the
reader that statements about 7, in what follows carry implicitly the statement that
vr(1, ) < oo,

LEMMA 7. Forr#0,

limew x 7 7(x)/7(x) =l K ERD @V, € 2.

Proor. Take the integration-by-parts formulae that give each of%, % in terms of an
integral of the other, and apply de Haan (1970) Theorem 1.3.1.

THEOREM 4. Fixr <O0. Then
(5.1) lim inf, . x"F (x)/7(x) = 1.
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Further, x"F(x)/7;(x) = 1 if and only if F € Yand FER).

Proor.
(5.2) x"F(x)/7;(x) = (F(x)/7(x)} - {x"%(x) /7 (x)}

and the first quotient on the right has lim inf at least 1, by Proposition 2, while the second
is obviously = 1. This proves (5.1), and also shows that the left of (5.2) tends to 1 if and
only if both quotients on the right tend to 1, that is, respectively F € & (by Embrechts et
al. (1979)), and » € 22 (by Lemma 7). These conditions together are equivalent to F' €
Sand F e 22,

THEOREM 5. For r > 0, any two of the following imply the third:
@Fe¥ () FeEx, (c) limiexFx)/v(x) =1

Proor. Obvious from (5.2). This theorem is weaker than Theorem 4 becausev, (x) =
x"7(x) for r > 0, as against the reverse inequality for r < 0.

6. Complements and remarks.

6.1. For y> 0 we follow Chover et al. (1973) in saying that F (not necessarily infinitely
divisible) belongs to , if for all real ¢, lim,_..F(x + t)/F(x) = e ™, and lim,_,..{1 — F*F(x)}/
F(x) = 2f(—v) < «. Clearly this implies F €22 and all moments finite. When such an F
is infinitely divisible we can prove (Embrechts and Goldie (1980))that F(x)/#(x) — f(—7)
as x — oo, This implies » €2 and so by Lemma 7,

(6.1) x"F(x)/v7(x) > f(—y) > 1, X — 00,

For r > 1 we have not so far met limits /’ > 1 in (1.4), and indeed it is easy to see that such
a limit is impossible if F has an infinite moment (use Proposition 2) or is in & Membership
of ¥, gives one way of obtaining / > 1; we conjecture it is the only way.

For r < 0, (6.1) gives an alternative way of obtaining any limit I’ € (1, ») in (1.4),
therefore the condition that u, = % for some % cannot be omitted from the right of theorem
2.

6.2. In Proposition 1 we could have proved, more easily, that (1.6) and hence (1.7)
remain valid when n + 1 is replaced by n. This would suffice for Proposition 2, and for
Lemmas 4 and 5 except in the case a = n + 1, when it implies only [ x"F(x) dx € 2§, not
enough to conclude F € 2. Proposition 2 was suggested by Theorem 2* of Rudin (1973),
and in this context it is worth remarking that Korenblum’s ratio Tauberian theorem may
be applied to Rudin’s formula (3.7) just as we applied it to our (1.6). Noting that in Rudin’s
(3.7) the exponent p should read p — 1, the conclusion is, in his notation,

lim,. f sP'T[g] ds / J’ ST f1ds = ' (F(1)).
0 0

6.3. Among the infinitely divisible F on [0, «), Thorin (197 7) names as the generalised
gamma convolutions those for which

f e F(dx) = exp{—as - f log(1 + s/y)U(dy)}, s=0,
0—

0

where a = 0 and U(-) is nondecreasing such that U(0+) = U(0—) =0, [§ |log y | U(dy) <
o, [Ty 'U(dy) < «. From our Theorems 1 and 3 one may prove using similar methods the
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following consequences for the behaviour of U in the neighbourhood of 0:
Fell e UE R = lim{F(tx) — F(x)}/U(x™!) =log ¢, foreveryt>0,
and for 0 < a < o,
Fez%) e Uez? = lim, ... Flx)/Ux™) =T(a).

Note that the conclusions on the right suggest characterisation problems, to find the
largest classes of F for which they hold. We shall not pursue them here.

6.4. As mentioned in the introduction, » has been assumed throughout to have
unbounded support. When » has bounded support the tail behaviour of F'is quite different:
F(x) = O(exp(—6x log x)) for some & > 0 (Kruglov (1970)). For further results see Steutel
and Wolfe (1977).

6.5. Since IT is a proper subclass of 2§ it follows that the a = r case of Theorem 1(b)
has a proper inclusion in the corresponding case of Theorem 1(a), and similarly for the
various a = 0 cases. An example is instructive. Let v be purely atomic with atoms of mass
27* at points 2%, k = 1, 2, - - - . Then »,(-) is slowly varying and one may check that xF(x)/
»i(x) — 0. However, 7 is not regularly varying and so neither is F.

