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MINIMIZATION ALGORITHMS AND RANDOM WALK
ON THE d-CUBE!

By Davib ALDoOUS

University of California at Berkeley

Consider the number of steps needed by algorithms to locate the mini-
mum of functions defined on the d-cube, where the functions are known to
have no local minima except the global minimum. Regard this as a game: one
player chooses a function, trying to make the number of steps needed large,
while the other player chooses an algorithm, trying to make this number
small. It is proved that the value of this game is approximately of order 22
steps as d — . The key idea is that the hitting times of the random walk
provide a random function for which no algorithm can locate the minimum
within 2¢90/27 steps.

1. Introduction. An important practical problem is to find algorithms to locate the
minimum of functions on R As an abstraction of the “dimensionality” part of this
problem, Tovey (1981) studied algorithms to locate the minimum of functions defined on
the vertices of the unit cube in d dimensions (the d-cube). Let I = {i, j, k, --+} be the
vertices of the d-cube. Let % be the set of functions f: I — R taking distinct values. For
brevity, say “evaluate i” for “evaluate the value of f at vertex i.” An algorithm a is a rule
specifying which vertex to evaluate next, depending on the vertices already evaluated.
Mathematically, an algorithm can be described as a collection (/j1; @n, 7 = 1) where ji is an
initial vertex and a, a function I" X R" — I. When the algorithm is applied to f, it evaluates
the series ji, j2, - -+ of vertices, where

jn+1 = an(jl, e ’jn, f(.]l), e ’f(jn)),

and terminates at vertex jy, for some N = N(f, a). Since we are concerned with
minimization algorithms, we require

(1.1) f(jn) = min;f = fr), for eachf,

where fu), f@, -+, fes is the increasing ordering of { f(i): { € I}. We are interested in
algorithms which make small the number N(f, a) of vertices which have to be evaluated
(the number of steps). If no restrictions are placed on f, then to ensure (1.1), an algorithm
must evaluate every vertex, so N(f, a) cannot be smaller than 2%, But if we restrict f to
some subclass % of %, it may be possible to do better. Following Tovey (1981) we shall
consider the class % of local-global functions. That is, functions f such that for each vertex

Js

either f(j) = min,f,
or there exists a neighbor % of j such that f(k) < f(j).

For this class there is an obvious algorithm, the optimal-adjacency algorithm a* which
can be summarised as follows.
1. Let j be the initial vertex j;.
2. Evaluate the neighbors %, .-, kg of j. If f(j) < min f(k,), terminate. Otherwise
proceed to 3.
3. Let % be the neighbor for which f(%2) = min f(k,). Set j = k& and go to 2.
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404 DAVID ALDOUS

For future reference note

1.2) if f(j1) =fm then N(f,a*)=md+ 1.

How good is this algorithm? Tovey (1981) observed that the worst case is very bad:
supsN(f, a*)/290™® 5 0 as d— oo e>0.

But his simulations with several specific distributions u on % suggest that E,N(f, a*) is
of order d? for these specific distributions, so that in practice this algorithm seems good.

Our purpose is to present a theoretical result, adopting the viewpoint of game theory.
Imagine one player choosing f at random from some distribution g on %, and another
player choosing a at random from some distribution » on the set .« of algorithms. The first
player seeks to maximize N( f, a), the second to minimize it. Now % and .« are essentially
finite, because only the ordering ( f(»)) matters, so the fundamental theorem of game theory
asserts that the game has a value

v = sup,inf,E, ,N(f, a) = inf,sup,E,,,N(f, a).

We shall prove that v is roughly of order 2% Precisely

log(v) — 1 asd— o«

THEOREM 1.3. dlog@ 2
Informally, one might say that locating the minimum of a local-global function requires
exponential rather than polynomial time. Such problems are studied in computational
complexity theory, but the techniques used there do not seem to give explicit results like
Theorem 1.3.

