BROWNIAN MOTION WITH LOWER CLASS MOVING BOUNDARIES WHICH GROW FASTER THAN $t^{1/2}$

By R. F. Bass and M. Cranston

University of Illinois, Urbana

Upper and lower bounds are obtained for $P(\mid W(t)\mid \leq f(t), t \leq u)$ and $P(\mid S(n)\mid \leq f(n), n \leq N), u, N$ large, where W(t) is a Brownian motion, S(n) is a random walk with ES(1)=0, $E\mid S(1)\mid^{2+2\eta}<\infty$, and f(t) is a deterministic function growing faster than $t^{1/2}$ but slower than $(2t \ln \ln t)^{1/2}$.

1. Introduction. Let W(t) be a standard Brownian motion, f(t) a deterministic increasing function. How does $\mathscr{P}_u = P(|W(t)| \leq f(t), t \leq u)$ behave for large u? A closely related problem is the behavior of $\mathscr{P}_N = P(|S(n)| \leq f(n), n \leq N)$, where S(n) is a random walk.

When $f(t) = ct^{1/2}$, this problem has been considered by Breiman (1965), Gundy and Siegmund (1967), and Brown (1969), among others. When $f(t) = o(t^{1/2})$, results have been obtained by Lai (1977), Portnoy (1978), Kesten (1978), and Novikov (1981), to mention only a few. Upper class functions f have been studied by Cuzick (1981) and Jennen and Lerche (1981)

Here we consider the remaining case, when f grows faster than $t^{1/2}$ but more slowly than $(2t \ln \ln t)^{1/2}$. In contrast to the $o(t^{1/2})$ case, where $\ln \mathcal{P}_u$ is asymptotically $-c \int_0^u f(t)^{-2} dt$, we get that $\ln \mathcal{P}_u$ behaves like $-\int_0^u f(t)^{-2} \exp(-cf(t)^2/2t) dt$ and a similar result for random walks

More precisely, we get the following:

Suppose f(t) is bounded away from 0, and for $t \ge u_1 > 0$, for some u_1 , $f(t) = t^{1/2}L(t)$, where L(t) is strictly positive, nondecreasing, continuous, slowly varying, $L(t) = o((\ln \ln t)^{1/2})$, and $L(+\infty) = +\infty$. Let $\alpha = 1/3000$.

THEOREM 1. Given $\varepsilon > 0$, there exist constants c_1 , c_2 , and u_0 , dependir, only on ε and f, such that if $u \ge u_0$,

$$c_1 \exp \left(-\int_0^u f(t)^{-2} e^{-\alpha f(t)^2/2t} \ dt\right) \le \mathscr{P}_u \le c_2 \exp \left(-\int_0^u f(t)^{-2} e^{-(1+\epsilon)f(t)^2/2t} \ dt\right).$$

THEOREM 2. Let X_i , $i = 1, 2, \dots$ be iid random variables, $S(n) = \sum_{n=1}^{n} X_i$. Suppose $EX_1 = 0$, $EX_1^2 = 1$, and $E|X_1|^{2+2\eta} < \infty$ for some $\eta > 0$. Then there exist constants c_1 , c_2 , and N_0 such that if $N \ge N_0$,

$$c_1 \exp(-\sum_{i=1}^N f(i)^{-2} e^{-\alpha f(i)^2/2i}) \le \mathscr{P}_N \le c_2 \exp(-\sum_{i=1}^N f(i)^{-2} e^{-(1+\varepsilon)f(i)^2/2i}).$$

Our techniques still work for $f(t) = c(2t \ln \ln t)^{1/2}$, but the results are of no interest unless $c < \alpha$.

Theorem 1 is proved in Section 2. Theorem 2 is proved in Section 3.

2. Brownian Motion. We start by getting an estimate on $Q(t, x, k) = P^{x}(|W(s)| \le k, s \le t)$. Note that Q(t, -x, k) = Q(t, x, k) by symmetry. Let $d_{\epsilon} \ge 4$ be such that $d^{-1}\exp(-d^{2}/2) \le d^{-2}\exp(-(1-\epsilon)d^{2}/2)$ whenever $d \ge d_{\epsilon}$.

