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ASYMPTOTIC BEHAVIOUR OF SYMMETRIC POLYNOMIAL
STATISTICS

By T. F. M6R1 AND G. J. SZEKELY

L. Eétvés University, Budapest

A general theorem of Hoeffding (Hoeffding (1948)) implies that the
limit distribution of symmetric statistics under natural conditions is normal,
but rather frequently the variance of this normal distribution vanishes. Even
in the very simple case when the statistics are elementary symmetric poly-
nomials of independent random variables {X: P(X, = 1) = %, i =1, 2,

.+ ,n}, the limit distributions (in general) are not normal. These distributions
will be determined below.

1. Limit distributions. Let X;, X, --- be a sequence of independent random
variables, P(X;=*1) =% (i=1,2, ---) and

Sn(k) = 215f1<iz<~--<fk5n XjiXjy o0 Xj, (n =12 .. .)
S.(0)=1
the kth elementary symmetric polynomial of X, X, --- , X,.

THEOREM 1. Denote by N a standard normal variable and by {Hx:k=0,1, ...} the
orthonormal system of polynomials with respect to the standard normal distribution (i.e.,
let H, = G/ VE! where {Gr:k=0,1, - -} is the system of Hermite polynomials). If k is
a fixed nonnegative number and n — x then

(i) Su(k)/ /(2) —a Hy(N)

and

() Sutn=0/[(,, " ) o XELOV,

where X has a uniform distribution on the set {—1, +1} and it is independent of N. (If k
is an odd number then XH;(N) =4 H.(N).)

REMARK. The referee called our attention to the paper Rubin and Vitale (1980) which
overlaps Theorem 1, however for the sake of completeness we have not deleted this part
of our paper (which had been completed before the appearance of the work of Rubin and
Vitale).

THEOREM 2. Denote S, (1) by S. If k > o and n — k — « then

1/4 —
(M) S,,(k)/\/(Z) — (2/7)"/* exp{S?/4n} -cos(—kn/2 + S arcsin Vk/n) —, 0.

THEOREM 3. Denote by N a standard normal variable, let U have the uniform
distribution on the interval [0, 1] and U, the uniform distribution on the finite set {0,
1/q,2/q, -+, (@ — 1)/q}, where q is a natural number. Let N be independent of U and
U,. Suppose that k — o, n — k— o and k/n— ¢ (0 < c < 1). Then
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(i) kl/"S,,(k)/\/(Z) —a(2/m)* exp(N?/4) cos(2 7 U) if ¢=0,

(i) (n—k)"S, (k)/\/(Z) —4 (2/m)"* exp(N?/4) cos(27U) if c=1,

1/4
(iii) nl/“S,,(k)/\/(Z’) —a (ﬁ) exp(N2/4) cos(27U) if (2m)~" arcsin Ve

is an irrational number, or if it is rational,Nn |k/n — ¢| > @ and 0 < ¢ < .

1/4
(iv) nl/‘*sn(k)/\/(@ —aq (ﬁ) exp(N?/4) cos (2qu+#—)—N)
c —C

if (2m)~! arcsin Ve is a rational number of the form p/q where p and q are
relative prime numbers, q is divisible by 4,vn |k/n —c| > band0<c<1.

THEOREM 4. Ifn— w and k/n— ¢ (0 <c = 1) then
lim sup, .| S»(k) | /" = exp{H(c, 1 — ¢)/2}

with probability one, where H(c,1 — c) = — clog ¢ — (1 — c) log(1 — ¢).

REMARKS. 1. The method of proofs below can easily be applied for more general
random variables too, e.g., Theorem 1 (i) remains valid for an arbitrary sequence of
independent, identically distributed random variables with expectation 0 and variance 1,
but in this paper we do not want to go into such details.

2. Asit will be seen from the proofs below, our Theorem 1 can be generalized to obtain
the following functional limit theorem:

Let X1, Xo, --- be iid. rv’s with expectation 0 and variance 1. Define a random
element of the Skorohod space D(0, 1) by

0 if 0st=(k—-1)/n

Sn(£) = L ‘
Sj(k)/\/<k> if J—1/n<t=j/n
(G=kk+1,---,n).
Ifk is fixed and n — o then
Sux(t) —a t*?H, (¢72W(t)) in D(0, 1),

where W(t) (0 <t=<1)isa standard Wiener process.

