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LIPSCHITZ SMOOTHNESS AND CONVERGENCE WITH
APPLICATONS TO THE CENTRAL LIMIT THEOREM FOR
SUMMATION PROCESSES

Roy V. ERICKSON

Michigan State University

We prove that certain jump summation processes converge in distribution
for the uniform topology to the Brownian sheet, while smoothed summation
processes converge for various Lipschitz topologies. These results follow after
a careful study of abstract, generalized Lipschitz spaces. Along the way we
affirm a conjecture about smoothness and continuity of processes defined on
[o, 1%

1. Introduction, motivation and summary. This paper generalizes Donsker’s
invariance principle in two respects. First, it considers summation processes whose sum-
mands are indexed by d-tuples of integers, so that convergence is to the so-called Brownian
sheet process. Secondly, the metric spaces on which these processes reside are given the
finest (largest) topology compatible with our proofs of convergence in distribution. In order
to accomplish these generalizations, we have looked closely at conditions which imply
smoothness of stochastic processes with “time” set {T, d} a totally bounded semimetric
space. Our results in this direction extend the classical techniques of Kolmogorov, Loéeve
(1963) and Delporte (1964) in a manner suggested by Dudley (1973). They do not include
all of those found in Fernique (1974, 1978), Garsia and Rodemich (1974) and Nanopoulos
and Nobelis (1978); but see our discussion following theorems (5.2) and (6.1). While doing
all of this, we also confirm a conjecture of Garsia and Rodemich (1974) concerning
processes on T = [0, 1]%; this is done in the spirit of Hahn and Klass (1977).

To motivate this study, let us look at Donsker’s theorem and previous extensions. Let
£, &, - -+ beiid £ with E¢ = 0, E£% = 1 and define the summation processes, for 0 < ¢t < 1,

(jump) Zn(8) = 3t &l(k/n < t)/n'?
(smooth) X.(t) =31 & | [(k— V/n, k/n] N[0, ¢] | n'%,

where | A| denotes the (one dimensional) Lebesgue measure of measurable A C [0, 1].
Also, let W denote the Wiener process.

These processes each reside in different, natural function spaces, and each such space
can be given many different topologies. Let us tabulate these:

(space in decreasing size) topologies processes
Do, 1] Skorohod, uniform =: || || Z,
Clo, 1] (N
Lip., a < % Lip norm =: || ||z, B <« w
Lip, I lls, B=1 X

It is usual to prove Z, —>4isen W for the Skorohod topology on D[0, 1] and X,, = gistn W
for the uniform topology on C[0, 1]. But more can be proven sometimes. Billingsley (1968,
page 152) notes that Z, converges on D[0, 1] with || | topology in general. On the other
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hand, Lamperti (1962) proves that, under certain moment conditions, X,, converges on
Lip., || lls; B < a. Precisely, for p > 2, Lamperti shows

(a) E|¢|? < o implies X, —qisen Win Lip,, || || for all 8 < a := (p — 2)/2p, while
(b) if P(]¢] > x) = x7P, x = 1, the convergence in (a) cannot hold for (p — 2)/2p < 8 <
a < %, even though all the X, are in Lip; and Wis in all Lip,, y < %.

Because of Levy’s modulus result (see Dudley (1973, page 75)), which states
lim sups:=(s—¢ 0 | W(s) — W(£)|/(28 | log 8 | )> =1 a.s.,

C
we see that W lives on a generalized Lipschitz space L, Lip, 27 L :é Na<1/2 Lip. A natural
question that arises from Lamperti’s work is this: if £ is bounded (or Gaussian), is there a
topology 7 on L, finer than all of those given by || || s, B < %, so that X, —aistn W as processes
onlL, r?

It was this question that stimulated our work. As we answered the above problem, it
became apparent that our methods were applicable more generally. And because of the
results of Wichura (1969) for certain multiparameter processes, we began to investigate
general summation processes and their convergence to a Brownian sheet.

To further motivate our study let us define fairly general summation processes and
mention some of the results we obtain. To do so necessitates some preliminary definitions
which we give as well.

DEFINITIONS 1.1.  Fix dimension d and let T's := Borel subsets of R for which |A | <
oo, where |A| := Lebesgue d-dimensional measure of A € T3. We give Ty one of two
semimetrics: (Lebesgue)

diu(A, B) == ||Ia — Il = |A A B|
or (Hausdorff)
du(A, B) :=inf{e > 0; AC B, BC A%}.
For the above, I, = I(A) is the indicator function for A, AAB := A\B U B\A and
Af:=U {B(x,¢e); x€ A}
where B(x, €) := {y € R% |y — x|| < &}. (|| | denotes the supremum norm.)
DEFINITION 1.2. A process W = {W(A), A € Ty} is called a Brownian sheet process
if each W(A) is Gaussian and EW(A) = 0, EW(A)W(B) =|A N B|.

One would expect that the Brownian sheet arises naturally as the limit of certain
summation processes.

DEFINITIONS 1.3. Given any random variable £ with E£ = 0, E£2 = 1, build {¢,/ €
N9} iid £ where N9 := {j = (1, -+-, ja); ji=1,2, -+-,}. For j, n € N%let j/n := (ji/n1,
eee,Ja/na), write j = niffj;<=n;fori=1, ... d, and set

R,i={x€R% (j—1)/n=x=<j/n}

where 1 = (1, ..., 1) € N As usual, let || x|| := max{|x:|,i =1, -, d}. Now define the
summation processes: for A € T

(jump) Z,(A) =Y j=n | Rn;|"?I(j/n € A)Ej,
(smoothed) Xo(A) := Y j<n | Rnj|?|Rn;N A&

Obviously each X, is continuous as a process on T} := T N [0, 1]%, dr. But Z, and X,
can be very far apart and need not converge to W: consider their values for A consisting
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of only rational or only irrational points. On the other hand, if we restrict attention to
To:={A€ Ty, |bdry A| =0}
and write X,,| Ty := {X,.(A), A € T,}, we show

THEOREM 7.4. Both X,|To and Z,| To converge in finite dimensional distribution to
W|Toas||1/n||— 0.

Our goal is to extend finite dimensional convergence to convergence in distribution for
both jump processes Z,| T under the uniform topology and smooth processes X, | 7 under
Lipschitz topologies, where T' C T is suitably chosen. This we do in Sections 7 and 8.
While Wichura deals only with rectangles [0, ] C [0, 1]%, we treat general polytopes and
even some classes of sets with smooth boundaries.

Roughly, the technique used is as follows. We extend classical conditions, which imply
Lipschitz smooth paths, to such processes as X, | T'; then we note that these conditions
imply tightness for the induced measures on certain generalized Lipschitz spaces with
quite specific topologies. What makes this most interesting is the interplay between tail
conditions on £ and the size of T C T, as measured by a certain type of metric entropy. To
treat the jump processes we find conditions which imply || X, | T'— Z. | T||— 0 in probability.

To carry out the above plan, it seems best to study general Lipschitz spaces, over
arbitrary totally bound sets 7', and only later to deal specifically with summation processes.

Here is an outline of what we do.

In Section 2 we define generalized Lipschitz spaces and identify certain compact sets.
Section 3 specifies certain subsets of these Lipschitz spaces, membership in which can be
checked by observing a function (or process) on a countable dense set. These two subsets
arise naturally from the two separate techniques used to show smoothness of processes,
one due to Kolmogorov-Loéve and another due to Delporte. These techniques, generalized
in the spirit of Dudley (1973), are presented in Section 4. The next section gives specific
examples and applications of the preceding general theorem. Section 6 deals with processes
defined on T = [0, 1]¢ and shows that the above results on smoothness cannot be much
improved. Certain trigonometric examples are constructed to verify a conjecture of Garsia
and Rodemich (1974); the methods used follow those of Hahn (1977) and Hahn and Klass
(1977). Finally, Sections 7 and 8 treat, respectively, the Lipschitz (uniform) convergence in
distribution of the smooth (jump) summation processes to the Brownian sheet for fairly
general classes T C T'5.