Received November 1981; revised June 1982.

AMS 1970 Subject Classification. Primary 60J65, 60J15; secondary 60G40.

Key Words and Phrases. Moving boundaries, Brownian motion, random walks.

PROPOSITION 2.1. Suppose $0 \le x \le k$. If $(k-x)^2/t \ge d_{\varepsilon}^2$ then

$$\begin{aligned} 1 - (4t(2\pi)^{-1/2}/(k-x)^2) & \exp(-(1-\varepsilon)(k-x)^2/2t) \\ & \leq Q(t,x,k) \leq 1 - (t(2\pi)^{-1/2}/k^2) \exp(-k^2/2t). \end{aligned}$$

PROOF of 2.1. Letting $d = k/t^{1/2}$ and using the inequality

$$\int_{-\infty}^{\infty} e^{-y^2/2} dy \ge (d^{-1} - d^{-3})e^{-d^2/2} \ge \frac{1}{2} d^{-1}e^{-d^2/2}$$

for $d \ge 2$, (Feller, 1968, page 175) we have

$$\begin{aligned} Q(t, x, k) &\leq P^{x}(|W(t)| \leq k) \leq P^{0}(|W(t)| \leq k) \\ &= 1 - 2(2\pi t)^{-1/2} \int_{1}^{\infty} e^{-y^{2}/2t} dy \leq 1 - (2\pi)^{-1/2} d^{-1} e^{-d^{2}/2} \end{aligned}$$

if $k^2/t \ge 4$. Since $d^{-1} \ge d^{-2}$ for $d \ge 1$, this gives the right hand inequality.

Let q(t, x, y, k) be the transition density for Brownian motion started at x and killed on leaving [-k, k]. Of course, $Q(t, x, k) = \int_{-k}^{k} q(t, x, y, k) dy$.

A simple change of variables applied to a formula of Feller (1971), page 341, gives

$$(2\pi t)^{1/2}q(t,x,y,k) = \sum_{j=-\infty}^{\infty} \left[\exp(-(y-x+4jk)^2/2t) - \exp(-(y+x+4jk+2k)^2/2t) \right].$$

The infinite series on the right is absolutely convergent and of alternating sign. Pairing terms, if $j \ge 1$, $\exp(-(y-x+4jk)^2/2t) - \exp(-(y+x+4jk+2k)^2/2t) \ge 0$ since $x \ge -k$. If $j \le -1$, $\exp(-(y-x+4jk)^2/2t) - \exp(-(y+x+4(j-1)k+2k)^2/2t) \ge 0$ since $x \le k$. Therefore

$$(2\pi t)^{1/2}q(t,x,y,k) \ge e^{-(y-x)^2/2t} - e^{-(y+x-2k)^2/2t} - e^{-(y+x+2k)^2/2t}.$$

Integrating y from -k to k,

$$\begin{split} Q(t, x, y) &\geq P^{x}(\mid W(t) \mid \leq k) - P^{2k-x}(\mid W(t) \mid \leq k) - P^{-x-2k}(\mid W(t) \mid \leq k) \\ &\geq 1 - P^{0}(W(t) > k - x) - P^{0}(W(t) < -k - x) \\ &- P^{0}(-3k - x \leq W(t) \leq -k - x) - P^{0}(k - x \leq W(t) \leq 3k - x) \\ &\geq 1 - 4P^{0}(W(t) \geq k - x). \end{split}$$

Let $d = (k - x)/t^{1/2}$ and use the inequality

$$\int_{d}^{\infty} e^{-y^2/2} dy \le d^{-1} e^{-d^2/2}$$

to get $Q(t, x, k) \ge 1 - (4/(2\pi)^{1/2}d)e^{-d^2/2}$. If $d \ge d_{\varepsilon}$, we thus get the left hand inequality.

PROOF OF THEOREM 1.

