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ON A CONJECTURE IN GEOMETRIC PROBABILITY REGARDING
ASYMPTOTIC NORMALITY OF A RANDOM SIMPLEX

By A. M. MATHAT

McGill University

A conjecture in geometric probability about the asymptotic normality of
the r-content of the r-simplex, whose r + 1 vertices are independently
uniformly distributed random points of which p are in the interior and r + 1
— p are on the boundary of a unit n-ball, is proved by Ruben (1977). In this
article it is shown that the exact density of the random r-content is available
in the most general case. The technique of inverse Mellin transform is used to
get the exact density, thus requiring the knowledge of the 2Zth moment of the
r-content for all real k. This £th moment is already available in the literature.
Approximations and asymptotic results as well as a simpler alternate proof for
the conjecture are also given.

1. Introduction. Consider a set of r + 1 independently identically uniformly distrib-
uted random points (1 < r < n) of which p are in the interior (p = 0) and g are on the
boundary (g =r+ 1,p + q¢ =r + 1) of a unit n-ball. Let A, denote r! times the r-content
of the r-simplex generated by these points. Let A¥ = (2n/r)"*(A, — (r + 1)'/%). The exact
density of A, for r = 1, p = 2, ¢ = 0 is obtained by Hammersley (1950). Miles (1971)
obtained the exact density of A, forr=1,p=1,¢g=1andr=1,p=0,q9 = 2 and he
conjectured that Ay is asymptotically normally distributed with mean value zero and
standard deviation unity. Ruben (1977) showed that the conjecture was correct.

In this article it is shown that the exact density of A, in the most general case is
available. The method is illustrated for some particular values of p, ¢ and r. It is shown
that this problem is connected to a wide class of problems associated with the distributions
of multivariate test statistics as well as to generalized special functions such as G and H
functions. A method is given for getting approximations and asymptotic results for A,.
This also leads to a simpler proof for the conjecture of Miles (1971).

2. Exact densities of random r-contents. The exact densities will be obtained by
using the technique of inverse Mellin transforms with the help of the moment expressions.
The kth moment of A, is given by Miles (1971) and Ruben (1977). Rewriting equation (14)
of Ruben (1977) one has

EQLH"=T[(r+1)(n/2) + r+ Dh—r+p][[5=6Th + (n — /2T + n/2)P
(2.1) AT (m/2) 7P/ {T[(r + 1)(n/2) + rh— r + p] [[/=6 T((n — /)/2)
A0+ 1+ n/2)P[T(h + n/2)] 7P}
which is also valid for complex values of 4 where E denotes the expected value. For

convenience these gammas will be rewritten in a slightly different form. With the help of
the multiplication formula for gamma functions, namely,

(2.2) I'(mz) = (2m)™2m™ "2 [[5 T'(z + j/m), m=12,..
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one can expand the gamma functions I'[(r + 1)(n/2) + (r + 1)A — r + p] and T'[(r + 1)(n/
2)+rh—r+plbytakingm=(r+1),rand z=(h +n/2) — (r —p)/(r+ 1), h + ((n/2)(r
+ 1)/r) — (r — p)/r respectively and simplify the Ath moment of A% to the following:

23) E(A})" = CA(h)
where

A(h) =T[=oT(h +n/2 - (r—p)/(r +1) +j/(r + 1))
24) TL-1 T+ n/2 = (G = D/ + D™/ /AL TR+ (n/2)

«(r+1)/r = (r=p)/r +j/O[T(h + 1+ n/QP[T(h + n/2)]*'7"}
and
(2.5) C = 2m)V2(r + 1) VD=R (L + n/2) ]
[T (n/2) )17 [tV e2=rp=12 ] (n/2 — (5 — 1)/2)].

One can look upon (2.3) as the Mellin transform of the density of A% by taking A = s — 1.
Then from the theory of inverse Mellin transform the density of x = A2, denoted by f(x),
is as follows where a = (n/2) + h — (r — 1)/2.

flx) = (x‘l)(2ﬂi)‘1j CA(h)x™ dh

(2.6) L

=x (n/2)—1—(r—1)/20/(2,”i)—1 f

Al@=n/2+ (r—1)/2)x™ da
o

where { = (=1)/2, L, L’ are suitable contours and C’ = C[(r + 1)"*/r"]¢~1/2=®/3 From
the structure of the gamma products in (2.4) it is easy to see that L and L’ can always be
found and that f(x) is uniquely determined.