The proof of the upper bound is very easy. It suffices to exhibit a random algorithm
(distribution », say, on /) such that

(1.4) E,N(f,a) = Cd2¥*, f€ %,

where C is a constant not depending on f, d. Set M = [2%?] and consider the following
random algorithm.
1. Pick M vertices oJ1, «+ -, Ju at random (uniformly, independently) from I. Let J/ be
a vertex for which f(J) = min f(J,).
2. Follow the optimal-adjacency algorithm from /.
Fixfe %.Form=1,

P,(N(f,a) > M+ md + 1) < P(f(J) > fim) by (1.2)
(1.5) = P(f(p) > fm, 1= n< M)
= (1 - m2~ )™,
Now

E,N(fia)=Yn=0 PIN(f,a) >n) = M+ 1+ d Y=o (1 — m2~%)" by (1.5)

and calculus gives (1.4).

The proof of the lower bound involves the random walk, whose basic properties are
developed in Section 2. The reader may wish first to glance at Section 3, which outlines
how the random walk is used to obtain the lower bound.

2. The random walk. Each vertex i of the d-cube can be represented as a d-tuple
(i1, +++, iq) of O’s and 1’s. Let |t — j| = X|ir — ji|, so vertices i, j are neighbors if |i — j| =
1. Let 7 be the uniform distribution on I; 7(i) = 27 By the random walk (X,):=o on I we
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mean the the continuous-time Markov chain with @-matrix
QG =1/d; |i—j|=1
=0; other i%#]j.
Thus X holds at vertex i for an exponential (mean 1) time, then jumps to a neighboring
vertex selected uniformly from the d neighbors of i. Unless otherwise specified, take the
initial distribution X, to be uniform on I. Write P;(.), E;(-) for probability, expectation
given X, = i. Write p; ;(¢t) = Pi«(X, =J).

The process (X;) may be written coordinatewise as (X}, - - - , X¢). It is easy to verify that
the coordinate processes (X?) are independent Markov chains on {0, 1} with @-matrix
Q(0, 1) = Q(1, 0) = 1/d. It is therefore elementary to obtain the formula
2.1) Dij(t) = 2791 + 7)1 — e~/ ™  where m = |i—j|.

The simplicity of this formula is the reason for using the continuous time random walk
instead of the discrete time version. Note that the uniform distribution = is the stationary
distribution, and p, ;(¢) = 27¢ = 7(j) as t — .

Let H; be the first hitting time of vertex i:

H; =inf{t=0: X, =1i}.
Let H! be the first entry time of i:
HY =min{t>0: X, =1, X, #1i}.
So H{ = H; unless X, = i. Let L; be the first exit time from i:
L;=inf{¢> H;: X, # 1}.
For a non-empty subset A of I let
H, = mingH;; H} = ming H; La=minsL;.

Note that L, is the first time X exits some vertex of A, not the first time X exits A.

Fix ¢ > 0. Call two processes (Y.)o<u<t, (Zu)o<u<: time-reversals of each other if (Y,)
has the same distribution as (Z;-,). It is not hard to verify that the following pairs are
time-reversals of each other. Throughout, (X,,) is the random walk.

(a) (X,) with X, uniform, conditioned on X, = i;

2.2)
(b) (X.) with X, = i.
(a) (X.) with X, uniform, conditioned on L; = ¢;
2 (b) (X.) with Xo = i, conditioned on Hy > .
24 (a) (X,) with X, uniform, conditioned on L4 = ¢, X(Ls—) = i;

(b) (X,) with X, = i, conditioned on HX > ¢.

Think of the event “Ls = ¢, X(L4a—) = i” as meaning “X hits A at vertex i, and first
exits i at time £.” Of course events like this have probability zero: strictly, our assertions
should be formulated in terms of regular conditional distributions.

We shall need estimates for the transition probabilities p; ;(¢) and the distribution of
H;. The lemmas below are sufficient for our needs (Lemma 2.8 could alternatively be
derived by transform techniques, which give an explicit though complicated expression for
the distribution of H,).

LEMMA 2.5. (a) For e <1 and t = (d/2)log(2d/e), | p; ;(t) — 27 = €27°
(b) fé"p,-,i(t)dt —lasd— .

(c) fgwpi,i(t)dt —1lasd— .