2. Generalized Lipschitz Spaces. Let T, d be a semimetric space and let C =
C(T, R) be the set of real valued continuous functions from 7 to R. The usual Lipschitz
spaces are subsets of C which have certain oscillation properties. To define generalized
Lipschitz spaces, we first define a family of comparison functions

G := {g: (0, 1] — (0, 1]; increasing}.
ForxeC,geGand0<r=1set
g-osc(x, r) := sup{|x(s) — x(¢t)|/g°d(s, t);0< d(s,t)<r, s, tE T},
alxll:= x| + g-osc(x, 1),  [lx|l:=sup{|x(¢)|; tE€ T}.
Now define
&-Lip := g-Lip(T) := {x € C; g x || < ).
To compare various Lip spaces, notice that for f, g € G,0<r =1 and x € C, we have

Azl == @+ 2/f(r)) + 11(8/f) Io.1 || g-05c(x, r)
(2.1)

=1+ "(g/f)I[O,r] " + 2/f(r))g"x"
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Note first, by taking g = £, that admission to g-Lip depends only on g near zero. For further
comparison make the usual definitions

g=0(f) at 0 or g=o(f) at 0

if ||(g/f) T |l | @ < = or 0, respectively, as r | 0. We omit “at 0” when no confusion can
arise. Finally, define the .|| || discs

¢Ba={x€C, lx|=a}, 0=<a<ow.
THEOREM 2.2. Letf, g € G.

(a) g-Lip is a Banach space with norm || ||; ¢B. is closed in g-Lip and complete for
each of the ||| and .| || topologies.

(b) g =0(f) at 0 implies g-Lip C f-Lip; and g = o(f) at 0 implies that £l end || || give
the same topology on each ,B,.

(c) g =0(f) and f=0(g) imply that g-Lip = f-Lip and that ,| || and ;|| | are equivalent
norms.

(d) If T'is totally bounded and g = o(f), then each ,B, is compact in the Il || topology;
and g-Lip is a o-compact, separable linear space with norm (|| ||.

REMARK. We leave it to the reader to construct examples in case T = [0, 1], with the
usual metric, and g(¢) := | ¢| =: f*(¢), t = 0 which show that

(e) g-Lip is not separable in the ,| || topology,
® ||l and ¢|| || induce different topologies on g-Lip and &-Lip is complete in neither.

ProOF. (a) If {x,} C g-Lip is ;|| | Cauchy, then {x,} C zB,, for some a < oo, and {x,}
is ||| Cauchy. Under only these last two conditions, for each ¢ € T, {x.(¢)} is clearly
Cauchy and x := lim x, is in ,B,: for all ¢ and s with 0 < d(s, t) =1,

|x(s) — x()|| /g = d(s, t) < lim sup g-osc(x,, 1), and
[l]l = | 22 || =< lim sup, || %, — 2 || > 0 as &k — .

This gives 4| x || < lim sup. 4|| x.||, and (a) follows.

(b) and (c) follow easily from (2.1).

(d) When T'is totally bounded, we can show that the compact open and Il topologies
coincide on zB,, and the result follows from Ascoli’s theorem (Wilansky (1970, Theorem
13.3.4)). It is just as easy to argue directly. Let ¢; | 0 and pick finite ¢-nets S;, i = 1,
2, ...,8:=UTS;. (See the second paragraph of Section 3 if a definition is needed.) Given
{xn} C ¢B., by a diagonal argument we may assume x; (s) converges for each s € S. But
then, for every t € Tandi= 1,2, ..., we see

|%(8) = 2 ()] < 2a](&/F) Trocall | FIl + | (2 — 2w ) I5 |,

by approximating ¢ with an element from S;. This shows that {x} is | |-Cauchy. Hence,
by parts (a) and (b), every sequence in ,B, has a || ||, so also fll l, convergent subsequence.
Thus . B, is sequentially compact, and therefore compact (see Wilansky (1970, Theorem
7.2.1)). The final result is clear, because a compact metric space is complete and separable
(Wilansky (1970, Theorem 11.3.7)). O

3. Two subsets of g-Lip. In this section we will give two techniques for showing
that a function is in g-Lip: one due to Kolmogorov and Loeve, the other to Delporte, and
both extended from the case T = [0, 1] to totally bounded T by a method suggested by
Dudley.

We will begin by recalling that a set S contained in a semimetric space T, d is an e-net
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if for each ¢ € T there is an s € S such that d(s, t) < e. Further, T is totally bounded if T
has a finite e-net for every ¢ > 0.

We do not need to consider e-nets for every ¢ > 0. Instead we assume given and fixed a
sequence ¢ = (e, &, -+ +) with 1 =& > & - - - | 0 and a totally bounded 7. Now choose and
fix the sets and maps

finite ¢,-net: Sn
3.1) selector maps: on: T— S, suchthat d(o.(¢),t) <e,
neighboring pairs: T.:= {(s5,t) €Sy X Sps1; d(s, t) < 3e,}.
Let us take a second to see how these concepts might help. Note that x € C implies
x(t) — x © 0,(2) = Yp=n [X © Or+1(2) — x © 0r(2)].
Because d(s, t) < ¢, implies (6,(s), 6r+1(£)) € Ty, it follows for such s, ¢ and for x € C:
3.2) |x(s) = 2()| < 2 ¥ p=n Mi(x)
where
My(x) := max{|x(s) — x(2)[; (s, t) € T }.

As simple as (3.2) is, it is the key to both the Kolmogorov-Loéve and Delporte
techniques. Specifically, choose and fix some g € G and define

nodes 8n = g(&ns1+),
(3.3 jumps 88n = 8n — &n+1
minorant  g* = YT I(en+1, €n)&n-

Note that g* is a right continuous step function just majorized by g, and that .«| || = £| ||,
g*-Lip C g-Lip.

Loéve (1963) and Kolmogorov (see Delporte (1964, page 178, footnote 6) use a Borel-
Cantelli argument to bound Y=, M (x) by the introduction of

(3.4.a) C,:= {x € C; Mp(x) < 8gr, k= n}.
But Delporte (1964) uses a different method and defines
(3.4.b) A,={x€C;G(x) =a} 1A
where

G(x) =37 Mi(x)/g.

The above sets are useful in bounding the oscillation of a function in C; to get control of
its maximal absolute value, introduce

(3.4.c) B.,:={x€C;|x(s)| = b,all sE€ U} S} 1 Buw,
By :=NT By,p | Be.
From (3.2) and (3.4) we see that
g*-osc(x,e,) =2 if x€ C,,
(3.5) g*osc(x,1) =2G(x) =2a if xE€ A,
x| < Xr=n Mr(x) + b if x€ Bpp.
Combining these we obtain

(3.6.a) B.sNCrCB1isNCrCg+Bs C By
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for B := (1 + b)(1 + 2/g,) + 2, while
(3.6.b) A, N B,y CA:sN Bzosy C g+B, C 2B,

for a := 3a + b.
We now have the compact sets which are the key for our proof of convergence in
distribution.

THEOREM 3.7. Fix ¢, totally bounded T, the sets and maps of (3.1), a g € G and the
notation of (3.4). Given any f € G with g = o(f) at 0, we have B, N C, and Aa N B, 5
compact in g-Lip with ¢| || topology.