Casel. r=1,p=2,4q=0.
In this case C’ reduces to the form C’ = nI'(1 + n/2)/(4m)"/? and

f(x) =nl'(1 + n/2)x"/2'1(417)'1/2f {I'(a + 1/2)/[al'(a + 1 + n/2)]}(x/4) ™ da.
L

The integrand has poles of order unity at « =0, a = —j —1/2,j =0, 1, - - -. The residue at
a =0is I'(1/2)/T(1 + n/2) and the residue at « = —j — 1/2 is (—1)’(x/4)" %/ [ j}(—~] —
1/2)I’(—j + 1/2 + n/2)]. Simplifying this with the help of the conversion formula

(2.7 (B -)) = (=1YT(BT1 - B)/T(1 - B +))
where the gamma ratios are interpreted as
Ta+k)/T(@=al@a+1) .- (a+k—1) = (a),
one gets the density as follows. .
flx) = (/2)x™*7 {1 = [TA + n/2)/T(3/2T ((n + 1)/2)1(x/4)"*
1 F1(1— (n+1)/2; 3/2; x/4)}

where ;Fi(-) is a hypergeometric series. A general hypergeometric series of the form
pFq(-) is defined as follows.

29)  pFolas, «++, ap; by, -+, b3 0) = Tino {(@n)k -+ (@p)a/[(Ba)e -+ (B)e]}(x"/R!)

which is convergent for all x if ¢ = p and for |x| < 1if p = ¢ + 1. If one of the g;s is a
negative integer then ,F,(-) is a polynomial. If a b; is a negative integer the series is not
defined unless there is an a; such that (a;), = 0 before (b;), =0,2=0,1, ---..

(2.8)
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Miles (1971) has given (2.8) in the form of an incomplete beta function. But it is not
difficult to see that the expressions are one and the same. Miles’ density in this case,
denoted by f5,0(A) is as follows.

foo(8) = nA™HT'(1 + n/2)/T(1/2)T ((n + 1)/2)}
. fl—(A/z)2 FrR(L gy gy
0

(2.10)
=nA""{1-[T'(1 + n/2)/T(1/2)T((n + 1)/2)]

(a/2)?
. f t(1/2)—1(1 _ t)(n+1)/2—1 dt}
0

which is obtained by changing ¢ to 1 — ¢ and integrating out by using the beta integral.
Now expand (1 — ¢)**"/>~! by using the binomial expansion, convert the gammas by using
(2.7) and transform A to x = A% then (2.10) agrees with (2.8).

By using the same procedure as described in (2.6) to (2.8) one can easily verify all the
known cases. Now consider the following case r = 2, p = 8, ¢ = 0 which is not obtained by
others.

Case2. r=2,p=3,q=0.
In this case (2.6) reduces to the following.
f(x) = C’x"“"’”(%i)“f {T'(a + 5/6)T'(a + 7/6)" () /[ ( + 1/2)

Tla+3/2)T(a + 1+ n/4)T(a + 3/2 + n/4)]} (4x/27) ™ da.
The poles are of order unity at a = —1/2, a=—-v—5/6,v=0,1, ---,a = —j — 7/6,7 =0,
1,.--,a=—k k=0,1, ... The residues are the following.

(4x/27)*T'(1/3)T'(2/3)T'(-1/2)/[T(1/2 + n/HTA + n/4)]; (—1)"(4x/27)"*T(—v +
1/3)T'(=v = 5/6)/[v!(=v — 1/3)T'(—v + 2/3)T'(=v + 1/6 + n/4)T'(—v + 2/3 + n/4)], v =0,
L e+ (=1/(4x/21)*7°0(=1/3 = HT(=) — 7/6)/[j!(~] — 2/3)T(~j + 1/3)T(—j — 1/6 +
n/HT(=j +1/3 + n/4)],j =0, 1, --; (~1)*(4x/27)*T'(=k + 5/6)T(=k + 7/6)/[k!(—F +
1/2)T(=k + 8/2)T(=k + 1+ n/YT(-k + 3/2 + n/4)], k=0, 1, ...

Converting the gammas by using (2.7) and summing up by using (2.9) one has the following.
flx) = C" x"2{T(1/3)I'(2/3)T(~1/2) (4x/27)*/[T' (1/2 + n/HT'(1 + n/4)]

— I'(=5/6)I"(1/3)T'(1/3)(4x/27)*° 4F5(1/3, 1/3, 5/6 —n/4, 1/3

—n/4; 2/3, 11/6, 4/3; 4x/27)/[T'(1/6 + n/4)T'(2/3 + n/4)T (2/3)T" (4/3)]
(2.11) — I'(2/3)I'(-1/3)I"(—7/6)(4x/27)"/%F3(2/3, 2/3, 7/6 —n/4,

2/3 —n/4; 4/3, 13/6, 5/3; 4x/27)/[T'(5/3)T'(1/3)T'(n/4 — 1/6)T'(n/4 + 1/3)]

= I'(=1/2)T'(5/6)I(7/6)4Fs5(—1/2, —1/2, —n/4, —n/4

—1/2;1/6, —1/6, 1/2; 4x/27)/[T'(1/2)T(3/2)T'(1 + n/4)

-T'(3/2 + n/4)]} for 0 < 4x/27 < 1.