(d) Pi(X, =i for some L; <t=<2%) - 0asd— o.
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ProOF. Assertion (a) is a straightforward consequence of (2.1). The integral in (b) may

be written as
? (1 + e 24)?
J {——é_ l(tsd) dt.
0

The integrand converges pointwise to e and is dominated by e~%, where a > 0 is chosen
so that e™ + e ?* < 2 on 0 < x =< 1. Use the dominated convergence theorem. For (c),

od/2

J

Assertion (d) follows easily from (c) and the fact that each sojourn at i has expected

duration 1.
Define

1+ ¢2)¢
pii(t) dt < 2*%sup=ap;i(t) = 2* {Te} - 0.

(2.6) t= g log(2d27).

Roughly, ¢, is of order d. By (2.5)(a),
2.7 |pijw) — 274 <=27%  u=¢.

So conditional on X, the distribution of X at any time u = ¢, is almost uniform; informally,
events separated by time #; or more are almost independent.
Let time (t < to: X; = j) be the random variable measuring the duration of time before

to for which X is at J.

LEMMA 2.8. There exist constants &(d), e2(d) — 0 as d — o« such that
(a) P(H; = u) = u27%(1 — &1(d)), u < 2¥2.
(b) P(H; < u) < u2™%(1 + e(d)), u = t;.

Proor. (a) By considering the first hit on i,

E,timet=wu:X,=i)<P,(H;<u)-E; time(t= u; X, = i) = P,(H; < u)-f Dp.,i(t) dt.
0
By symmetry, E, time(¢ < u: X, = i) does not depend on i, so must equal u2"% Apply

(2.5)(c).
(b) Again by considering the first hit on i,

d
E.time(t=u+d: X, =1)= P,(H;< u)-E;time(t=d: X; = i) = P,(H; < u) J p.i(t) dt.
o

Again E time(t = u + d: X, = i) = (u + d)27¢ by symmetry. Rearrange, and apply (2.5)(b)
and (2.6).

3. The random walk and the lower bound for v. As in Section 2, (X;) is the
random walk with uniform initial distribution. The collection (H,) of first hitting times
may be regarded as a random function H: I — [0, »). For each w and eachj € I:

either Hj(w) = 0 (that is, Xo(w) = j);
or Xg ., is a neighboring vertex (, say) of j, and Hx(w) < H;(w).

Thus each H(w) is a local-global function. For technical reasons it is convenient to use the
first exit times (L;) instead of the first hitting times. Again, we may regard the collection
(L:) as a random local-global function L. Of course L attains its minimum at the vertex X,.
We shall prove that no algorithm can locate this minimum in much less than 2%? steps.
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Precisely:

(3.1) lr—lf;Ed(]lv/z——(_I:)’i)—) © as d— >0,

and this will establish the lower bound in Theorem 1.3.

The details of the argument are rather intricate; here are the underlying ideas. First we
argue that there is no loss of generality in assuming that the first vertex j; evaluated has
L, = 2%% Now suppose the algorithm has evaluated L at vertices ji, +«+, jn.. Let A =
{J1, +++,Jn} and let i be the element of A for which L, = min L;. The algorithm selects
some vertex j to evaluate next: suppose we can prove that for any j

*) P(L;< L, —t) is at most order 2~%?

where ¢, was defined at (2.6). Since min; L is almost zero, (*) and induction show that
N(L, a) is likely to be at least 2%%/¢,, giving the result. Why does (*) hold? By time
reversal, the probability in (*) is at most

(**) P, (X visits j during [#, 2%/?]| X does not re-enter A).

Without the conditioning, this probability would indeed be of order 2-%% by Lemma
2.8(b). To handle the conditioning, we need regularity properties of A to-ensure that the
conditioning does not affect much the behavior of X after time #;; and then we need to
ensure that these regularity properties are carried forward in the induction. This makes
the proof technically complicated.

4. We now start the formal argument for (3.1). In this section we show how (3.1) can be
reduced to Lemmas 4.17 and 4.19, which are assertions about the behavior of the random
walk, not involving any algorithm.