PROOF. A,, Bn s and C, are closed in the || || topology. [

4. Basic smoothness and tightness results. Throughout this section assume
given and fixed ¢, with 1 = ¢ > & > -.. | 0, totally bounded T, d and g € G. Associated
with these and also fixed we need for T, d:

finite e,-nets S,, selector maps o, and neighboring pairs T, (3.1),
and for g:
nodes g, jumps 8¢, and minorant g* (3.3).

Since we will be constructing measures on g-Lip = g-Lip(7, d), we need certain o-
algebras. For each f € G, with g = 0(f) at 0, g-Lip can be given norm (|| ||; and each such
norm leads to the o-algebras generated by the balls and opens, which we denote by ;Ball
and ;Borel, respectively. In addition, let ;,Cyl denote the o-algebra on g-Lip generated by
cylinders. Then it is easy to check, noting Theorem (2.2.d):

if g=o0(f) at O, then on g-Lip
#Cyl = sBall = (Borel = ;Ball C ;Borel.

Given a real valued process X = {X(¢),t € T} = {X(¢), t € T, Q, & P}, our goal is to find
conditions which imply X has a version in g-Lip, ;Ball. As our starting point we always
assume that X is continuous in probability;

X ° 0.(¢) = X(t) in probability, each ¢t € T.
We then introduce conditions which relate the size of T, as measured by
v, :=card T,
and the variation of X, as measured by either
DPrn = pa(X) 1= max{P(| X(s) — X(t)| > 8gn); (s, t) € T,.}
or m, = m,(X) = max{(E| X(s) — X(¢)|?/g%)" (s, t) € Tv},

where 0 < p < wand y:=1A (1/p), A := minimum.
Introduce the conditions on X:

(K-L) YSwmpr<o  or

(Dp) Y vimy < oo, O<p<o y:=1A(1/p).

Of course, when restricted to T' = [0, 1], the (KL) condition is of the type applied by
Kolmogorov and Loeéve, while (D,) is used by Delporte.

THEOREM 4.1. Given e, T, [, g € G with g = o(f) at 0, a process X continuous in
probability and the notation above.
(a) If X has (K — L), then X has a version on g-Lip, ;Ball.
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(b) If X has (D,), then X has a version in g-Lip, ¢Ball; and, in addition, there is a r.v.
G(X), function G defined below, so that E | G(X) |? < 0 and

| X(s) — X(t) | = 2G(X)g ° d(s, t), all steT as.

CoMMENTS: (a) the conditions (D,) and (K — L) seem not to be comparable. Specifi-
cally, under the conditions of Theorem 5.1.b, (K — L) seems to give X a version in a slightly
smaller space than does (D,). On the other hand, specializing (5.1.a) to T = [0, 1], we see
that (D,) gives X a version in a “Log-Lip” space, but (K — L) may not even imply
continuity (c.f. Loéve (1963, page 519, corollary)).

(b) In the Gaussian case, Dudley (1973, Theorem 2.1) is able to replace the neighboring
pairs T, by the sets S, X S,.1. If we were to make this replacement in the non-Gaussian
case, we would not even get the classical results on [0, 1].

Proof of (4.1). Introduce the random variables

M, := max{| X(s) — X(¢) |; (s, t) € Ty}
and the events
C,:= {j‘f)e = sgk; k= n} T Coo, A= [G = a] TAOO,

where G := G(X) := YT M:/g:.
(a) Now assume Y, v, px < . Since P(M; > 8g:) < v p», we have

P(C) = P(Cr) =21 —Np=n vepr T 1.

On Gy, | X © 64(t) — X © 0r4(t) | < Ypzn Mi < Yh=n 883, forcing I(Cw)X © 6,(t) to be Cauchy
everywhere and thus convergent to Y(¢), say, for each ¢ € T. By assumption X ° a,(f) —
X(¢) in probability, and we see that X(¢) = Y(¢) a.s., each t. Set S := U7 S,.. Then Q* :=
Cs N Nses {X(s) = Y(s)} has PQ* = 1, and Q* is in the ¢-algebra o {X(s), s € S}. In addition

Y(t) - Y ° on(t) = Zkan[X ° 6k+1(t) —Xo O’k(t)] on ﬂ*,
and the arguments for (3.5) and (3.6.a) imply
go0sc(Y,e,) =2 on Q*NC, and L|Y[=1+b)(1+2/g.)+2 on QF,,

where @y := @* N Cp N By, Brp := {|X(s)| = b; s € UT Sz}. As in (3.4), let B, :=
NT Bnp 1 Bwo. For Q** := @* N B,, we have, as in (3.6.a),

PQ**) = P(Q* N C. N Biss) = P(Q%s) = P(C,) + P(B,p) — 1> 1

if & - o and then n — . Now let A be the mapping which identifies each w € Q** with
the function w : ¢ > Y(¢t, w). The version of X that we seek is given by the measure space
(g-Lip, ¢Ball, Px:= P o A1),

(b) For1=p <, the inequality M% < ¥r. | X(s) — X(¢) | * implies || My, ||, < v.//? mng.,,
so that || G ||, = ¥F vi?ms < © and P(A.) = P(A.) =1 — || G ||5/a” 1 1 if (b) holds. For 0
<p <L E|G|” =37 nm. The rest follows as above and from (3.5). 0

Let us now turn our attention to conditions for tightness. Suppose given a family x =
{X} of processes on T, each continuous in probability, and now choose

Pn=sup{p.(X), X E x}, m.=sup{m.(X),XE x}.

If ¥v» p» < , then each X can be realized as (g-Lip, ;Ball, Px), and we think of the C, and
B4 of (4.1) as subsets of g-Lip. For tightness of the family 2, = {Px, X € x} as measures
on g-Lip with any f for which g = o(f) at 0, by (3.6.a) it suffices to show that for all
n>0

inf, Px(Co N Bay) =1 — 1

if n and b are large. We already have one uniform bound: Px(C,) = 1 — Yt=rn vepr. The
other is obtained by assuming x is e-net bounded: for all 7 > 0 there is a b = b(n, 1) such
that inf, Px(B.s) = infy, P(|X(s) | < b; s € UIS,) =1 — 1.



838 ROY V. ERICKSON

For applications it is important to notice that any finite x is e-net bounded, and also
that if x = {Xo, X, ++-} and X, — X, in finite dimensional distribution, then x is e-net
bounded.

THEOREM 4.2. Given ¢, T, f, g € G with g = o(f) at 0, the notation above, and a
family x = {X} of processes such that each X is continuous in probability and X is e-net
bounded. Either of the conditions

(K=L)y:Ympr<o or (Dp)y:Y vimy < o, vy:i=1A (1/p),
implies 2, is tight on g-Lip with ¢| || topology and o-algebra ;Borels.
5. Applications of the smoothness theorem. In this section, until the end of
Theorem 5.2, the € sequence is fixed as ¢, := 27"*!, and the size of the totally bounded

space T is specified by certain exponents of metric entropy, r+(T).
To be specific, let

Lo(s) =|s|, Lp=|log L], k=12
For k =1, 2, write
r(T)=r
if for some constant K, sets T, can be found, as in (3.1), such that
Li(v,) = K + rLi(ex) eventually,

where again », := card T,. To avoid trivialities, assume », — oo,
For comparison, recall that Dudley (1973, page 70) defined the exponent of metric
entropy of T as

r(T') := lim sup.,o La(card S(g))/Li(e),

where each S(e) is an e-net for T of minimal cardinality. By choosing S, = S(e,) in (3.1)
and observing that card S, < », < (card S,.;)?, it is clear that

ro{T)<r implies r(T)=<r and r{T)=r(T)+6, allé>0.
In addition, it should be verified that
r(T)<=r<ow implies r(T)=<$, all§>0, and r([0,1]%) <d.

