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MINIMAX LINEAR SMOOTHING FOR CAPACITIES?

By H. VINCENT PoOR

University of Illinois at Urbana-Champaign

Minimax linear smoothers are considered for the problem of estimating
a homogeneous signal field in an additive orthogonal noise field. A minimax
game with the quadratic-mean estimation error as an objective function is
used to formulate this problem. Uncertainty in signal and noise field spectra
is modeled using general nonparametric classes of measures proposed by
Huber and Strassen for the problem of minimax hypothesis testing. These
classes, which are described in terms of Choquet alternating capacities of
order 2, include the conventional models for spectral uncertainty and admit a
general solution to the minimax linear smoothing problem.

1. Introduction. Suppose we oberve the random field {Y.; z € R"} given for each
ZER"by Y. = (8. + N.) where {S.; z € R"} and {N,; z € R"} are orthogonal random
fields, each of which is second order, homogeneous, and quadratic-mean continuous.
Suppose further that % is a complex-valued Borel-measurable function on R”, and that S,
denotes the linear estimate of S, based on {Y,; z € R"} which has transfer function 4.
Then the quadratic-mean estimation error associated with S, is given by

1 E{S.-85.pP= (277)‘"[] | R dmzv] A e(h; ms, my)

|1—h|2dms+f
Rn

n

where ms and my are the spectral measures on (R”, #™) associated (via Bochner’s theorem
[10, page 245]) with {S.; z € R"} and {N,; z € R"}, respectively. For fixed ms and mx, the
minimum possible value of e (k; ms, my) is achieved by the estimate with transfer function
h= dms/d(ms + my) and this minimum value is given by (27)™" [e- h dmy. (Note that
e(h; ms, my) = 2m)™" fpn h dmy + 2m)™ fpn | h h |2 d(ms + my).)

If, on the other hand, ms and my are known only to be in classes .#s and #y,
respectively, of spectral measures on (R”, "), then a reasonable design strategy is to find
a linear estimate whose transfer function minimizes SUp <4, €(h; ms, my). Such an
estimate will be a minimax linear smoother for .#s and .#y. Certain aspects of this problem
have been considered by Kassam and Lim [5] and by the author [6]. In this paper we
consider the minimax linear smoothing problem for the situation in which the measure
classes .#s and .#y are of the type generated by 2-alternating capacities as considered by
Huber and Strassen [4] in the context of minimax hypothesis testing. Examples of this
type of class include mixtures, Prohorov and Kolmogorov (variational) neighborhoods, and
other previously considered models for spectral uncertainty. Here we apply the results of
Huber and Strassen to find the structure of minimax linear smoothers for general models
of this type.

2. The minimax smoother for capacity classes. In the following, 2 denotes a
fixed subset of R", o/ denotes the Borel g-algebra on &, and «# denotes the class of all finite
measures on (£, .«). Recall that a finite set function v on .o/ is a 2-alternating capacity (see
Choquet [1]) on (8, &) if it is increasing, continuous from below, continuous from above
for closed sets, and if it satisfies v(¢) = 0 and v(A UB) + (AN B) =v(4) + v(B) for all
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A, B € . For a 2-alternating capacity v on (£, &) define the set ., by
(2) My={m E M| m(A) <v(A) for all A € &, and m () = v(2)}.

A number of properties of classes of the form of (2) have been developed by Huber and
Strassen [4]. Note, for example, that .#, is weakly compact and that, if v is a measure, then
M, = {v}.

For any pair (vo, v;1) of 2-alteinating capacities on (2, &/) there exists a Radon-Nikodym
derivative dv,/dvo, introduced in [4], which has the defining property that, for each ¢ €
[0, ],

3) r:({dvi/dvo > t}) = infacy r:(A)

where r:(A) & (1 + ¢) '[tve(A) + v1(A9)]. This derivative (which is a family of functions
having the defining property (3)) is the basis for the minimax tests between capacity
classes of the form of (2) as considered in [4]. Further properties and a generalization of
this derivative have been considered by Rieder [7]. In this context we state the following
result which is Theorem 4.1 of [4].

LEMMA 2.1 (Huber-Strassen). Suppose vs and vy are 2-alternating capacities and
7o is a version duvs/dvn. Then there exist measures qs € My, and qn € My, such that mo
€ dgs/dqn and such that

qs({m < t}) = vs({m < t})
and

gn({mo > t}) = vn({mo > t})
for all t € [0, «].