Upper bound. Let $0 < \varepsilon < \frac{1}{2}$. Let q > 2 be chosen so that $(1 - q^{-1})^{-1} \le 1 + \varepsilon/4$. Let u_0 be chosen equal to q^I for some I and large enough so that if $s \ge u_0/q^3$, $q^2s \ge t \ge qs$, then

- (i) $[f(t) f(s)]^2/(t-s) > d_{\varepsilon}$,
- (ii) $f(s)/f(t) \ge (2q)^{-1}$,
- (iii) $(4(2\pi)^{1/2}q^2)^{-1}\exp(-f(t)^2/2(t-s)) \ge \exp(-(1+\varepsilon/3)f(t)^2/2(t-s))$, and
- (iv) $f(t)^2/2(t-s) \le (1+\varepsilon/3)f(s)^2/2s$.

This can be done since L(t) is slowly varying, but increasing to infinity.

Suppose $u \ge u_0$. Let n be the largest integer such that $q^n \le u$. Let $t_0 = 0$, $t_i = q^i$ for $1 \le i < n$, $t_n = u$. Let

$$A_i = \{ | W(t) | \le f(t_i), t_{i-1} < t \le t_i \}, i = 1, \dots, n,$$

and let

$$r_i = (t_i - t_{i-1})/((2\pi)^{1/2} f(t_i)^2) \exp(-f(t_i)^2/2(t_i - t_{i-1})).$$

Note $q^{-2} \le t_{i-1}/t_i \le q^{-1}$.

Using the Markov property,

$$\mathcal{P}_{u} \leq P^{0}(A_{1}A_{2} \cdots A_{n}) = E^{0}(P^{W(t_{n-1})}(|W(t)| \leq f(t_{n}), 0 < t \leq t_{n} - t_{n-1}); A_{1} \cdots A_{n-1})$$

$$= E^{0}(Q(t_{n} - t_{n-1}, W(t_{n-1}), f(t_{n})); A_{1} \cdots A_{n-1})$$

$$\leq (1 - r_{n})P^{0}(A_{1} \cdots A_{n-1}).$$

To get the last inequality we used (i) and (2.1). Repeating

$$\mathscr{P}_u \leq \prod_{i=I+1}^n (1-r_i) P^0(A_1 \cdots A_I),$$

or

$$\ln \mathcal{P}_u \le c + \sum_{i=I+1}^n \ln(1-r_i) \le c - \sum_{i=I+1}^n r_i.$$

Using (ii), (iii), and (iv), if $t_{i-1} < t \le t_i$

$$-r_{i} \leq -(4q^{2}(t_{i}-t_{i-1})/f(t_{i})^{2})\exp(-(1+\varepsilon/3)f(t_{i})^{2}/2(t_{i}-t_{i-1}))$$

$$\leq -((t_{i}-t_{i-1})/f(t_{i-1})^{2})\exp(-(1+\varepsilon/3)^{2}f(t_{i-1})/2(t_{i-1})).$$

Thus.

$$\ln \mathcal{P}_u \le c - \int_{t_t}^u f(t)^{-2} \exp(-(1+\varepsilon)f(t)^2/2t) \ dt = c' - \int_0^u f(t)^{-2} \exp(-(1+\varepsilon)f(t)^2/2t) \ dt.$$

Lower bound. Let q = 9, $\alpha = 1/3000$. Let u_0 be chosen equal to q^I for some I and large enough so that if $s \ge u_0/q^3$, $q^2s \ge t \ge qs$, then

(v)
$$[f(s) - f(s/q)]^2/(t-s) \ge 2\alpha f(t)^2/t$$
,

(vi)
$$[f(s) - f(s/q)]^2/(t-s) \ge d_{1/4}^2$$
 (> 10),

(vii)
$$(16q^2)^{-1}\exp(-\frac{1}{2}[f(s) - f(s/q)]^2/2(t-s))$$

$$\geq (8/(2\pi)^{1/2})\exp(-\frac{3}{4}[f(s)-f(s/q)]^{2}/2(t-s)),$$

and

(viii)
$$(16a^2)^{-1}[f(s) - f(s/a)]^{-2} \le f(t)^{-2}$$
.