3. The probability density function of exp(IN?/4)cos(27U) (which appears in Theorem
3) is

21/277‘3/2J’ (2 — xMlog t) V2 dt  if |x| <1,
1
and
Q2312 f (tx)2((¢ = Dlog|tx|)™? de i |x|> 1
1

The only local minimum of this function is taken at the point x = 0 (the value of the local
minimum is 1/7). If x — =*1 then the limit of the density function is +oo.

4. In Theorem 3 (iv) if the denominator ¢ does not divide by 4, then the asymptotic
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distribution of n'/*S,(k)/ ( Z) depends on the mod 4 behaviour of k£ while n — .

2. Proof of the theorems.
ProOF OF THEOREM 1. (i): Denote @, (k) = Y%, X7.
If n = k then by Newton’s identities
@n(k)S,(0) = @ (k — 1)S, (1) + -+ + (-1)* '@ (1)S,(k — 1) + (=1)*kS, (k) = 0.

Thus S, (k) = Pr(@.(1), @.(2), ---, @.(k)), where P} is a polynomial of degree % in %
variables. Let Gr(x) = k!Py(x, 1, 0, - .., 0). It is easy to see that Go = 1, G; = x and by
Newton’s identities

Gk=ka—1_ (k— I)Gk_z, k=2, 3’ ceey,
therefore Gy is the Hermite polynomial of degree k. Thus

Sn(k)/\/(’;> ~ VEIN TS, (k) = Pu(n™2Q. (1), n7'Qu (2), - - -, n*2Q, (R))VE!

~i Pr(N, 1,0, ---,00VE! = H,(N) as n— .
(ii): It is enough to observe that S, (n — k) = S, (n)S, (), P(S.(n) = £1) = 1/2 and the
asymptotic normality of n™2Q, (1) is independent of S, (r).

ProoF oF THEOREM 2. Because of the symmetry we may suppose that
k/n<1/2.
For any complex number z,
Yh-0Sn(k)2" = 8, (n) Yizo Sp(n — k)2* = S, (n) [[=1 (X, + 2)
=TI (L + X)2) = (1 — 2)@S72(1 + z)+572,
thus by Cauchy’s formula

1
Sn(k) = 2_m (1 _ Z)(n—S)/2(1 + Z)(n+S)/22—(k+1) dz

|zl=p

- El"f (1 — pe’?) =931 + &) I3 R g
m -7

=if exp{u,(3)} d0=Re<lf
2m ) T Jo

for any p = p, > 0, where

T

exp{un, (%)} d0>

n—S n+S
2 2

This integral can be approximately evaluated in terms of the maximum value of
| exp {u.(9)} | taking account of the speed of its decrease on the contour of integration. If
the path of integration is such that on a small section of it the absolute value of the
integrand reaches its maximum and then rapidly decreases, it is natural to suppose that
the quantity thus found yields a good approximation. If a function is harmonic in a domain
then it cannot attain its maximum at interior points of this domain, therefore we have to
analyse the behaviour of u, (#) = u.(p, #) at the neighbourhood of its saddle-point. This
is the essence of the saddle-point method of complex analysis.

One can easily compute that the only saddle-point (p,., #.) of u, is determined by the
equations

u, (%) = log(1 — pe”®) + log(1 + pe'*) — klog p — ikd.

k S

cosd, =

n—k’ owk(n — k)
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if | S|/2vk(n — k) =<1 is supposed, but the probability of the latter tends to 1 as n — oo
and & — oo. It is obvious that p, = 1 and &, tends to #/2 in probability as n — .
For the Taylor expansion of u, (%) we need the following derivatives:

un (%) = tn (pn, #.) = 0 because (p,, 9.) is a saddle-point. For the sake of brevity in the
following we shall always write p instead of p,.
yeay 2np? sin &, . . k
un (%) = T ¥ o520 = 55n7) ( sin &, + z(l 2;) cos 0n>
hence u,; (%,) ~ %("T__Q Finally

i4p262i1‘)(1 +p2e2i\‘))n lpe"’(l +6p2 211‘)+p4e4i1‘))S

u'/l” (0) = (1 _ 21\‘))3

hence if 7/4 < ¥ < 37/4 then
|uy (8,) | < 80°n + 8p| S| =< 16k(1 + | cos 9, |) =< 32k.
Now let us compute the integral (1/7) [§ exp{u.(3)} dd.
Let § > 0 be a sufficiently small fixed number. Since the function | exp{u, (%)} | increases
if 0 < ¥ < ¥, and decreases if ¢, < ¢ < 7, hence by the Taylor expansion of u, (#)