Let #denote the class of all complex-valued 2/-measurable functions on £. Lemma 2.1
leads to the following theorem:

THEOREM 2.2. Suppose vs and vy are 2-alternating capacities on (R, &/). Let m be a
version of dvs/dvy and choose (gs, gn) as in Lemma 2.1. Define ho = m(1 + a0) . Then
[Ro, (gs, gn)] is a saddle-point solution to the game

MiNye 5 SUP (mg,mpy) €. dusx. Aoy € (B Mg, MN)

where e is defined in (1), and thus ho is a minimax linear smoother for M, and M.,

Proor. Noting that Ay € dgs/d(qs + qn~), we have directly that
e(ho; gs, qn) = e(h; gs, qn)
for all A € # Thus, it is sufficient to show
) e(ho; ms, my) < e(ho; gs, qn)

for all (ms, my) € M, X M,,. Lemma 2.1 asserts that = is stochastically smallest over .,
under ¢ s and is stochastically largest over .#,, under g~. Thus, since |1 — ho |* = (1 + m) >
is decreasing in m and | Ao |> = 73(1 + m) 2 is increasing in 7, we have

fll—hﬂzdmssJ’ll—hoqus
Q Q
and

J’Imlzdmwsflholquzv
o Q

for all (ms, mn) € Mo, X M,,. Equation (4) and hence Theorem 2.2 follow.
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Concerning the pair of measures singled out by Lemma 2.1, we may also state the
following property.

THEOREM 2.3. The pair (qs, qn) € Mo X My, satisfies the conclusion of Lemma 2.1
if and only if it maximizes

minxe v e (h; ms, my) = (27)™" j [dms/d(ms + mn)] dmy
Q

over all (ms, my) € My X My,

Proor. Define f= dmn/d(ms + my). Then
minxex-e(h; ms, my) = (27)™" f fdms = (27)™ j (f—F?) d(ms + my).
Q Q

Since C(x) = (x — x?) is concave and twice continuously differentiable on [0, 1], Theorem
2.3 follows from Theorem 6.1 of [4].

Thus, in view of Theorem 2.3, the pair (¢s, gn) singled out by Lemma 2.1 can be
thought of as a least-favorable pair of spectral measures for minimax linear smoothing.

3. Discussion. Theorem 2.2 gives the general solution to the minimax linear smooth-
ing problem for signal and noise uncertainty classes of the form of (2). Several useful
examples of classes of this type are given by Huber and Strassen in [4], and other useful
examples are given by Rieder [7], Strassen [8], and Vastola and Poor [9]. Some of the
most commonly used examples of classes of the form .#, can be written as e-neighborhoods
of some nominal measure p. Examples of capacity classes that have this structure are
contaminated mixtures, variational neighborhoods, and Prohorov neighborhoods (see
[4]). For this type of class, an uncertainty model will consist of a nominal pair (us, pn) of
signal and noise spectral measures with respective degrees es and ey of uncertainty placed
on the nominal measures. The derivative between capacities generating classes of this type
is often of the form (see Huber [2, 3] and Rieder [7])

(5) mo(w) = max{c’, min{c”, A (w)}}, weEQ,

where A is the Radon-Nikodym derivative between the nominal pair of measures (i.e., A
€ dus/dpn) and ¢’ and ¢” are nonnegative constants with ¢’ < ¢”. If m of (5) is a version
of dvs/dun, then Theorem 2.2 implies that a minimax linear smoother for .#, and .#,,is
given by

(6) ho(w) = max{%’, min{k”, /'(w)}}, w€EQ

where B’ = ¢’/(1 + ¢’), B” = ¢”/(1 + ¢”) and &' = A/(1 + A). Note that #’ is the optimum
smoother for the nominal model, and thus the minimax linear smoother for this case
desensitizes the nominal smoother (to a degree depending on es and ey) in those spectral
regions where either s or v is dominant (i.e., where 4’ is near 1 or is near 0).

In the situations for which (5) is valid, (6) gives the transfer function of the minimax
linear smoother. Suppose, for example, that n = 1, @ = [—b, b] for some b < 0, ¢’ < c”,
and A’ is symmetric about w = 0 and is strictly decreasing on [0, b]. Then the minimax
linear estimate of S, determined by A, is given explicitly by

S. =f ho(z — 8)Y, dt
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where #o & % {ho} is given by

[sin(bt) — sin(a’t)] + B sin(a”t)
7t 7t

ho(t) = R'(t) + k'

- j h'(t — 7)[sin(b7) — sin(a’r) + sin(a”7)](w7)"" dr

with 2 = % '(h’} and with a’ [resp., a”] the positive solution to A’(a’) = &’ [resp., h'(a”)
=k"].

As a final comment we note that, although we assumed initially that the observation
field was a continuous-parameter field, Theorems 2.2 and 2.3 are also directly applicable
to the case in which the observation field is a discrete-parameter field (i.e., in which the
time set is Z") since this latter situations corresponds to the particular case of the analysis
of Section 2 in which & = [—7, #]".
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