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BROWNIAN MOTION WITH LOWER CLASS MOVING BOUNDARIES
WHICH GROW FASTER THAN ¢/

By R. F. Bass aAND M. CRANSTON

University of Illinois, Urbana

Upper and lower bounds are obtained for P(| W(¢) | < f(¢), ¢t < u) and
P(|S(n)|=f(n),n<N), u, N large, where W(t) is a Brownian motion, S ()
is a random walk with ES(1) = 0, E|S(1) |>**" < o, and f (¢) is a deterministic
function growing faster than ¢'/2 but slower than (2¢ In In £)/*

1. Introduction. Let W(¢) be a standard Brownian motion, f(¢) a deterministic
increasing function. How does #, = P(| W(¢) | = f(¢), t < u) behave for large u? A closely
related problem is the behavior of Zy = P(|S(n) | =< f(n),n < N), where S(n) is a random
walk.

When f(¢) = ct'/? this problem has been considered by Breiman (1965), Gundy and
Siegmund (1967), and Brown (1969), among others. When f (¢) = o (¢'/?), results have been
obtained by Lai (1977), Portnoy (1978), Kesten (1978), and Novikov (1981), to mention
only a few. Upper class functions f have been studied by Cuzick (1981) and Jennen and
Lerche (1981).

Here we consider the remaining case, when f grows faster than ¢'/% but more slowly than
(2t In In ¢)'/2, In contrast to the o (¢'/?) case, where In 2, is asymptotically —c [§ f(t) > dt,
we get that In 2, behaves like — [§ f (£) %exp(— cf (t)?/2t) dt and a similar result for random
walks.

More precisely, we get the following:

Suppose f(t) is bounded away from 0, and for ¢ = u; > 0, for some u;, f(t) = /2L (¢),
where L(t) is strictly positive, nondecreasing, continuous, slowly varying, L(f) =
o((Inln ¢t)/?), and L (+x) = +o. Let a = 1/3000.

THEOREM 1. Given ¢ > 0, there exist constants ci, ¢z, and uo, dependir. 7 only on ¢
and f, such that if u = u,,

¢ exp(— J f(t) 2emf @2 dt) =P <c exp(— J’ f(t) 2~ Urafwr/z dt).
0 0

THEOREM 2. Let X;,i=1,2, ... be iid random variables, S(n) = Y,7-1 X;. Suppose
EX, =0, EX3 =1, and E| X, |*>** < o for some 1 > 0. Then there exist constants ci, cz,
and Ny such that if N = N,

c1exp(— SiLi £ (1) e ) < Py < ¢y exp(— Ty f(§) eI,

Our techniques still work for f(t) = ¢(2¢t In In ¢)/%, but the results are of no interest

unless ¢ < a. )
Theorem 1 is proved in Section 2. Theorem 2 is proved in Section 3.

2. Brownian Motion. We start by getting an estimate on Q (¢, x, k) = P*(| W(s) |
=<k, s = t). Note that Q (¢, —x, k) = Q (¢, x, k) by symmetry.
Let d. = 4 be such that d *exp(—d?/2) = d %exp(—(1 — ¢)d*/2) whenever d = d..
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PropOSITION 2.1. Suppose 0 < x < k. If (k — x)*/t = d? then
1— (4£(2m) Y%/ (k — x)?) exp(—(1 — &) (k — x)?/2¢t)
=Qt, x, k) <1— (t2m) 2/k?) exp(—k?/2t).

ProoF oF 2.1. Letting d = k/t** and using the inequality

j e Pdy=(d'—d e = L griear
2
d

for d = 2, (Feller, 1968, page 175) we have

QU x, )= P*(|W(k)|= k)= P(|W(E)|< k)

=1-—22mt)" 2 j e dy<1— (2m) V2d e 2
k

if £2/t = 4. Since d ™' = d~* for d = 1, this gives the right hand inequality.

Let g (¢ x, y, k) be the transition density for Brownian motion started at x and killed on
leaving [—%, k]. Of course, Q(t, x, k) = [*1 q(t, x, y, k) dy.

A simple change of variables applied to a formula of Feller (1971), page 341, gives

@mt) g (t, %, 3, k) = ¥ [exp(=(y — x + 47k)%/2¢) — exp(—(y + x + 4k + 2k)*/2)].

The infinite series on the right is absolutely convergent and of alternating sign. Pairing
terms, if j = 1, exp(—(y — x + 47k)%/2t) — exp(—(y + x + 4k + 2k)?%/2t) = 0 since
x=—k Ifj=<—1, exp(—(y — x + 4k)%/2t) — exp(—(y + x + 4(j — Dk + 2k)*/2t) = 0
since x < k. Therefore

@mt) V2 (8, x, y, k) = e DY _ gTUERRR/2 _ oyrar 2P/
Integrating y from —Z to &,
Q(t, x,y) = PX(|W(t)| < k) — PP (| W) | < k) — P (| W(t) | < k)
=1—-PY(W(t)>k—x)— P(W({) < -k —x)
—PY-3k—x=W(t)<—k—x) — P(k —x= W(t) <3k —x)
=1—4P°(W(t) = k — x).
Let d = (k — x)/t"* and use the inequality

‘r e dy<d e
a
to get Q(¢, x, k) = 1 — (4/(2m) /*d)e™*/%. If d = d., we thus get the left hand inequality. 0

PRrROOF OF THEOREM 1.