6.6. From Theorem 3(b) and its proof we see that F' € Il implies
lim, .. {F(tx) — F(x)}/v(x, tx] =1 for each t > 1,

f yF(dy) ~ vi(x) — oo, X — o,
0

However, both of these hold more generally, for instance under regular variation. It would
be interesting to know what classes of distributions they characterise.

APPENDIX

ProoF oF PropPosITION 0. Rather than specialising from Embrechts et al. (1979), (1.1)
may be proved directly, making the paper more self-contained. The following proofs were
kindly supplied by a referee. Write F™ for 1 — F™ where F™ is the nth convolution
power of F.

LEMMA. Let F be a distribution function on [0, ©), and let a € [0, »). Then F__‘ €
R if and only if F™ € ) for some (every) positive integer n, and thenF™ (x) ~ nF(x)
as x — oo,

Proor. We treat the case n = 2, the general case being similar. The only if part is
stated and proved in Feller (1971) page 278 by means of the following inequalities: if Y3, Y
are independent then for every x >0and 0 <e< 1,

(A1) P(Yi+ Yy>x)=P(Y;>x(1+€)P(|Yz|<xe)
+P(Ya>x(1+e)P(|Yi|=xe),

(A2) P(Y:+Y:>x) =P(Y,>x(i—¢€) +P(Y2>x(1—¢))
+P(Yy>x€e)P(Y:>xe).

Assume now that each of Y;, Y, has distribution function F' and that FP e g, By
nonnegativity, P(Y; > x €)/P(Y1 + Y, > x €) < 1. Upon dividing (A.1) by P(Y; + Y. >
x(1 + €)) and (A.2) by P(Y: + Y>> x(1 — ¢)) we find that for0 <e < 1,
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(1 + €)* = lim supu—« 2P(Y1 > u)/P(Y: + Y: > u),
(1 —e)*=<liminf, .o 2P(Y1> u)/P(Y1 + Y2 > u) + € *(1 — €)* lim,.. P(Y; > u),
that is, lim, . P(Y: > u)/P(Y: + Y, > u) = %, in particular showing the F € 2 .
ProOF OF PROPOSITION 0. We use the notation and the factorisation of F given in the
proof of Proposition 2. It suffices to prove (1.1) with F replaced by F,, because then Feller

(1971) XVII (4.11) gives Fy(x) ~ F(x), whence (1.1) itself. Let X;, X», - - - be independent,
each with distribution function G, then for every re N, x> 0,0<t<1,

Fox) =351 e (W/EYVP(Xi + -+« + Xp. > %)
= Vit e M /RYP(X; + - + Xi > %)
+ Vi, et/ BYPXy + - + X, > xt)
+ Yhers1 e F(W/ VP (Xps1 + o+ + X > x(1 — 8)
(A.3) < Vit e*(u /) GP (x) + W G (x8)/r! + W Fa(x(1 — ) /7!

Suppose first that 7, and hence G, is in 2" . We may find y such that G(x)/G(2x) <
2°*! for all x = y. Fixing € > 0, make r in (A.3) so large that u’2**!/r! < ¢, and then taking
t=1%,

Fo20) _ gy 1 GPR) w2 V) Fol)
G2x) — <% BT G@2x) T Glx) Gx)’
The lemma gives lim;« G® (x) /G(x) = k for every k € N, hence setting
C(y) = SUpserym (T2} €(u*/B)GP(2x)/G(2n) + (W24 /1) GV (x)/G(x)},

Vx=y.

it follows that C(y) < « and
Fo(22)/G(2x) = C(y) + eFo(x)/Gl(x), Vxzy.
Iterating the latter inequality gives that form =0,1,2, ...,
SUPseqzmyznty) Fo(x)/G(x) < C(M)(1+ € + -+« + €"7) + € supaeqyzy) Fo(x)/G(2),

and since the latter supremum is finite we conclude lim sup.—.. Fo (x)/G(x) = C(y)/
(1 —¢). Let y — o and € — 0 to get lim sup Fo (x)/G(x) < p. Thus lim supF, (x)/#(x) < 1,
which together with the first half (essentially Feller’s) of Proposition 2 gives F (x) ~ »(x)
and F 0 E R (_OZ).

Let F§’™ denote the convolution nth root of Fo, so that F§/” =Y, e™*"{(u/n)*/
k}G™. Then (A.3) holds with Fo, u replaced by F§/™, u/n respectively. Taking r = 1,

(A.4) F§/"(x) < (u/n)G(xt) + (u/n)F§™ (x(1 - 0)).

If Fo € 2% then F§"™ € ) and n F{"™(x) ~ Fo(x), by the lemma. With (A.4) this gives
lim inf, . pG(u)/Fo(w) = {1 — (u/n)(1 — )™}t* Let n — o and then t — 1 to give
lim inf, . »(x)/Fo(u) = 1. The regular variation of » now follows, again by Proposition 2.

In connection with this proof it should be remarked that the argument in Feller (1971)
page 288 is not valid for the case a = 0, although in XVII (4.10) the contrary seems to be
assumed.
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