3,—8
|;j exp{u,(¥)} d0| =< | exp{u. (% — 8)} |
0

= | exp{u.(9.)} | exp{—C, 8%k}

where C; > 0. A similar estimation holds for

lj exp{u,(3)} dﬂ‘.
T Js,+s

Making use of the equality
ea+b = ea + O(bea+|b|)

we obtain

fl exp{un(9)} dd = exp{un(9:)} = f exp{— ull(9.)h% + O(k)h‘*}
{9—8,|<5

8
= exp{un(ﬂ,,)}[%j exp{% u,’,’(ﬂ,,)hz} dh
-5

8
+O(k) | |h?| exp{—CokR?} dh]

=

~p €Xp{Un (9,)} = j eXp{ Uz (9 )hz}
—1/2
= exp{u, (¥, )}(—— uy (%, ))

where the argument of the value of square root is taken in the interval (—=/2, 7/2). All
these imply that

-1/2p
Sn(k) ~p Re{(l _ pezﬂn)(nTS)/Z(l + pem,,)(n-}—S)/Zp—ke—ikz‘},,(_g u,’{(ﬂn)> .
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Here

-1/2
. m
‘ (1 _ peu‘}n)(n—S)/Z(l + petﬂn)(n+S)/2p—k<_§ ul (071))

1/2
cmp (1= 8/n) =941 + S/n) " S4(1 — k/n) P72 (k/n) <—" )

wk(n — k)
2 1/4
e~ (W—nn—5> \/ (Z) exp{S?/4n}.

In the sequel the argument of the approximate formula obtained for S, (%) will be discussed.

arg{(1 — pe®) "=97%(1 + petn) 972}

_r ; S axcsin{ (k/n)2(1 + S/n)-"2 sin 8,

3 arcsin{(k/n)**(1 — 8/n)~"/? sin 9, }
= —§ 3\ /—k— S arcsin Vk/n + w,
2 Nn—k

Finally it suffices to notice that
arg(—1/2 ul(9,))™* —=, 0

where w, —, 0 as n — .

and

—k0n=—karccos—s—=—k7—7+§ —k—+w,,

2VEk(n — k) 2 2 NVNn-—-k&k
where w, tends again to zero in probability, and the proof of Theorem 2 is complete.

REMARK. If X, X,, .- are positive random variables then the saddle-point of u, is
always on the real axis, i.e. &, = 0. This fact simplifies the asymptotic expansions (see G.
Halasz and G. J. Székely (1976)).

Proor oF THEOREM 3. We shall need the following

LEMMA. Let (an) n=1,2, --- be a sequence of real numbers and suppose that
lim, ... Vn | exp(27mima,) — 1| =+
for every non-zero integer m. Then
(n7'728, {anS}) —a (N, U)
where {-} stands for fractional part.
ProOOF. The central limit theorem assures the asymptotic normality of n /23, there-
fore it suffices to show that the conditional distribution of {@,, S} is asymptotically uniform,

given the condition n™"%S < x. But this will be a consequence of Weyl’s theorem if we
prove that for every non-zero integer m and real x

lim .. E (exp(27ima,S)|S < x vVn) = 0.

To prove this equation let M be a large natural number and % < x; < ++- < a2y =x a
partition of the real line, for which the total variation of the standard normal density
function g in the interval [x,_1, x;) is less than 1/M(j =1, 2, - - ., M), in addition x, < 0 and
¢(x0) = 1/M. Then
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E = E (exp(2mima,S)I(S < xvn))
= Y erovn P(S = v)exp@mimanv) + X711 Y, | vaci<s vn P (S = v)exp(2mima,v)
= Ao + Z,Ivil AJ.