Upper bound. Let 0 <& < %. Let ¢ > 2 be chosen so that (1 — ¢™") ™' =1 + ¢/4. Let
uo be chosen equal to g’ for some I and large enough so that if s = uo/q° g”s = t = gs, then

() [F@) = )%/ —s)>d.,

(i) f(s)/f(t) = (2q)7",
(iii) (4(2m) %q? exp(—f(t)?/2(t — s)) = exp(—(1 + ¢/3)f (t)*/2(t — 5)), and
@iv) f(&)%/2(t — ) < (1 + ¢/3)f (s)?/2s.

This can be done since L (¢) is slowly varying, but increasing to infinity.
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Suppose © = uy. Let n be the largest integer such that ¢" < u. Let £, =0, t; = ¢* for 1
=i<n,t,=u. Let

A={|W@)|=f@), tii<t=t}, i=1..-,n,
and let
ri= (t; — ti-1)/((2m) V*f (£:)")exp(—f (£:)%/2(t: — t:i—1)).

Noteg 2 =<t ./t;i<q7 "
Using the Markov property,

Pu<=PYA1As -+ Ay) = E°PVSD(WE) | S f(ta), 0<t<tn — tn-1); A1 -+ A1)
= E°Q(tn — ta—1, W(ta-1), f(£2)); AL + -+ An1)
=1 —=r.)P%A; -+ Ansy).
To get the last inequality we used (i) and (2.1). Repeating
Zu=1I",,, A —r)PA;--- Ap,
or
InZ<c+¥rrmilnl—r)=sc—Yrmir.
Using (ii), (iii),)and (iv), if ;-1 <t < ¢
—ri = —(4g%(t: — ti1) /f (t) )exp(— (1 + ¢/3)f (t:)*/2(t: — t:-1))
= —((t: — ti1) /f (tim1) Dexp(— (1 + &/3)°f (ti-1) /2(ti-1)).

Thus,

In#? <c-— J (&) Zexp(—(1 + e)f (£)%/2t) dt = ¢’ — J' (&) 2exp(—(1 + &)f (¢)2/2t) dt.
t 0

Lower bound. Let g =9, a = 1/3000. Let u be chosen equal to ¢’ for some I and large
enough so that if s = uo/q°, g% = t = gs, then
V) [f(s) = f(s/@)1°/(t — s) = 2af (8)*/t,
vi) [f(s) = f(s/@°/(t=s)=dis  (>10),
(vii) (16¢%) "‘exp(— %[ f(s) — f(s/q)]1*/2(t — s))
= (8/(2m) ' ?)exp(—%[f (s) — f(s/q)]*/2(t — s)),
and
(viii) (16¢%)7'[f(s) — f(s/@)1 > = f(t) 2

To show that u, can be chosen so that (v) holds, observe that the right hand side of (v)
is 2aL (¢)2. But since f(s/q)/f(s) = ¢ /?L(s/q)/L(s) < 2q~'* for s sufficiently large and
t/s — 1 < ¢? the left side of (v) is

L(s)’[1—f(s/q)/f(s)1?/(¢/s — 1) = L(s)*[1 — 2q—1/“’]2)q2 = 4aL(s)? > 2aL (¢)?

far s sufficiently large. -

Since L (t) increases to o, it follows easily from (v) that u, can be chosen so that (vi)
and (vii) hold. The inequality (viii) is argued in a manner similar to (v).

Observe that —2x <In(1 — x) if 0 < x < % and that xe 2 < Y% if x = 7.

Suppose u = uo. Let n be the largest integer such that g, < u, let £, =0, ;= g’ for 1 <
i<n,t,=u,

B; = {lW(t)le(ti_l), Laa<t=s ti}, i=1.--,n,
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and let
v = (4Q2m) 72t — i) /Lf (ti-1) — f(ti-2)]") X exp(—%4[f (ti-1) — f(t:i-2)]*/2(8; — ti-1)).
Note t;—2 = ti-1/q.
#,=P%B:B; --- By,)
= E°(PWt(|W(t)| < f(t-1),0 <t =<ty — ta—1); B1 -+ Bu_1)
= E%Q(tr — ta-1, W(ta-1), f(ts-1)); By -+ Bp1)
= (1—v,)P°By +++ Bn-1)
by (2.1), (vi), the fact that e */x is decreasing, and the fact that on B,—1, | W(t,.-1) | =
f(ta—2). Repeating, Z, = [[-1+1 (1 — v;)P°(B; - - - By), or
ImZ=zc+Yermlnl—v)=c—2 ¥k v;,
using (vi) again.
Using (v), (vii), and (viil), if ;-1 <t < ¢;,
—20; = —((16¢°) (¢ — ti1) /[ (ti-1) = f(t-2)]")
X exp(—%[ f (ti-1) — f(ti-2)1°/2(t; — t;i-1))
= —((t; — ti-1)/f (&) Dexp(—af (£)%/2¢:),