Let 0 < & < % be fixed throughout. We make two conventions. First, each assertion will
hold “for d sufficiently large,” that is for d larger than some dy(¢) depending only on € and
the assertion. Second, subsets A of I are assumed to satisfy

4.1) 1 = #A < 2407272,
Recall definition (2.6) of ¢;. By (2.7)

4.2) pijw) =279 +2%; u=t.
Also, by (2.6),

(4.3) t(l + #A) < 2407279,

(Here we use the conventions: A satisfies (4.1), and (4.3) holds for d sufficiently large.)

DEFINITION 4.4. Let ACI i €A, t>0.Say (i, A, t) is regular if
(a) 297 = t = 291270 — p#A
(b) s@i, A, u) < 2-27% where

(4.5) u=1t—2912" 4 ¢ (1+ #A)

and where s is a certain function to be specified later (5.1).
Note that if (a) holds, then by (4.3)

(46) Lh=u=<t

DEFINITION 4.7. Let A C I and let fbe a local-global function on I. Say (f, A) is good
if (7, A, f(i)) is regular, where ¢ € A is the vertex for which
4.8) f(@) = minaf.

Let a be an algorithm as in Section 1. When a is applied to the random local-global
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function L, it evaluates a sequence of vertices Ji, J5, - - - of the form

(4.9 Jr=J1, Jnrr = aulJ1, + o+, n, Ly, -+, Ly);

the algorithm terminates after N = N(L, a) steps, and Jyza = Xo. For notational
convenience, set oJ, = Jy, n = N. We shall prove

(4.10) EN(L, a) = %27*7(1 — 0(1)) as d— o,

which establishes (3.1).

Lemma 4.11. Let J, be a random vertex, dependent on the random walk (X,). If
(4.10) holds for algorithms a with initial vertex J., then it holds for all a with deterministic
initial vertex.

ProoF. Given any algorithm a, we can define an algorithm & which has random initial
vertex <J; but then ignores the information given by i, L,,, and proceeds as a. Then
N(L,a) = N(L, a) + 1.

In other words, in proving the lower bound (4.10) we may specify the initial vertex o/
any way we choose. We shall take J; to be the vertex visited immediately before the vertex
occupied by X; at time 2¢1/2-9;

(4.12) Ji=X(H;,—), where dJy=X(@2"V?),

The algorithm then evaluates 5, Js, --- of the form (4.9). Let A* be the random set
{Jy, + -, Jn}. We shall prove

(4.13) P((L, Af)isgood) > 1 as d— oo;
(4.14) P((L, A%+1) is not good| (L, A¥) is good) < 6.2%/2

(this is a formalisation of the idea of (*), Section 3). Let us show how to deduce (4.10) from
these assertions. Set ny = [29V/27%], By (4.14)

(4.15) P((L, Ay,) is good) = (1 — 6-27%%)™P((L, A}) is good)

—1 as d— o by (4.13).
On the set where (L, A;) is good, (4.4) (a) implies

LA‘;“ > 2d(1/2—e) — tino

=1%.290/279 for d sufficiently large.

On the set where N(L, a) < no, we have L A = Ly, andso X;=Xoon0=<¢t<L So
@16 P, A%)isgood, N(L,a) < ng) = P(X, =X, on 0= ¢<1%.29/7)
) —0 as d— o,
Now (4.15) and (4.16) imply P(N(L, a) = no) — 1 as d — o, which establishes (4.10).
We have now reduced the proof of Theorem 1.3 to the proof of (4.13) and (4.14). Next,

we translate these assertions into assertions about the random walk. For (4.13) this is
straightforward from Definitions 4.7 and 4.4; it suffices to prove

LEMMA 4.17.

(a) P2¥? =Ly, =29V — t)) 5> 1 asd —

M®) s(j, G uwy=2.2% orjel ty<u=<2v
We shall prove this in Section 5. Translating (4.14) requires more effort. For i € A define
(4.18) B(.|i, A, t) = P(-|X(La=) = i, La = ¢).
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In Section 6 we shall prove

LEMI!IA 4.19. Suppose (i, A, t) is regular, j & A. Then
(a) P((5, AU {j},t) is not regular, L; = La|i, A, t) < 2.279/2
(b) P((j, AU {j}, L) is not regular, L; < La|i, A, t) < 4.272,

These remain true for j € A, since then L; = L4 and (i, A U {j}, t) = (i, 4, ¢) is regular.