Here | Ao | is less than P(S < xovn ) which converges, as n — o, to

o plx) 1
J_wq)(t)dts iy vt

Forj=1,2 .-, M

+

2 )
|A)| = 7 @(xj-1) Y, exp(27ima,v)

Y. exp(2mima,v) 2 (p(xj-1) — (P(V/‘/;))
~ Vn

n

+

Y, exp(2mima, v) (72_- pv/vn) — P(S = y)) |

n

where these summations run over the integers x;-; n=v< X, Vn .In the right-hand side
the first term is majorized by

2 .
— @(xj-1)2/| exp(2mima,) — 1|
n
which tends to zero as n — o by the assumption. The second term is less than
2
vn

and the last term is of order O(1/ Vn), since

2
Sl @-) = @/ V) | = 47 (5 = 25-1),

2
P(S=v) = E(p(u/«/ﬁ) +0(1/n)

uniformly for x;_, Vn=r< X vn (see e.g. Feller (1950) Ch. VII/2).
Thus

. 2 1
limsup,—.«| E| = 7 (x — x0 — 1/2x0) = O<Jl_4 x/logM>

which completes the proof of the Lemma.

Let us pass over to the proof of Theorem 3. The cases (i)-(iii) are simple consequences
of Theorem 2 and the previous Lemma. Acutally it suffices to prove that for every nonzero
integer m

lim,_,.. Vn |exp(im arcsin Vk/n) — 1| = +co.
In the case (i) i.e. when ¢ =0
Vn | exp(im arcsin Vk/n) — 1|
=vn (|m| arcsin vk/n + O(arcsin® vk/n))
= vn (|m| vk/n + O(k/n)) ~ |m| Vk.
If ¢ =1 then
| exp(im arcsin vk/n) — 1 |=| exp(im arccos v(n — k)/n) — 1|
=|(e™" = 1) — ime"™* J(n — k)/n + O((n — k)/n)|.
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If m does not divide by 4 then the first term is a nonzero constant while the other terms
tend to zero. If m divides by 4 then the second term dominates, consequently

vn | exp(im arcsin Vk/n) — 1| ~mvn—k.
In the case (iii) if (277) ! arcsin Ve is an irrational number then
lim,,_,..| exp (im arcsin Vk/n) — 1| = | exp(im arcsin Vc) — 1|#0.
If (27)~ arcsin Ve = p/q and Vn|k/n — c¢| = +o, then

| exp(im arcsin vk/n) — 1|

= | (exp(2mimp/q) — 1) +2—(i——)exp(2wimp/q)(k/n —¢) + O((k/n - ¢)?)|.
c(l—c

Here if m does not divide by g then the first term is a nonzero constant while the other
terms tend to zero. Otherwise the second term dominates and the condition imposed on
the convergence rate of k/n is applicable.

Finally in the case (iv) let us start from the expansion

S o
S arcsin Vk/n = S arcsin Ve +————— (k/n — ¢) + S-O((k/n — ¢)?).
csin vVk/ arcsin Ve N / /

b 5 where
2vc(1—c¢) vn

the sign + depends on the sign of ((k/n) — c). Since the limit distribution of n~Y2S is
symmetrical, this sign does not play any role. The third term equals to O (S/n). Concerning
the first term it is easy to see that

(S/ Vn; {%’ s}) -4 (N, U,).

On the right-hand side the second term is asymptotically equal to =

Finally if q divides by 4 then

b
cos(—km/2 + S arcsin Vk/n) —4 cos(2wU +——N> .
" ovei=o

The proof of Theorem 3 is complete.

Proor oF THEOREM 4. By the Chebyshev inequality

Thus the Borel-Cantelli lemma implies that ass. | S, (k) | < n\ / (Z) if n is large enough;

therefore,
1/2n 1
limsup,_,| S, (k) | < lim,_,« (Z) = exp{§ H(c,1- c)}

with probability one.
One the other hand, the proof of Theorem 3 yields that

limin, ... P(I Sa(k)| > C(m) (k)) >0

if C > 0 is sufficiently small. Thus
P(limsup,—,«| S, (k) |"* = exp{% H(c, 1 — ¢)}) > 0;
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therefore the zero or one law of Hewitt and Savage implies that this probability has to be
equal to one.

REMARK. The determination of all a.s. accumulation points of | S, (k) |" as n — o
and k/n — ¢ (0 = ¢ < 1) seems to be a more difficult problem.
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