One convention is needed before the theorem is stated. If 2 : A C (0, o] — (0, ] is
increasing on some interval (0, a) C A, a unspecified, let

g:=G(h):=h(- \Nb) A1,

where 0 < b < a is chosen so that g € G. Because g-Lip depends on g only near zero, any
such choice of b will give the same Lipschitz space.

THEOREM 5.1.  Let X be a process on a totally bounded space T with r(T) < r. Below,
K is a finite constant, § := d(s, t) and the hypothesized inequalities are assumed valid for
alls,teT.

(a) E|X(s) — X(¢)|? = K& /LS)L5(8) implies X has a version in g-Lip for g* =
G(L$L8) if p>r, a:= 1 — gy = 0 and if B can be chosen so that B>1—vywithB <0
when a = 0. (y := 1 A (1/p)). In addition, for this version we have

| X(s) — X(2) | = 2G(X)g  d(s, t) forall s,t€T as,

where E | G(X) |? < o,
(b) E|X(s) — X(¢) |” = K(8)™, p, g > 0 implies X has a version in g-Lip C Lip, and in
f-Lip C Lip, for each a < q/p, where g :== G(LY”[L,L{]V”) and f := G(LYP[L,LE]VP),
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any 8 > 1. (v := max.) In addition, for this version we have
| X(s) — X(2) | = 2G(X)f = d(s, t) all s,teT, as.

where E | G(X) |? < .
(c) P(|X(s) — X(2) | > a) = K exp(—a?/K8") for all a > 0 and some q, w > 0 implies
X has a version in g-Lip for g7 := G(bL§L,), b sufficiently large.

Proor. Clearly, each hypothesis implies X is continuous in probability. Note that
ri(T) < r implies », < K; 2*" eventually. In the statements below, all n and % are sufficiently
large, and b; —~ ¢, means by/c, — 1 as k — .

In part (a) we have A% := g®¥(27%) - K,k%(1og k)?, and the hypothesis implies that m,
can be chosen to be K3(27%/h% k7 1og"k)". Thus Yesr vLmy < Ky Yhen k'(log k) #™ < oo,
and (D,) holds. Now apply (4.1.b).

In part (b) we have A — K>2"*k(log k)?. Thus hps1/he — 2797, and we can find 0 < ¢
< 1 so that a; := Az — Ap+1 > chy. The Markov inequality gives

pr(X) = maxr, E|X(s) — X(¢) |?/(che)? = K:27%/k logPk =: ps,
and Y} pxrx < 0. This gives the g-Lip result. For the f-Lip case, we note that
vimp(X) = K [2F . 2729 /21 — K/k(log k)?

since f5 :=[f(e.)]” = Ks27*[k(log k)" 1.
In part (c) we have h] = K,b27**k. Thus hs+1/hr — 277 and again thereis 0 < ¢ < 1
such that a,. := hx — hg+1 > chy.. Hence

Pr(X) = K exp{—bKsk log 2} =: p.(b)
and Y, v pr(b) < 0 if b > r/K3.0

Actually, the inequality in (5.1.c) suffices to imply the existence of a smooth version of
X on a much larger domain 7' This will be useful in the study of Brownian processes.

THEOREM 5.2. Let X be a process on T and make all the assumptions of (5.1.c) except
assume ry(T) < r <w. If q, v > 0 then X has a version in g-Lip for g .= G(L§L%) with o
= (w —r)/q and any B > 0.

Proor. Notice that r»(T') < r implies vx < exp(K;s*") eventually. Again for large %, as
above we have

Pe(X) = K exp{—K:2¥k57} =: p,.0

Finally, let us apply our results to a centered, real valued Gaussian process X =
[X(¢), t € T} with semimetric on T given by

d(s, t) := | X(s) = X() | 2.

There are two techniques commonly used to show that X has a version with continuous
paths: one is to introduce an entropy condition, called (EN) below, and the other is to
show the existence of a mesure majorante, the (MM) condition below.

Following Dudley (1973), given ¢ > 0 let N(¢) = exp H(e) be the smallest n such that
there exist sets Ay, - -+, A, C T with both T'C U? A, and diam A, < 2¢ for all £. Introduce
the condition on X

(EN) f(t) = f (H(s))"?*ds <, some ¢>0.
0

Following Fernique (1974), intraduce the condition on X
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(MM) there exist a probability measure A on 7, d with Borels such that
limdo sup,erf | log A(B(t, r)) |1/2 dr = (),
0

where B(t,r) := {s€ T, d(s, t) <r}.

If X has either (EN) or (MM), it has a continuous version. If X is stationary and T =
[0, 1], then (EN) and (MM) are equivalent with A := Lebesgue, and necessary for X to
have a continuous version (Fernique, 1974). Also, Fernique (1974) shows that (EN) implies
(MM), and Heinkel (1978) constructs an example of an X on T = [0, 1] with (MM) and not
(EN). In addition, roughly stated, even for non-Gaussian processes, Fernique (1978,
Theorems 1.3.3, and 2.1.1) shows that (MM) is necessary and sufficient for a continuous
version.

Our results are patterned after those of Dudley, so it is not surprising that they will
provide a continuous version of X when (EN) holds. On the other hand, our methods do
not seem to handle the case (MM). But in the next section we will compare the smoothness
provided by our Theorem 4.1 with that given by the (MM) method as used by Nanopoulos
and Nobelis (1978).

THEOREM 5.3. (Dudley, 1973, Theorem 2.1). Let X be a Gaussian process with
property (EN) above. Then X has a version in g-Lip for g .= G(f).

ProoF. Pick ¢, 8, as in Dudley (1973, Theorem 2.1) so that (e, — en+1) > 2€,/3, en+2
= 6,/3 and 8, < 2¢,, all n. Let S, be a minimal 36,/2 net. Then », < card(S, X S,+1) <
exp 2H(28,+1) =< exp 4H(en+1), the last by definition of 8,+1 := 2 inf {¢; H(e) < 2H(en+1)}.
Choosing @, = b[ f(en+1) — f(en+2)] = 2ben+1H(en+1)?/3 and b = 9°/2 we get, for large n,

Gn = VaPn(X) < exp —H(en+1) =: 1

and hence gn+2 < rn+2 < rz. If T'is infinite then H(e) — = as ¢ |, 0, forcing r, < 1 eventually
and Y, g, < . If T'is finite there is no problem. ]

6. Smoothness of processes on 7' = [0, 1]°. Here we consider Section 5 when T
= [0, 1]* and (T) < d, and we construct examples to show that (5.1.a, b) cannot be
improved much in these cases. These results are in answer to a conjecture by Garsia and
Rodemich (1974) and follow techniques used by Hahn (1977) and Hahn and Klass (1977).

On T = [0, 1]* we use the metric induced by the supremum norm || ¢ || := || (¢4, « - -, £a) ||
= max({|#]|, -+, | tz|} on R%

THEOREM 6.1. Let X be a process on T = [0, 1]°. Then r(T) < d and the results of
Theorem 5.1 hold with r = d.0

Let us compare these results with those of Nanopoulos and Nobelis (1978, page 641)
who use the mesure majorante (MM) method mentioned at the end of Section 5 and
Garsia and Rodemich (1974, page 105) whose method is somewhat similar. Assuming T
= [0, 1], so that r1(T") = 1 = r, they show that the inequality of (5.1.a) with 1 < p < g,
v = 0 implies X has a version such that

| X(s) — X(¢) | < CYL%(|]s— t|) all s t€[0,1] as.,

where C is a constant and Y is r.v. with E|Y|? < 0 and a := 1 — (¢/p) < 0. Our (5.1.a)
gives a slightly weaker result: L{ is replaced with L{L{ with 8 > 1. On the other hand, in
the case of (5.1.b) Nanopoulos and Nobelis only prove that p > 1 = r = d implies X has a
version such that

|X(s) — X(8) | < CY|s — |77 all s te[0,1] as.
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with E| Y |? < o, while our result replaces |s — ¢|??~"/” with the much smaller bound
|s —¢|9"Li(]s — t|)L§(s — t), any B> 1.