The rest of this section is devoted to proving (4.14) from Lemma 4.19. We need the
technical lemma below. For A C I define the post-L-o-field ¥4 = o(La; X(La—); Xy, u =
L,). Plainly

(4.20) L; € %, XL/' € Yu; JEA
(4.21) L C %y, BCA.
LEMMA 4.22. {A%=A,Jpa=J}E%,n=1.

ProoF. We shall prove that foranyn =1, A = {j1, «++ ,Ju}, b1, +++ , bny
(4.23) {A";; =A; Ji =j1, ey, Jn =jn; le = "IN Lj,. = tﬂ} € .

This is true for n = 1, since {A% = {ji}, i =ji, L; =t} = {t = L; < 29*™; X(u) =
X(L;) for L;, = u = 29%/*9} € &,. Suppose inductively that (4.23) holds for n. Then by
(4.9),

424) {An=A;Ji=Jj1, -+, 1 =Jass Ly =t1, -+, L; = t,} € La C Laugjnen)-

Since {L;,,, = th+1} € Laujns1y by (4.20) and (4.21), and since A% = A% U {Jp11}, we see
that (4.23) holds for n + 1. So by induction (4.23) is true for all n; so (4.24) is true for all n,
and the lemma follows.

Now let % be the strict pre-L,4 o-field o(X,: u < L,). By a variant of the strong Markov

property,
(4.25) P(B|%4) = P(B|X(La—), La); BeZ
= P(BlX(LA—), A, L,) in notation of (4.18).
We can now prove (4.14). By definition 4.7, (L, A U {J}) is good if
either Lj=Ls, and (;,AU {j},¢) isregular
or Li<Ls and (j,AU {j}, L;) isregular.
Thus by Lemma 4.19,
(4.26) P((L, AU {j})isnot good|i, A, t) < 6-27%% if (i, A, t) regular.
Now
{(L, AU {j}) is not good} € o(Lau,j, X(Laugj1—)) by definition
C Zaugyy C Za.
So by (4.25) and (4.26)
P((L, AU {j}) is not good| %) = 6-27%% on {(X(La—), A, La) is regular}.
Applying Lemma 4.22,
P((L, A%+1) is not good| #4) = P((L, A U {j}) is not good| %) on {A% =A, Jo1=J)
<6-27% on (A% =A, (X(La—), A, L,) is regular}.
But this last set is {A% = A, (L, A%) is good}, and (4.14) follows.
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5. Here is the definition of the function s appearing in the definition (4.4) of “regular”.

DEFINITION 5.1. For AC I, i€ A, u=0 define
s(i, A, u) = max;e; Pi(X, = j|Hi > u).

PROOF OF LEMMA 4.17. (a) L., = 2%? by definition. Set ¢, = 2%1/279,

P(Ly, <to—t) =P(Ly <t — t|X(to) = k) by symmetry
= Pp(X, = X(L;) for some t; = u < t;) by time-reversal (2.2).
By conditioning on (L, X(L)), this is at most
Py(Ly > Yt1) + P(X, =j forsome Y%t <u =<t).

u

As d — o, the first term tends to zero since Pi(L: = u) = e *, and the second term tends

to zero by Lemma 2.5(d).
(b) Let t; < u < 2%2, Then

PiX.=k|H} > u) < P(X, = k)/P{H} > u)
=271 + 279 /Py(H; > 2%%) by (4.2)
=2.27% for d sufficiently large,
because P{H;} >2%%) — 1 as d — » by Lemma 2.5(d). So s(j, {j}, u) < 2-27 for
sufficiently large d.

6. It remains to prove Lemma 4.19. The key idea is that the time-reversal (2.4) can be
written, in the notation (4.18), as

(6.1) P(Xozust € *|1, A, ) = PAX,_)omus: € +|HE > 8).

Thus the assertions of Lemma 4.19 can be translated into assertions about the behavior of
the random walk started at i € A and conditional on {H > t}. We start with a sequence
of lemmas concerning this conditioned random walk.

LEMMA 6.2. Pi((Xpri)eo0 € - | HA > u) = 29(i, A, ) - P((X) =0 € -).