To show that u_0 can be chosen so that (v) holds, observe that the right hand side of (v) is $2\alpha L(t)^2$. But since $f(s/q)/f(s) = q^{-1/2}L(s/q)/L(s) \le 2q^{-1/2}$ for s sufficiently large and $t/s - 1 \le q^2$, the left side of (v) is

$$L(s)^{2}[1 - f(s/q)/f(s)]^{2}/(t/s - 1) \ge L(s)^{2}[1 - 2q^{-1/2}]^{2}/q^{2} \ge 4\alpha L(s)^{2} > 2\alpha L(t)^{2}$$

for s sufficiently large.

Since L(t) increases to ∞ , it follows easily from (v) that u_0 can be chosen so that (vi) and (vii) hold. The inequality (viii) is argued in a manner similar to (v).

Observe that $-2x \le \ln(1-x)$ if $0 \le x \le \frac{1}{2}$ and that $xe^{-x/2} \le \frac{1}{4}$ if $x \ge 7$.

Suppose $u \ge u_0$. Let n be the largest integer such that $q_n \le u$, let $t_0 = 0$, $t_i = q^i$ for $1 \le i < n$, $t_n = u$,

$$B_i = \{ | W(t) | \le f(t_{i-1}), t_{i-1} < t \le t_i \}, i = 1, \dots, n,$$

and let

$$v_i = (4(2\pi)^{-1/2}(t_i - t_{i-1})/[f(t_{i-1}) - f(t_{i-2})]^2) \times \exp(-\frac{3}{4}[f(t_{i-1}) - f(t_{i-2})]^2/2(t_i - t_{i-1})).$$

Note $t_{i-2} = t_{i-1}/q$.

$$\begin{split} \mathscr{P}_{u} &\geq P^{0}(B_{1}B_{2}\cdots B_{n}) \\ &= E^{0}(P^{W(t_{n-1})}(\mid W(t)\mid \leq f(t_{n-1}), \, 0 < t \leq t_{n} - t_{n-1}); \, B_{1} \cdots B_{n-1}) \\ &= E^{0}(Q(t_{n} - t_{n-1}, \, W(t_{n-1}), \, f(t_{n-1})); \, B_{1} \cdots B_{n-1}) \\ &\geq (1 - v_{n})P^{0}(B_{1} \cdots B_{n-1}) \end{split}$$

by (2.1), (vi), the fact that e^{-x}/x is decreasing, and the fact that on B_{n-1} , $|W(t_{n-1})| \le f(t_{n-2})$. Repeating, $\mathscr{P}_u \ge \prod_{i=I+1}^n (1-v_i) P^0(B_1 \cdots B_I)$, or

$$\ln \mathcal{P}_u \ge c + \sum_{i=I+1}^n \ln(1 - v_i) \ge c - 2 \sum_{i=I+1}^n v_i,$$

using (vi) again.

Using (v), (vii), and (viii), if $t_{i-1} < t \le t_i$,

$$-2v_{i} \ge -((16q^{2})^{-1}(t_{i} - t_{i-1})/[f(t_{i-1}) - f(t_{i-2})]^{2})$$

$$\times \exp(-\frac{1}{2}[f(t_{i-1}) - f(t_{i-2})]^{2}/2(t_{i} - t_{i-1}))$$

$$\ge -((t_{i} - t_{i-1})/f(t_{i})^{2})\exp(-\alpha f(t_{i})^{2}/2t_{i}),$$

or

$$\ln \mathscr{P}_{u} \ge c - \int_{-t_{t}}^{u} f(t)^{-2} \exp(-\alpha f(t)^{2}/2t) dt = c' - \int_{0}^{u} f(t)^{-2} \exp(-\alpha f(t)^{2}/2t) dt. \qquad \Box$$

COMMENT. The value of α comes from (v). Replacing the 2's in the derivation of (v) by $1 + \delta$, δ small, and varying q allow one to improve the value of α . But the best value of α one could possibly hope for from our method would be

$$\sup_{q} \lim \sup_{t=qs, s\to\infty} [1 - f(s/q)/f(s)]^2/(t/s - 1) \\ \leq \sup_{q} (1 - q^{-1/2})^2/(q - 1) = \frac{1}{2}(5\sqrt{5} - 11) \approx .09,$$

which is still substantially less than 1. The difficulty comes from the fact that in the proof of the lower bound, $|W(t_{n-1})|$ is close to $f(t_{n-2})$ with nonnegligible probability.