We now expand the statement of (6.1) and specify in what sense (5.1.a, b) are nearly
best possible.

THEOREM 6.2. Let X be a process on T = [0, 1].
(a) Suppose inequality (5.1.a) holds withr =d,p >0 and y:= 1A (1/p).
(i) Supposep < dsothatdy=1.Ifdy>1,ordy=1andqy>0,ordy=1and
gy =0 and vy > 0, then X has a constant version: E | X(t) — X(0) |” = 0 for all
t.
(ii) p>dandp<qorp=q<vimply X has a continuous and even Lipschitz
version, as in (5.1.a).
(iii) X need have no continuous version ifp=2,p>d,p = q and v =0.
(b) Suppose inequality (5.1.b) holds with r = d, p, q > 0.
(i) p<d+ qimplies X has a constant version.
(il) p=d + q implies X has a version in Lip, for all a < q/p.
(iii) Ifp > d + q and p = 2, X need have no version in Lip, for a > q/p.

Proor. Part (ii) of both (a) and (b) is a restatement of (5.1.a, b). Part (i)- of both is
easy: for 1 = p < d the inequality of (5.1.a) implies

| X(2) — X(0) ||, = 3k || X((& — 1)t/n) — X(kt/n) ||,
=< Kin/(n?Li(n)Li(n))*"? — 0.

under the hypothesis of (a)(i). A similar argument works in case p <1 and in case (b). Part
(iii) will be proven by the examples constructed in the rest of this section.

To give the examples, which will complete the proofs of part (iii) of (6.2.a, b), we look
at certain trigonometric series. In particular, for dimension d = 1 we consider

Ses1k P coskt, B>1 and Y3 (klogk)™" cos kt.

The first series clearly converges and will be shown to be in certain Lipschitz spaces, while
the second will be shown to be integrable and continuous on [—7, 7]\ {0}, yet large near 0.
The ideas and inequalities we use have their source in Hahn and Klass (1977), although
for d = 2 we are unable to attain their generality.

To set forth these examples let  := T := [—7, 7]° have probability measure P := d-
dimensional Lebesgue/(2m)?. For s = (s1, - -+, 84), t € R? and real a < b, let s - ¢t := ¥{ sit;,
|s|:= (s, *++|84]), || ]| ;== max{|s:|,1=i=<d},s=tmeanss;<¢t,i=1,---,dand
a=<s(<b) meansal <s (< bl) for1= (1, - .-, 1) in R% Finally

To={teT, t;=0somei=1,---,d}
I={(keR, 1=k <ky=...<kqy<j+ 1,k integral},
I:=I°°’ If:=I\IJ’ j=192)"'
PROPOSITION 6.3. Fixp,q>0,p>d+q,p=2,r:=p/(p—1),B:=d+ (g/p) and
let
f@&) =S| k| Fcosk -t teR?
Xt w):=ft—w), teT, weE

(a) f isin Lipy,(T) but in no Lip, for a > q/p.
(b) E|X(s +t) — X(¢)|»< K| s||** for some K < and allt, s + t € T, yet X has no
version in Lip, if « > q/p.
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ProPOSITION 6.4. Let
v(k) := (kv 3)log7!(k v 3),
and
g(t) :=I(t & To) Yi=1 v(|| k|)cos k-t
and
X(t, w) = g(t — w).
(a) gisin Li(T, P) and is continuous on T\T,.

In addition there are constants K., K, and K, so that
(b) if 7/4d(n + 1) < |¢t| then

|g(t)| = Kaloglog n,n=3, while
(c) ifm/4d(n + 1) < |t| < 7/4dn then
| g(¢)| = Kiloglog n,n=3, and
(d) X has no continuous version even though
E|X(s+t) — X(t)]” < K, || s||*/LE (| s]))
forall t,s+teT,p>d,p=2.

In many of the calculations of these proofs it is necessary to know the asymptotic (~)
behavior of £, s(n) := ¥, k~*Log~?k, where the summation is over 4 tonifa<lora=1
= 8 while over n to w if a > 1 or a = 1 < 8. It is easy to show, directly for a 5 1 and using
the theory of slowly varying functions as in Feller (1971, VIII-9) for o 5 1:

fup(n) ~n'*(ogn)#/|1—a| ifal,
~ (log n)'=# fa=1#8
~log log n fa=8=1

PROOF OF PROPOSITION (6.3.). (a) Notice that
f(s+t) — f(t) =Y+r a(k, s)e*

where a(k, s) := ||k||#(e** — 1)/2, so that |a(k, s)| < || k|~ ﬁ(d||k|| sl A 2)/2. Let
Y;(X5) denote summation over I;(I5). Observe that, for each d and j, ¥, 1 = (4797!) < ;.
Applying this for the first d — 1 varlables in I, when 1/(j + 1) <||s|| < 1/j we have

|Fls +0) = )] < i S, | R + 255 1]
= 0 T4 A% + B70 k91)
= (]| s[1*).

For the second statement use the Dini-Lipschitz theorem (Igari (1968, page 12)): If fis
in Lip,, then

0G™%) = (Z7 1 II") = supr | f(t) = T, || k|| Pcos k-¢| = 0(j*log?)),

and a > q/p is impossible.
(b) For the first part use the Hausdorff-Young inequality (extend Katznelson (1968,
page 99)): for 1/(j+ 1) <|s||<1/jand p =2,

1X (@ +8) = X@)ll = 1 (- +8) = f()lp = (Zur|alk, s) )"
=00 i IRl + X5 N kl=)"
’ = O(jd—,Br)l/r = 0("s"d+q)1/p’
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since —r < —(d + q)r/p = d — Br < 0. The fact that X has no version in Lip, for « > q/p
is clear since f & Lip,. O

Before we can prove (6.4) we need two well known facts.

LEMMA 6.5 (SUMMATION BY PARTS): Given {u(k)} and {v(||k])} for k € Z°, define
8(n) = Yi=k=n u(R)v(|| £])).
For fixedn=1withm :=|n|andj=1,2, - .-, let
Un()) = Yr<r=is [u(R)I(k = n)],
V() =v(j) —v(G+ D).
Then, by an appropriate induction,
s(n) = Y725 Un(j) V(j) + Un(m)v(m).

Hence, if | Y 1=r=n u(k)| = B < for alln and v(j) | 0 as jo < j — », then min(n,, - - -, ng)
— oo implies

s(n) - s:=3Y7 U()V(), |s| = Bu(1)
where U(j) := Ui (j).

To apply this with u(k) := cos k-¢, fixed ¢, use induction and
sin(s/2) ¥ %1 cos(a + js) = sin(ms/2)cos{(m + 1)s/2 + a}
To prove

LEMMA 6.6. Define C(n, t) := ¥ 1<k=» cos k-t. Then

(a) C(n,t) = cos(n + 1)-t/2 I1¢ sin(nt; /2) /sin(t; /2),
(b) |C(n, t)| = (IIf ;) A (¢ 7/|t:|) and
() |Cn, t)| = (MI¥ n:)/2 if |k-t|<m/3for1<k=n.

