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Let {X,} be a sequence of independent identically distributed random
variables which take the values =1 with probability %. Let X = Ynai anXa
where ¥ a2 < ». We show that if

n=|a.|=n""
for some a > % and 0 = a — B < % then the distribution of X = ¥ a,X, is
absolutely continuous with respect to Lebesgue measure. We then prove
similar results for more general independent sequences.

We also show that if

lim inf 2YV¥e_nei a2 =0

then the distribution of X = ¥ a.X, is singular with respect to Lebesgue
measure.

1. Introduction. Let {X,} be a sequence of independent, random variables with
mean 0 and uniformly bounded variance; let {a.} be a square summable sequence and X
=Y a,X,. We consider the problem: what can be said about the distribution of X, from
knowing {a,.} and the distributions of the X,’s? The answer in general is, very little. See,
e.g., [1, page 49]. However, if the X,’s are distributed on a countable set, then the Jessen-
Wintner law of pure types [1, page 49] says that X has a distribution of pure type, i.e., the
distribution of X is either discrete or continuous but singular with respect to Lebesgue
measure (denoted by singular dx) or absolutely continuous with respect to Lebesgue
measure (denoted by a.c. dx). It should be noted that the Jessen-Wintner law of pure
types gives no clues to which type of distribution it is. Also observe the following well
known fact: if we divide the positive integers into two disjoint sets, say A and B, and let

Y= EnEA aan and Z= EnEB aXn
then the distribution measure Fx(dx) of X satisfies
Fx(dx) = Fy*Fz(dx)

where * denotes convolution. This shows that if any one of the X,’s has a distribution a.c.
dx, then so does X and, more generally, to guarantee a distribution a.c. dx for X, it suffices
to show that X’ = ¥ a, X,, has a distribution a.c. dx, where {a,,} is some subsequence of
{a,}. E.g, if {X.} is the ii.d sequence +1 with probability % then the distribution of
¥ (1/n)X, is a.c. dx since {1/n} contains the subsequency {1/2"}.

For the remaining part of this section, we restrict our discussion to the i.i.d sequence
which equals *+1 with probability %. In this case, it follows by a theorem of P. Lévy [2]
quoted in [1, page 51] that the distribution of Y. X, cannot be discrete.

We will now show that by restricting the decay of {a.}, one can prove that the Fourier
coefficients of the distribution measure Fx(dx) are absolutely summable, which proves
that the distribution of X = ¥ a,X, is a.c. dx. In Sections 2 and 3 we then show that
similar techniques work for more general sequences {a.} and {X.}.

Assume Y5-; @, < 7 (without loss of generality we may assume a, > 0) and that there
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DISTRIBUTIONS ARISING FROM COIN TOSSING

exist two constants 0 < C < € and a > 1 such that
(1) Cn*=a,=C-n™"

Then the jth Fourier coefficient of Fx(dx) is

@) Fx(j) = f e"*P(dw) = [[-1 cos(j - an).
Q
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The last equality follows from the fact that Fx is even and from the independence of the

X’s. Fix some ¢ > 0 (we will determine its size later) and let

3) r, = the number of a,’s such that e<j.a,=7—¢ for j=1.

From (1) it follows that a lower bound for r; is

(4) the number of n’s such that e<C-.j.n™ and C.j-n*=w—e

Now solve the two inequalities for n to obtain

iy 1/a . 1/a
() e
T — & €

and from this we conclude that

®) = [j U((%) - (: 8)”")]

where [ ] denotes the integer part.
Choose ¢ between 0 and 7/2 so that

1/« = 1/a
1) (9> -( C) -1
& mT— &

and (6) becomes
8 ri=[j""]
Now apply (3) and (8) in (2) to give an upper bound for |F‘X( J)| as
) | Fx(j) | = (cos(e))” = (cos(e))".
From (9) and the fact that Fx(j) = Fx(—j) it follows that
(10) T | Fx ()| < oo.
Therefore the restriction of the function
f(x) = (1/2m) ¥ Fx(j)e™
to [—m, 7] is the density of Fix(dx).

2. The absolutely continuous case for coin tossing.

THEOREM 1. Let {X.} be a sequence of i.i.d.’s +1 with probability ‘s. Let {a,} be a

sequence such that Y,-; a; < © and assume that for some a > % and 0 < o — B<%

n=la,|=n"b

Then the distribution of X = Yu_; a,X, is absolutely continuous dx.