or

In?,=c— ( f(¢) Zexp(—af(t)%/2t)dt = ¢’ —f f(t) 2exp(—af(t)?/2t) dt. a0
0

<l

CoMMENT. The value of a comes from (v). Replacing the 2’s in the derivation of (v) by
1 + 4,  small, and varying g allow one to improve the value of a. But the best value of «
one could possibly hope for from our method would be

sup,im sup;—gs, s [1 — f(s/q)/f(s)1*/(t/s — 1)
= sup,(1 — ¢7»?%/(q — 1) = %(5v5 — 11) = .09,

which is still substantially less than 1. The difficulty comes from the fact that in the proof
of the lower bound, | W(¢,-1) | is close to f(¢.—2) with nonnegligible probability.

3. Random walk. Let X;,i=1, 2, ... be iid, mean 0, variance 1 random variables
with E|X;|*** < o for some 7 > 0. Let S(n) = Y71 X;. Define Q (N, x, k) = P*(|S(n) |
=k, n=<N).

ProposiTION 3.1. Let %> ¢> 0,k =|x| = 0. There exist constants M and N, such
that if N=No, (k — | x|)/N'?> = M, and k < (2N In In N)'7, then

1— (N/(k = | x]))exp(—(1 — &) (k — | z|)*/2N) ,
< Q(N, x, k) =1 — (N/E*>exp(—(1 + ¢)k*/2N).

ProoF. Suppose x = 0. The other case is similar.

Use Skorokhod imbedding to find a Brownian motion W(¢) and stopping times Us,
««+, Unsuch that U;, Uy — Ui, .., Uy — Un-; are independent, and (S(1), --- , S(N))
is equal in law to (W(U,), ---, W(Uy)), and EU{*™ < o (see Skorokhod, 1965, for
example).

Ifwelet Up=0,Y,=U;— U;-,—1,i=1, ..., N, the Y/s are iid random variables, EY;
=EU,—1=EW((U;)’—1=EX}-1=0,and EY{"" < oo,
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Then by Petrov (1975), page 283, for each 8, P(| ¥ iL: Yi|/N > 8) = o(N™").
So for N sufficiently large, P°(| Uy — N| > 8N) = N™".

PX|S(n)| =k, n=N)=P(|W(U,)|=kn=N)= P(|W(Uy)|= k)
=P*(|W(Un)| =k, |Unv— N|
=< 8N, supy—n=sn | W(t) — W(N) | <ek/3)
+ P*(sup|s—n|=sv | W(t) — W(N)|
= ¢k/3) + P*(|Uy — N| > 6N)
< P*(|W(N)| < (1 + ¢/3)k) + 2P°(sup.=sv | W(¢) | > €k/3)
+ P%(| Uy — N| > 8N).
As in the proof of (2.1), the first term on the right is
=1— (N/(@m)2(1 + ¢/3)2k?)exp(—(1 + ¢/3)*k*/2N)
=<1 — (3N/kYexp(—(1 + e)k*/2N),
if £2/N is large enough. The second term is
2(1 — P°(| W(s) | < ek/3, s = 8N)) < (72 N/((2m)*e’k?)))exp(—(1 — ¢/3)e’k?/(185N))
=< (N/kYexp(—(1 + e)k%/N)

if we take 8 < ¢2/72. Finally, since £ = (2N In In N)2 (N/k*exp(—(1 + &)k?/2N) =
exp(—2k2/2N) = exp(—2 In In N) = (In N) %, which is much larger than N™" if N and
K?/N are sufficiently large. So for N, k& chosen appropriately, the third term will also be
= (N/kYexp(—(1 + e)k2/N).

Summing, P*(|S(n)| =k, n < N) =1 — (N/k*exp(—(1 + €)k%/N). To get the other

inequality .
PX(|W(t)| <k, t=<(1+¢/3)N)< P*(|W(t)| <k, t= Uv) + P*(Uv > (1 +¢/3)N)
<P|W(U,)|<k,n=N) + P°(|Un — N| >eN/3),
or
P*(|S(n)| <k n=N)=P(W({U,)|=<kn=N)
=PX(|W({t)| <k t=<(1+¢/3)N) — P°(|Uv — N| >eN/3).
The first term on the right, by (2.1), is
=1 —(4(1 + ¢/3)N/((2m) V*(k — x)?))exp(—(1 + &/3)(k — x)*/2(1 + ¢/3)N)
=1— (N/2(k — x)*)exp(—(1 — &) (k — x)*/2N)

if (¢ — x)?/N is large, while the second term is = N7" for N large, which in turn is
< (N/2(k — x)*exp(—(1 — €)(k — x)*/2N) by the upper bound on %, as above.
Hence for N large, (¢ — x)/N"? large,

Q(N, x, k) =1— (N/(k — x)*)exp(—(1 — &) (k — x)%/2N).
PROOF OF THEOREM 2. Let g = 9 in the lower bound case, ¢ a large integer in the

upper bound case. Using (3.1) in place of (2.1), the proof is virtually identical to the proof
of Theorem 1.0
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