PrOOF OF PROPOSITION 6.4. Define u(k) := cos k-t, t & To, v(||k|) as in (6.4) and
check that v(j) | 0 for large j and

V() =v() —v(j+1) ~ d/j*'log j

as j — o (~ := “asymptotic to”). Then (6.4.a, b, c) follow from (6.5) and (6.6). Because of
(6.4.c), X has no continuous version. To prove the moment inequality of (6.4.d), use the
Hausdorff-Young inequality as before. [

7. Brownian sheet and summation processes. We now turn to the processes
which motivated this study. Recall that we defined the Brownian sheet in (1.2) and guessed
it would be a limit of a smooth or jump summation process in (1.3). To see that this is so
we begin by proving two general inequalities.

ProrosITION 7.1.  Given {1, §2, --- iid { with E¢ =0, E{® = 1. For 2 < p < o there is
a constant K,, depending only on p, such that for all real a;
(Y a})"* < E|Y 4§, 1P < KE|{P(T af)?”.

Proor. Apply Theorem 3 of H. P. Rosenthal (1970) and notice that Y |a;|? =
Ya})P? = (X a})?2 O

Better results are possible when { is generalized Gaussian, i.e. when there is a constant
K = K({) such that for all ¢ >0

E exp(£{) < exp K¢*/2.
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Such ¢ are also called sub Gaussian if K > 0. Note that bounded or Gaussian variables
have the above property.

ProposiTION 7.2.  If {1, {2, - - - 1id { and { is generalized Gaussian, then for all real a;
andt>0

P(|Y ;| > t) = 2 exp{—t*/2K (Y. a?)}.

Proor. Since E exp () a;{;) < exp K Y, ajt?/2, the result follows from Chow (1966,
equation 4).

Recall the notation given in (1.1). We also need the set A~* := R%\(R?\A)" and the
fact, proven in Bhattacharya and Rao (1976, page 14),

[A\AT*| = |(bdry A)*|, AE Ta.
For our next result write
B = Br(A) = |(bdry A)™| = |A*"\A ™|,
for A€ T and ¢, := | 1/n]|.

THEOREM 7.3. Let X, and Z, denote the smooth and jump summation processes as
defined in (1.3). Let A € T.
(a) Given p = 2 there is a constant K, such that

E|X:(A) = Z,(A) P = K,E ¢ ][ B.(A) .
Thus A € T, implies
E|Xu(A) — Z.(A) < K:8.(A) > 0 as ¢, — 0.
(b) If ¢ is generalized Gaussian then
P(| Z.(A) — Xa(A)| > t) < exp{—t*/2KB.(A)}.
Proor. X,.(A) — Z.(A) =Y a;&; where
;= | Rnji " "{|RiyN A | = | Ru; | I(i/n € A)}.
But a} = 0 if either R, ; C A or R,; C R%\A, while on the other hand R,; C A"\A™™ and
in general a} < | R, | This implies that Y a? <|A™\A™| = |(bdryd)"| = B.(4). O

We will use (7.3) in Section 8 to show that Z, | T converges in distribution to W | T for
the uniform topology for certain T C T,. For now let us prove finite dimensional
convergence. Recall that

Ty := {4 C [0, 11, A Borel, | bdry A | = 0}.

THEOREM 7.4. Both X, | To and Z, | T converge in finite dimensional distribution
toW| Toas|1/n|— 0.
ProOF. Treat Z, first. Fix Ay, --+, A, € To, v, +++, v, real and set v := Y | v, |,
Vi 1= Y p=1 UpZn(4p) = Y j=n anié;,

where ay; == Y, | Rn; |2 I(j/n € A), |an;| = v|1/n|“2 If U, denotes the random
variable uniformly distributed on the points j/n, 1 <j < n, then

bn:=EV;:=Y;08;=Y < |Rnj| Ypa Uolal(j/n € A, N A,)
= Ypq UV P(U, € A, N Ay)
= b:=3,, U0 | Ay N Ag| = E(T 1, W(A,))%
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Now apply the Lindeberg theorem: for > 0, || 1/n || so small that b, > b/2, and any ¢ > 0,
T e E0Zi83 /bos 038} > but) < E(E%, £ > bt/20* | 1/n|) — 0
as || 1/n| — 0. The result for X,, | T, follows from (7.3.a). O

The next inequality allows us to apply the basic smoothness and tightness theorems
and their applications, Sections 4 and 5, to obtain that X, converges to W in distribution
for certain domains T C T.

THEOREM 7.5. (a) Given p < 2, there is a constant K, such that for all A, B € Ty
E | X.(A) - Xu(B) | P < K,E | £ | "[d(4, B)P".
(b) If ¢ is generalized Gaussian, then for allt >0, all A, B € Ty and K = K(£) we have
P(| Xa(A) — X.(B) | > t) < 2 exp{—t*/2K dr(4, B)}.
Proor. X,(4) — X.(B) =Y a;¢,; with
@ = |Rnj | 7/*(| Rnj N A\B| — | R,; N B\A),
so that a} < | R, N (AAB)|. Now apply (7.1). O

We are now ready to prove Lipschitz convergence of X,, | T to W | T. Before doing this
we should check that the Brownian sheet W is smooth. Because W(4) — W(B) ~ 410,
di(A, B)),forall a >0

P(|W(A) — W(B)| > a) < 2 exp{—a?/2 di(4, B)}.

Thus, if T C Tghas ro(T') <r <1then W | T := {W(A), A € T} has a version in g-Lip for
g = G(LSL%), a == (1 — r)/2 and any B > 0, by Theorem 5.2. (Remember that L, :=
identity and Ly := |log | L||.)

The next theorem is due to Lamperti (1962) in case d = 1and T = {[0, £],0 < ¢t =<1}, s0
that ,(T') = 1. This is our main theorem for convergence of summation processes.

THEOREM 7.6. Fix totally bounded T C To, dy.

(a) Suppose E | £ |? < o for somep > 2. If ri(T) < r and q := (p/2) — r > 0, then
W | T and each X,, | T has a version in g-Lip C Lip, for g° :=G(L3L,L§), for each B >
1 and a< q/p. Also, X, | T converges in distribution to W | T as processes on g-Lip, ¢| ||
for each f such that g = o(f) at 0.

(b) Suppose ¢ is generalized Gaussian. If ri(T') = r (r(T) <r <1), then W| T and
each X, | T has a version in g-Lip C Lip, for g := G(bLy*’L1®) and b large (g =
G(LALY) withA\:==(1—r)/2and any B >0) and 0 <y <% (0 <y <]). Also, X, | T
converges in distribution to W | T as processes on g-Lip, ¢| || for each f such that g =
o(f) atO.

Proor. There is really nothing left to prove, but let us point to the relevant theorems
as they are used. For the first statements in (a) and (b) use (7.5.a), (5.1.b) and (7.5.b),
(5.1.c), (5.2) respectively. The second statements follow from (7.4), (4.2) and the remark
preceding it, (7.5) and the calculations of (5.1) and (5.2). O

Let us now turn to the Hausdorff metric dx. For this we introduce, for each K > 0,
Tox = {A € To; | A\A| = Ke/2, all 0<e=1).

Notice that A C B° implies A\B C B°\B. Hence ¢ > du(A, B) implies AAB C A®\A U B*\B,
and we have

(7.7 A,BE T;x  implies d.(A, B) < K du(A, B).