3. Random walk. Let X_i , $i=1, 2, \cdots$ be iid, mean 0, variance 1 random variables with $E|X_1|^{2+2\eta} < \infty$ for some $\eta > 0$. Let $S(n) = \sum_{i=1}^n X_i$. Define $Q(N, x, k) = P^x(|S(n)| \le k, n \le N)$.

PROPOSITION 3.1. Let $\frac{1}{2} > \varepsilon > 0$, $k \ge |x| \ge 0$. There exist constants M and N_0 such that if $N \ge N_0$, $(k - |x|)/N^{1/2} \ge M$, and $k \le (2N \ln \ln N)^{1/2}$, then

$$1 - (N/(k - |x|)^2) \exp(-(1 - \varepsilon)(k - |x|)^2/2N)$$

$$\leq Q(N, x, k) \leq 1 - (N/k^2) \exp(-(1 + \varepsilon)k^2/2N).$$

PROOF. Suppose $x \ge 0$. The other case is similar.

Use Skorokhod imbedding to find a Brownian motion W(t) and stopping times U_1, \dots, U_N such that $U_1, U_2 - U_1, \dots, U_N - U_{N-1}$ are independent, and $(S(1), \dots, S(N))$ is equal in law to $(W(U_1), \dots, W(U_N))$, and $EU_1^{1+\eta} < \infty$ (see Skorokhod, 1965, for example).

If we let $U_0 = 0$, $Y_i = U_i - U_{i-1} - 1$, $i = 1, \dots, N$, the Y_i 's are iid random variables, $EY_1 = EU_1 - 1 = EW(U_1)^2 - 1 = EX_1^2 - 1 = 0$, and $EY_1^{1+\eta} < \infty$.

Then by Petrov (1975), page 283, for each δ , $P(|\sum_{i=1}^{N} Y_i|/N > \delta) = o(N^{-\eta})$. So for N sufficiently large, $P^0(|U_N - N| > \delta N) \leq N^{-\eta}$.

$$\begin{split} P^{x}(\mid S(n) \mid \leq k, \, n \leq N) &= P^{x}(\mid W(U_{n}) \mid \leq k, \, n \leq N) \leq P^{x}(\mid W(U_{N}) \mid \leq k) \\ &\leq P^{x}(\mid W(U_{N}) \mid \leq k, \mid U_{N} - N \mid \\ &\leq \delta N, \, \sup_{\mid t - N \mid \leq \delta N} \mid W(t) - W(N) \mid < \epsilon k / 3) \\ &+ P^{X}(\sup_{\mid t - N \mid \leq \delta N} \mid W(t) - W(N) \mid \\ &\geq \epsilon k / 3) + P^{x}(\mid U_{N} - N \mid > \delta N) \\ &\leq P^{x}(\mid W(N) \mid < (1 + \epsilon / 3)k) + 2P^{0}(\sup_{t \leq \delta N} \mid W(t) \mid > \epsilon k / 3) \\ &+ P^{0}(\mid U_{N} - N \mid > \delta N). \end{split}$$

As in the proof of (2.1), the first term on the right is

$$\leq 1 - (N/((2\pi)^{1/2}(1 + \varepsilon/3)^2 k^2))\exp(-(1 + \varepsilon/3)^2 k^2/2N)$$

$$\leq 1 - (3N/k^2)\exp(-(1 + \varepsilon)k^2/2N),$$

if k^2/N is large enough. The second term is

$$\begin{split} 2(1 - P^0(\mid W(s) \mid \, \leq \varepsilon k/3, \, s \leq \delta N)) & \leq (72 \ N/((2\pi)^{1/2} \varepsilon^2 k^2))) \exp(-(1 - \varepsilon/3) \varepsilon^2 k^2/(18\delta N)) \\ & \leq (N/k^2) \exp(-(1 + \varepsilon) k^2/N) \end{split}$$

if we take $\delta \leq \varepsilon^2/72$. Finally, since $k \leq (2N \ln \ln N)^{1/2}$, $(N/k^2)\exp(-(1+\varepsilon)k^2/2N) \geq \exp(-2k^2/2N) \geq \exp(-2 \ln \ln N) = (\ln N)^{-2}$, which is much larger than $N^{-\eta}$ if N and K^2/N are sufficiently large. So for N, k chosen appropriately, the third term will also be $\leq (N/k^2)\exp(-(1+\varepsilon)k^2/N)$.