There are several other cases where the poles of the integrand in (2.6) are simple. For
example, consider the casesr =2,p=2r=2,p=1;r =2, p = 0. In all those cases the
technique of Case 2 above can be applied. When the poles are of higher orders the general
techniques discussed in the next section are needed.
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3. General case. When poles of the integrand in (2.6) are of higher orders the
residues will contain psi and zeta functions. From the structure of the gamma product in
(2.4) it may be seen that f(x) in (2.6) is a Meijer’s G-function. The theory, applications
and computable representations of a G-function are available from Mathai and Saxena
(1973). The details won’t be given here due to the fact that the expressions occupy too
much space. One can also invert (2.1) directly. This leads to an H-function. The theory,
applications and computable representation of an H-function are available from Mathai
and Saxena (1978). From the structure in (2.4) it is easy to note that A% can be considered
as a constant times the product of independent real scalar beta random variables of the
first kind. This structure appears in a wide class of likelihood ratio tests associated with
multinormal populations. For details see Mathai and Saxena (1973).

4. Approximations and asymptotic results. A number of approximations for the
density of A, will be derived here. The method will also give a simpler proof for Miles’
conjecture about the asymptotic normality of Af. Consider the following asymptotic
formula for gamma functions.

logT'(x + k) =log(27)* + (x + h — 1/2)log x — x
= Y1 (1) Bra(h)/[r(r + 1)x"] + Rpsa(x)

where R+1(x) = O(x™*") and B, (h) is the Bernoulli polynomial of degree r and order
unity which is defined by

(4.1)

uehu/(eu — 1) = Z;‘;g u'Br(h)/"!

where for example, B,(k) = h —1/2, By(h) = h® — h + 1/6, Bs(h) = h® — 38h%/2 +h/2. This
asymptotic formula is valid for x — « when 4 is bounded. Various orders of approximations
are available from (4.1). A first approximation to the order of O (x™") is available by taking

4.2) log I'(x + k) = log(27)"* + (x + h — 1/2)log x — x
where = denotes “approximately equal to.” A second approximation is available by taking
(4.3) log I'(x + ) = log(2m)/% + (x + A —1/2) log x — x + Bz(h)/(2x).

Under these two approximations it will be shown that A, is approximated to a degenerate
and a normal random variable respectively. Replace 2 by A/2 and take the resulting
expression in (2.1), namely, E(A?). Approximate all the gammas by using (4.2). Then one
gets

(4.4) E(AY) = (r+ 1)

which means that A, degenerates into (r + 1)*/* with probability one. Using (4.3) if the
gammas in (2.1) are approximated then one gets the following.

45)  E(A?) = (r+ 12 exp{(1/n)[rh*/(4(r + 1)) — (r* + 4p + 1)rh/4(r + 1)]}.

But E (A?) = Ee"!°¢4», Hence when A = it, i = (—1)"/2 and ¢ is a real arbitrary parameter,
one has the characteristic function of logA,. By comparing the characteristic function of
anormal random variable it is easy to see from (4.5) thatlog[ A./(r + 1)*/?]is approximately
normally distributed with mean value u = —r(r? + 4p + 1)/(dn(r + 1)) and variance
r/@n(r +1)). Hence n'/* log[A./(r + 1)*/?] is approximately normal with mean value
un'? and variance r/(2(r + 1)). Since pn'/? — 0 as n — ® it is seen that [n(r + 1)/r]"?
log[A./(r + 1)*?] is asymptotically normal with mean value zero and variance unity. But
the function log y is such that its first derivative at y = (r + 1)'/? is nonzero. Hence from
the result of Rao (1973) pages 385-386, it follows that A% = (2n/r)*[A, — (r + 1)*/*] goes
to standard normal as n — . This is Miles’ conjecture which was proved by Ruben (1977)
by using a slightly lengthier procedure. By taking successive terms from (4.1) one can get
successive approximations for the density of A,. By rearranging the terms and using a
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Box’s type procedure, see Anderson (1958) pages 203-207 for details, one can get a Chi
squared approximation.
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