PrOOF. First assume }, | a.| < . Without loss of generality we may assume a, > 0

and Y}, a, = 7.
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For j>0and g >0let
1) r; = the number of n’s such that &= ja, =7 —¢.
To get a lower bound for r; note that if
2) g=jn and jnf=w-—g¢,

then a, satisfies the condition in (1); therefore, solving (2) for n we get

®) S ] C— .
" -

C . "
Let ¢ = T, where C is a positive constant chosen such that

jl/a*l/ﬂ 1 1

1 1 =
Ej/a ) /B

(m— ¢

for all j sufficiently large. Observe that C can be chosen independent of ;.
Now (3) becomes

(4) r =[P = (h)jVE
for all j sufficiently large, from which the jth Fourier coefficient of Fx can be estimated as
() | Px(j) | = (cos(g;))” = (cos(e;)) /.
Since lim,c_.g—l;(gijﬁ = % it follows that for j sufficiently large
&2
(6) cos(g) < (1 - If) .
Using the fact that

e*=1+x for —-1<x<0,

we obtain from (5) and (6)

(M | Fx(j) | < exp(=te} ;7).
The exponent without the sign is

L oo c 11/ 2a/B+2 i
8 gl =g =k

where £ > 0 and y = 1/8 — 2a/8 + 2. y > 0 by the assumption a« — 8 < 1/2.
Using (8) and (7) we conclude

9) | Fx(j)|= exp(—k-j")
and therefore

(10) Y | Fx () | < co.
Now let

(11)

f(x) = (%em) Z;?=—oo Fv(j)e-ijx for —r7T7=x=<mw
0 elsewhere.

Then f(x) is the density of Fx.
If ¥»-1 @, = o, consider the measures

'(12) F1.(dx) = P(Y5-1 anX, mod 2"(27)E dx)
on [-2"m, 2lrlfor L=2,3, --- ..
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Since the jth Fourier coefficient of F (dx) is
Fu(j) =TI5= cos(éi;) ,
it is clear that we can use the previous method to show that F, (dx) has a density
{ (o) X5-e FL(j)e™ on [—2"m, 2]
fulx) =
elsewhere.
Now, for any L, L + 1 and w such that
Yn=1 an X, mod 2°%1(27) € [—-2%7, 2%7]
it follows, since 2-*! is divisible by 2%, that
Y1 anX, mod 2941 (27) = Y%_; @, X, mod 2%(27)
and therefore for any measurable B C [—2%7, 257]
P(Y¥7-1 axX, mod 2"(27) € B) = P(Y3%-1 a,X, mod 2°*'(27) € B)

from which we conclude that

(13) fu(x) = frii(x) forae. x&[-2%7, 2k7].
Let
(14) flx) =lim; . fi(x).
From

P(|¥7-1 an X, | > 25(27)) sgi:l%
we see that

lim; .. Fp(dx) = Fx(dx)

which together with (14) implies that f(x) is the density of Fy. 0

3. Some generalizations of the absolutely continuous case.

THEOREM 2. Let {X,} be a sequence of independent random variables (not neces-
sarily distributed on a countable set) such that
(A) sup. E| X,| <
or
(A") sup, E(X2) <o and E(X,) =0,
(B) there are numbers 0 < \; < A, such that

lim inf, P(|X,|<\) >0 and
lim inf, P(| X,| = As) >0,

(C) Yr-il|an|’< oo, ¢=1,2for (A), (A’) respectively, and
M) n*=l|a|=n""where0=a— B <%anda>1,%for (A), (A’) respectively.

Then the distribution of X = ¥, a,X, is absolutely continuous dx.

Proor. We will assume @, > 0 and X, = 0. The other cases are dealt with similarly. As
before

Fx(j) = [[2=1 E (e¥%).
Let An={0|X,=N}, Bi={w|lh=X,=M)
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where M is chosen so large that
(1) lim inf, P(B,) >0
and let C, = Q — (A, U B,). Then

(2) |E(eV™*) | = P(Ca) +

J e % P(dw) +J’ e¥% P (dw)
A"

B,

n

Assume j > 0 and

3) Jan- M=,
then
(4) 0 <arg j e¥ % P(dw) < A1-Qn-j
A,
and Aea,j < arg J’ e % P(dw) = M-a,-J,
B,
also
(5) J e¥*» P(dw) | = P(A,)
Ap
and J’ e¥**: P(dw) | = P(B,).
B,

Now it follows from (3), (4) and (5) that to obtain the greatest length we should make the
argument of the first integral in (4) as large as possible, and the argument of the second
integral as small as possible, i.e.,

6) =|P(Ay) e + P(B,)e"™ |

J eY*n P(dw) + J eV P(dw)
An

B’l

which combined with (2) gives
(7 | E(e?%) | < P(Cy) + | P(A,) + P(B,)e" %,
Now for the three positive numbers p, q, r with p + ¢ + r = 1, we have