It is well known that there is a K such that T... := {4 C [0, 1]%, A convex} C T;x. The
example of two distinct points shows that the converse of (7.7) fails.
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THEOREM 7.8. For T C Tk, (7.6) remains valid with r1 andr; calculated using dy. 0

To apply (7.7) and (7.8) we exhibit some appropriate subsets T C T k-
Ta={[0,(]=[0,&] X -« X[0,24);0 <t = (ts, -, ts) <1},
Ta. := {convex hull (v, -+, v.); ;€ [0,1]%i=1, ---, ¢}
Taom = Dudley’s (1978, page 917) class of sets J(d, o, M).
It is easy to show that both T,, T,;. C T,k, some K = K(d, c), and
r(Tq) = d, ri(Ta.) < de, for both di and dy.

Let us describe the sets in Ty, and some of Dudley’s (1974) results about them. Let
8% 1:= {x €R% Y x? =1} and let G(d, a, M) be the set of all f:S% " — [0, 1]* which, with
all their partial derivatives of orders < a, are bounded in norm by M. (For our convenience
we have chosen range (f) in [0, 1]” rather than in R as in Dudley.) Now let I(f) be the
open set of all y € R%range (f) such that f is not homotopic to a constant map in
R“{y}. Finally, set J(f) := I(f) U range (f) and Taam = {J(f); f € G(d, &, M)}. Then
Dudley (1974) proves that

Taem C Tox some K = K(d, a, M)
and fora =1
r(Taem) = (d—1)/a  for both dg and dg.
Recall (Section 5) that ro(T') < r(T') + & for all § > 0.

THEOREM 7.9. (a) (7.6.a) holds for T = T4(T = Ta,.) and either metric d, or dy if
E | £|? < o for somep > 2d (p > 2dc).

(b) (7.6.b) holds for T = T4, and either metric dy, or du if o > d — 1 (iff 7(T) < 1) and
d=2.

8. Summation processes; the jump version. Let Z, | T again denote the jump
summation process. Under suitable conditions on the moments of £ and the size of T, we
prove that

Z, | T>W|T (2 %),

which is to say that there is convergence in distribution for the uniform topology.

Since the Z, processes live on a space like D[0, 1], there is no well established definition
for (2, %) convergence. A recent paper of Dudley (1978) presents one possible definition
(page 900) and mentions two other proposals (page 902). Our meaning will be a little
stronger than Dudley’s. Let us sketch the distinction briefly.

Begin with metric space (S, p) having Borels # and ball o-algebra %, C %. Given
probability measures {P,}, P on S, %,, Dudley (1978) defines P, — P to mean [ f dP, —
[ P for every bounded, continuous f: S — R which is %, measurable. Our usage removes
the condition that f be %, measurable and then replaces the integrals by upper and lower
integrals, [* and [,. Let us return to the Z, | T processes to see how this change comes
about.

We already have that Z, | T— W | T in finite dimensional distribution (Theorem 7.4),
and by analogy with Dudley (1978, Theorem 1.2) we should have Z, | T— W | T (2, %)
if {Z, | T} has small oscillation, i.e. if for all ¢ > 0 there is a 8 > 0 such that

P11 —osc(Z, | T,8) <e)>1-—¢ eventually.

As is seen in Theorem 8.6 below, small oscillations for {Z, | T'} implies not only Dudley’s
type of convergence (8.6.c) but ours as well (8.6.b).
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Let us summarize the contents of this section. First, we give an example to show that
when T'is too large it is impossible for Z, | T to converge to W | T for the uniform topology,
even when the random summands have only two values and the sets in T have very
smooth boundaries. After this discouraging example we show, on the other hand, that
there is such convergence in case T = Ty, consists of polytopes with a bounded number,
¢, of vertices in [0, 1]¢ and if the summands have enough moments (Theorem 8.1). Finally,
we look at the implications of finite dimensional convergence combined with small
oscillations of Z, | T, and we characterize small oscillations in terms of a certain type of
convergence (Theorem 8.6).

Let us give an example, communicated to us orally by R. M. Dudley, to show that Z, | T'
cannot converge in distribution to W| T for the uniform topology if T contains too many
sets, even if they have smooth boundaries. To do this let d = 2 and assume é =+ 1with
probability %, '. For any positive integer m let C.. := {f: [0, 1] — [0, 1], kth derivative
D*f exists for all £}, Com = {f € Cu; | D*f||< 1, k=0, .-, m)}, and for f € C.. define
A(f) = {(x,y);0=x=1,0=<y=f(x).

For even n = 2k, when f € C,,n is such that || f — %|| < %n, we have

Zn(A() — Zi(A(1 - f)) = % Py Sgn[f(i/n) - -;—] §is

and
d(A(), Al —f)) = 1/nfor d = d; and d := dpg.

If we take T := {A = A(f); f € Cum, | f— %| =< %} it is clear that 1 — osc{Z,| T, 1/n} = 1:
for each w choose fso that sgn[ f(i/n) — %l&u(w) =1,i=1, .-, n.

Let us now turn to positive results. We will find conditions on 7 and the summands so
that Z, | T has small oscillations. Note that

1-0s¢(Z,| T, 6) = 2|| Z, — X,.||r + 1 — osc(X,.| T, &)
where || x||7 := sup{| x(¢) |, ¢ € T'}. Hence, Z, | T has small oscillations if
|| Z» — X || 7 — O probability

and if X, | T has small oscillations. The latter is easy to deduce for suitable ¢ and 7" for
nice {and T, (a) if g € Gand g(r) | 0 asr | 0, then

1—o0sc(X,| T, d) =4 X.|T| g(5) and
(b) for all ¢ > 0 there is a & > 0 such that
P{ | X.|T|| = b} >1— ¢ eventually

(see Theorems 4.1 and 7.6).
For totally bounded T C T, we let ¢, — net S, and map o, be as in (3.1). To show that
|| Zr = X, ||z — 0 in probability, notice that

|2, — Xollr < 1Zn — Zn o Oullr + | Zn © 00 — Xp © On]lr+ 1 — osc(X, || T, €n)-
The last term is easily handled, as above. For the second, we have
P(||Z, 2 00 — Xn © onlr>¢)
= [card 0,(T)Jmax{P (| Z.(A) — X.(A) | >¢), A € 0,(T)}
=<[card 0.(T)]K,E|£|Pe® max{B,(A); A € 6,(T)}*">
by (7.3.a). Finally
P(|Z. — Z, ° 0u|r > €) < card 0,(T)
X max{P (supgeo;1a)| Zn(B) — Z.(A)| > €); A € 0.(T)}.
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The key in handling this last term is to notice that the “sup ” is really a “max”, for Z, (B)
—Z.(A) = Z,(B\A) — Z,(A\B) depends on A and B only through the subsets of ¢, :=
{k/n, 1 =k < n} that can be formed by B\ A and A\ B.

Let us now apply the above technique to the case T'= Ty := {4 C [0, 1]% A is a convex
polytope with at most ¢ vertices}.

To keep matters simple from now on we assume vector n = (n,, - - -, nq) has ny = np =
«++ =ng=|n| and also take &, := | 1/n| = 1/| n|.

THEOREM 8.1. Let T = Ty. with Hausdorff metric dy and form the summa-
tion process Z, for summands iid. £, where E|£]2° < o« for some p >

2[dc +(d-1)d ; + 1}] . Then Z,| Ty, converges in distribution to W| Ty for the
uniform topology.

Proor. Theorem (7.9.a) and the arguments above show that X,|Ts. has small
oscillations if E|£|? < o for some p > 2dc.