Summing, $P^{x}(|S(n)| \le k, n \le N) \le 1 - (N/k^2) \exp(-(1+\varepsilon)k^2/N)$. To get the other inequality

$$P^{x}(|W(t)| \le k, t \le (1 + \varepsilon/3)N) \le P^{x}(|W(t)| \le k, t \le U_{N}) + P^{x}(U_{N} > (1 + \varepsilon/3)N)$$

$$\le P^{x}(|W(U_{n})| \le k, n \le N) + P^{0}(|U_{N} - N| > \varepsilon N/3),$$

or

$$P^{x}(|S(n)| \le k, n \le N) = P^{x}(|W(U_n)| \le k, n \le N)$$

$$\ge P^{x}(|W(t)| \le k, t \le (1 + \varepsilon/3)N) - P^{0}(|U_N - N| > \varepsilon N/3).$$

The first term on the right, by (2.1), is

$$\geq 1 - (4(1 + \varepsilon/3)N/((2\pi)^{1/2}(k - x)^2))\exp(-(1 + \varepsilon/3)(k - x)^2/2(1 + \varepsilon/3)N)$$

$$\geq 1 - (N/2(k - x)^2)\exp(-(1 - \varepsilon)(k - x)^2/2N)$$

if $(k-x)^2/N$ is large, while the second term is $\leq N^{-\eta}$ for N large, which in turn is $\leq (N/2(k-x)^2)\exp(-(1-\epsilon)(k-x)^2/2N)$ by the upper bound on k, as above.

Hence for N large, $(k-x)/N^{1/2}$ large,

$$Q(N, x, k) \ge 1 - (N/(k-x)^2) \exp(-(1-\varepsilon)(k-x)^2/2N).$$

PROOF OF THEOREM 2. Let q=9 in the lower bound case, q a large integer in the upper bound case. Using (3.1) in place of (2.1), the proof is virtually identical to the proof of Theorem 1. \square

REFERENCES

[1] Breiman, L. (1965). First exit times from a square root boundary. Proc. Fifth Berkeley Symp., University of California Press, Berkeley.

- [2] Brown, B. M. (1969). Moments of a stopping rule related to the Central Limit Theorem. Ann. Math. Statist. 40 1236-1249.
- [3] Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. 2. Wiley, New York.
- [4] GUNDY, R. F. and SIEGMUND, D. (1967). On a stopping rule and the Central Limit Theorem. Ann. Math. Statist. 38 1915-1917.
- [5] KESTEN, H. (1978). Branching Brownian motion with absorption. Stochastic Processes Appl. 7 9-48.
- [6] Lai, T. L. (1977). First exit times from moving boundaries for sums of independent random variables. Ann. Probability 5 210-221.
- [7] NOVIKOV, A. A. (1981). On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary. Math. USSR Sbornik 38 495-505.
- [8] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer-Verlag, New York.
- [9] PORTNOY, S. (1978). Probability bounds for first exits through moving boundaries, Ann. Probability 6 106-117.
- [10] Skorokhod, A. V. (1965). Studies in the Theory of Random Processes. Addison-Wesley, Reading, Massachusetts.
- [11] FELLER, W. (1968). An Introduction to Probability Theory and its Applications, Vol. 1. Wiley, New York.
- [12] CUZICK, J. (1981). Boundary crossing probabilities for stationary Gaussian processes and Brownian motion. Trans. Amer. Math. Soc. 263 469-492.
- [13] JENNEN, C. and LERCHE, H. R. (1981). First exit densities of Brownian motion through onesided moving boundaries. Z. Wahrsch. verw Gebiete 55 133-148.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WASHINGTON SEATTLE, WA 98195 DEPARTMENT OF MATHEMATICS UNIVERSITY OF ROCHESTER ROCHESTER, NY 14627