1—(p+|q+re”
® tim,o - PF1arrerD

. (1 —p) — Y1 — p)* — 2gr(1 — cos(x)) q-r
= llmx_,o 3 =

x T21-p)

Since p, q, r stand for the probability of C,, A,, B, respectively and since we have lower
and upper bounds for these quantities, we conclude (as before) that

. 1 - S(jan(A2 — A1))?  for (jan (A2 — A1) € [-8, 8]
'E(ella,.Xn) | = - 7(\s — }\1)
= oM

9
1—-88% ford =< (ja.(\s — A1)

where S, § > 0 are independent of j and n and the 7(A2 — A;)/2M bound from (3). Now we
conclude the proof as in Theorem 1 by estimating the size of | Fx(J) | from the number of



DISTRIBUTIONS ARISING FROM COIN TOSSING 785

n’s which satisfy

. A2 — A
&) SjanO\z bl 7\1) Sz(—z—z—u——l).

REMARK. Note in particular that if {X,.} is a sequence of i.i.d’s which takes more than
one value with positive probability, then {X,.} satisfies hypotheses A and B of Theorem 2,
assuming EX; is finite.

4. Some results on singularity. The results in this section are based on the following
simple observations: suppose {X.} is a sequence of i.i.d’s which take two values and the
weights a, = 1/3"forn =1,2.... We want to show the distribution of X = }7, X, /3" is
singular dx.

For N=1let oy = {x |x = 2,’:;1 )3%} It is clear that cardinality (&/y) < 2". Around

each x in &y construct an interval I, of size

1 X
2.-max|Xi| - ¥ ¥+1 3= _n}_a_)é(7|v_1| with center x.

Now let On = Uzeuy I«
then
(A) |oy| < g2 ]
and
(B) PXeOy)=1
(where | | denotes Lebesgue measure). Therefore

|[N%=1 On| =0
and PXeENn-10y) =1

Similarly one can prove the following.

THEOREM 3. Let {X,} be a uniformly bounded sequence of independent random
variables, where each X, takes at most two values. If

lim inf 2% ¥ %1 |an| =0

then the distribution of X = Y, a.X, is singular dx.
In the case of mean zero we have the following.

THEOREM 4. If in addition to the hypotheses of Theorem 3, the random variables
satisfy E(X,,) =0 for all n and if

lim inf 2¥ VY %41 a2 =0
then the distribution of X = Y, a. X, is singular dx.

Proor. Without loss of generality we may assume | X,,| < 1. Let {IN} be a sequence
of integers such that

1
(1) 2N"~/Z§=Nh+1a,%sﬁ for k=12, .--

and let
A= {x|x = S an X}



786 JAKOB I. REICH

Clearly
cardinality of &7, < 27,

Around each distinct point x in .2 construct an interval I, of length2kvVY%,.. a; with
center x.

Then letting
(2) Ok = Uxeo/;, Ix,
we see from (1) and the size of I, that
2
(3) | Ok | = ? .
Now

P(X € Op) = Yrew P(X E-0x) N (Tt1 4, X, = 7))
(4) = erdk P((XE Ix) n (ZIIX—E-I aan = x))
= ero/k P((Z?J,ﬁl a X, €I — x) n (Zilyil a X, = x))

= P(lzolo\l,{+1 aanI = k Vzﬁk+1 ai).
By Chebychev’s inequality
_— 1
P(l z%,ﬁl I aanI >k zolovh+l a?t) = ?
which together with (4) combines to
1
(5) P(XEOk)E].—]?.
Now from (3) and (5)
1
IU;J:=M Okl = 0(1‘—4)
and PXeEUZ-mOr) =1
from which we conclude

P(X € Njt=1 (Ui-m Or)) =1
and

[ NFr=1 (UZ=a Op) | = 0. a
5. Some open questions.

1. Can we find conditions involving the distributions of the X,’s which would tell us
when a sequence {a,} is “admissible” for ¥, a,X, to have a distribution a.c. dx? Our results
do not seem to give any insights to this problem.

2. Fix a sequence {a,} and let & be the class of distribution measures generated by
2 a,X, where {X,} satisfies the conditions of Theorem 2. Can we use functional theoretic
methods to show that % is contained in L'? This could prove Theorem 2 for much more
general {a,}’s. Note that it is not hard to show that & is closed under convolution.

REFERENCES

[1] BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, MA 01867.
[2] LEvy, P. (1931). Sur les séries dont les termes sont des variables éventuelles indépendantes.
Studia Math. 3 119-155.

BarucH CoLLEGE CUNY
17 LEXINGTON AVENUE
NEW YoRrk, NEw York 10010