To treat the term || Z, ° 6, — X,, ° 0,|]7 introduce some notation: For 0 < x < 1 let [x].
=k/|n|ifk—1<|n|lx<k =1/||n|if x=0.Forw= (wi, ---, ws) €[0, 1]%let [w]. :
= ([wiln, - - -, [wa].). Finally, if A € Ty, has vertices v, -« -, vy, b < c, let

on(A) := convex hull ([v1], -+, [Us]n).
Clearly, S, := 0,(Ta,.) is an e,-net for T, with metric dy and
¢n:=card S, = n®.
In addition, from Bhattacharya and Rao (1976, Theorem 3.1)
Bn(A) := |A™\A™*| < Kge,
for all convex A € [0, 1]°. This gives
P(||Zo0n — Xpo0n|r > €) < Kape PE|£|Pn% ¢ 5 0

if E| £|? < oo for some p > 2dc.

The bounding of the || Z, — Z,o0, |r term is much more complicated. We need a little
more notation and two lemmas: add a parenthetical (2) to denote objects defined using the
I norm of v = (vy, ---, vg) € R%:

ol =lvle := (£ v})"* = d"|v].

LEMMA 82. A € 6,(T4.) and B € 6,,*(A) implies
A= CBCA%e>1/|n|.

Proor. The second inclusion is clear and the first can be derived as follows: since A ™"

CA™® and A C B* C B™® where 1 := d"/%, it suffices to show that
B®(x,n) := {y;||x = ¥l <n} C B*® := U{B®(b,7); bE B}
implies x € B if B closed and convex.

If x & B, there exists a unique b € B such that | x — b|js = dig (x, B) =: § > 0; then y := x
+ p(x — b)/6 € B®(x, ) C B*® while di (y, B) = § + p for all p <1, a contradiction. 0

Define 7, := 2d"?/||n||. Then for A € 0,(T4.) =: S, and B € 6;(A), we have A™ C B
C A™, Further, let #(A) := {J, N B\A™ B € 0.'(A)} for A € S,, where J, := {k/n,
1 =% =n} C[0, 1]% Because

Z}(A) :=sup{|Z,(B) — Z.(A)|; BE 6;7'(A)}
=2max{|Z,(C)|; CE F(A)},
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we see that
P(" Zn - Zn°0n||T > 8)

=||n||* maxae,,m {card F(A) X 27/e? X maxce za)E| Z, (C) |P}.

LEMMA 8.3. There is a constant K = K, such that for each A € 0,(T) and each n
card #(A) = K4||n|°

where p = pg.:= (d — 1)[d<§) + 1] .

Proor. Thisis based on the following result of Vapnik and Chervonenkis (1971) which
we state only for our sets: if X := J,\ A ™™ where 7, := 2dV%/||n|, A(F) := card{F N B, B
€ 0,'(A)}, m(k) := max{A(F), card F=k, F C X} and r := min{k; m(k) < 2*} (min ¢ :

=), thenm(k) <=k"+ 1for =0, 1, ... In our case we claim that r =d 2 + 1: each

B € 0,'(A) has at most (2) faces (of dimension d — 1); and each face and its half space

containing B can produce, as B varies over o, '(A4), all subsets of at most d points. Hence,

c) + 1. Since

m(j)<2jforj=d<d

A™ C BCA™for B € 6;,1(4),

the result follows if we take F = JJ, N A™\ A ™™ and k£ = card F. But j/n € F implies R, ;
:=[j—1/n,j/n] C(A™\AT™)™" = (JA™)™ C A*™\ A% =: A,. Thus

card F=|n|*Y, IRl

Jj/neF
=||n||* |UjnerRn,|

=|n|"lAx| = Ka|n|*". O

ProOF oF THEOREM 8.1 COMPLETED: It remains to bound E | Z.(C)|? for C € F(A),
A € 0,(T). By (7.1) we have

E|Z.(C)|” < K,E|£|? (card C)*"2||n|#~.

Now CC J, N A™\A™ =: F, and in the previous lemma we saw that card F < K;n?"".
All together this gives

P(|Zn — Zpoon|lr > €) < Kape PE|§|?|| n||*?,
where a(p) =dc+p+ (d—1)p/2—dp/2=dc+p—p/2. O

We should compare Theorem 8.1 with the results of Wichura (1969): he assumes only
E| ¢|* < o, but his result holds only for T'= ([0, ] =[0, t;,] X -++ X [0, ta], ¢ = (t1, . . . , ta)
€ [0, 1]¢}. Our methods do not give his result because we do not have a maximal inequality
in case T = Tq,.

Finally, let us describe in more detail the implications of

(a) Z,|T— W|T in finite dimensional distribution
and

(b) {Z.| T} has small oscillations.

To do this we think of Z, | T'and W| T as all realized on a path space like D[0, 1]: assume
that r5(T') = r < 1 so that W| T has continuous paths; notice that each Z,|T(w) has a
simple path s € S(T, R) i.e. a path of the form

s(A) 1= 21’ al(br€A),a€T
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for somer=1,2,...,and a; ER, b, € [0, 1] Now define
Dy :=Do(T) := {x + s; x € C(T, R), s € S(T, R)}
and give D, the uniform topology. For s-algebras introduce the Borels %, the ball-Borels
By:=0{B(y,¢);y € Do;¢> 0}, B(y,¢) := (2 E Do, | z — y|| < ¢}

and the cylinder o-algebra %. Because C(T, R) is separable iff T is compact (metric)
(Dunford and Schwartz (1958), page 437, problem 17), D, will usually be nonseparable and
%, will likely be strictly contained in 4.

Now let Z, be realized on Do, ¥ under measure P,, say. We claim

PROPOSITION 8.4. Sets in B, are P, measurable if T is totally bounded.

PrOOF. Givene>O0andy=x+s€ Dwithx€ C(T,R) ands= Y] a,I(b, € -) € S(T,
R). Let J,(s) := {br, j/n; k=1,...,r,1=j=n€[0,1]%}. For each K C J,,(s) set T(K)
:={A € T; AN J.(s) = K}, and note that T(K) is totally bounded since 7' is. Finally

{512 (w, <) = yllr =< €} = NkcayNaer ) {w; |[n2 Y. £i(w) —a(K) —x(A) | = ¢}

j/neEK
where a(K) := s(A) is constant for A € T'(K) and T*(K) := U2, {finite 1/i-net of T(K)}.
0

If we build W| T on C := C(T, R) with distribution @ then %; (for C) C % (for C) when
T is totally bounded, and the extension of @ to P on D, via P(A) := Q(A N C) gives

ProPOSITION 8.5. Sets in %, and % are P measurable if ro(T) =r<1. 0O

To state our main result we need some standard notation: given a measure y on some
measure space X, &/, let u* and p, denote the outer and inner measures induced by u and

let
*
f fd,u:=inf{fhd,u;h2f,fhd,udef'med}.

Define [, f du analogously.

THEOREM 8.6. Suppose T C Ty has ry(T) =r<1. Let P, and P denote the distribution
of Z,| T and W|T on D,. Then

(a) {Z.| T} has small oscillations iff

(b) diam{ [* fdP,, [, fdP,, [* fdP, [, fdP} — 0
for every f:Dy — R which is bounded and continuous when D, is given the uniform
topology.

In particular, (a) implies

(c) [fdP,— [ fdP
for every f: Dy — R which is bounded, continuous and B, measurable.

Proor. This follows directly from Erickson and Fabian (1975, equations 2.8, 2.10 and
2.3). Without elaborating on definitions, let us check the conditions imposed in (2.10):
convergence on 7 means that Z,| T— W|T in finite dimensional distribution; the domain
of P contains both %, and 4, so also 7. That P and {P,} are almost simple follows from
their small oscillations not only when T is compact but also when T is totally bounded:
given ¢, 6 > 0, a finite 8-net S; for 7 and B;(s) := {t € T, d(s, t) < 8}, we have

{x € Do; 1 — osc(x, 8) <€} C {x € Dy; diam x(Bs/2(s)) <e, sE€E Ss}. O
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