Proor.
Pi(Xesw) € -|HEA>u) =Y PiXu = k|Hi > v)-Po((X) € +)
= 2°max, PiX, = k|Hi>u) 34 27°Pu((X) € +)
= 2%(i, A, w)P,(X;) € -).

LEMMA 6.3. Ifu=2Y2and s(i, A, u) < 2.2 then
P(H:>2H;>u)=1-27
Proor.
Pi(H} =2V Hj > u) < 2P(Hi =< 2¥?— u) by Lemma 6.2

=2P.(Hy=2Y%
= 2#AP,(H; = 2%%) by symmetry
= 2#A27%*(1 + g,(d)) by Lemma 2.8(b)
=27 for d sufficiently large, by (4.1).
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The first lemma below is elementary; the second is an immediate consequence of (4.2).

LEMMA 6.4. For events G, H, H with H C H and P(H) > 0,
P(G|H) = P(G|B)/P(H|A).

LEMMA 65. PiXur, =j|X,, r=u) <2791 + 279).
LEMMA 6.6. Ifs(i, A, u) <2.27* then s(i, A, u + t;) < 2.27%

Proor.
P,(Hy=t) =#AP,(H, = t,)
6.7) = #A27% (1 + e2(d)) by Lemma 2.8(b)
=2791/2)(] 4 g(d)) by (4.3).
P(Hi=u+t|Hf>u) =2¢.2.27%P (Hy < t;) by Lemma 6.2

(6.8)

—0 as d— o by (6.7).
And by Lemma 6.5,
(6.9) Pi(Xure, = j|HA > u) < 2791 + 279).
Finally,

Pi(Xu+tl =j|HX > u)
P(H}>u+ ti|HL> u)

=2.27% for d sufficiently large, by (6.8) and (6.9).

PXur,=j|HA>u+t) < by Lemma 6.4

LEMMA 6.10. Ifs(i, A, u) < 2-27¢ and P{(H} > u|H% > u) = 2"%* then s(i, A U {j},
u+t)=<2.27

Proor. By Lemma 6.4,

Py(X, = k|Hj > u)
P(X,=Fk|H}i;, >u) <
( |Havn > w) Pi(Hu ) > u|Hi > u)

- s(i, A, u)
T P(Hf >u|H% > u)

< 2.27%2 by hypothesis.
So s(i, A U {j}, u) = 2.2"%2, Apply Lemma 6.6.

ProoF oF LEMMA 4.19(a). By hypothesis (i, A, t) is regular, in particular
(6.11) s(i, A, u) =2.279

for u as at (4.5). Now (i, A U {j}, ¢) satisfies condition (a) of Definition 4.4 because
(i, A, t) satisfies that condition, so to prove regularity it suffices to verify condition (b):
s(i, AU {J}, u + t;) = 2-27¢ Thus it suffices to prove

either (i) s, AU {j},u+t)=2.27¢
or (i) P(L,>Lali A, t) <2.27%
First suppose
(6.12) P(Hf > u|Hi>u) =279
Then by (6.11) we can apply Lemma 6.10 and deduce that (i) holds. Now suppose (6.12)
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fails. Then
P(L;> La|i, A, t) = P{(H} > t|Hs >t) by (6.1)
=P(H} >u|Hi>1t) sinceu =t by (4.6)

- P(H} > u|H% > u)
T P(HL>t|Hi>u)

=279%/P(HA > 2| H} > u)
since (6.12) fails, and ¢ < 2%2 because (i, 4, ¢) is regular,
=27%%/(1 — 27*%) by Lemma 6.3.

by Lemma 6.4

So (ii) holds for d sufficiently large.
One more lemma is needed before we can prove part (b) of Lemma 4.19.

LEMMA 6.13. Suppose s(i, A, u) < 2.27% Let j & A. Define
V=sup{t=wX,=j, Xi- #J}
=0 if no such t exists.

Then PAV>0,s(j, AU (j}, u+t; — V) >2.27 Hi > u) < %.272

Proor. Let
QD=(Hi>u+t}N{X;#just=u+t)
Q1 = (P V, HA > u) < %)}.
Then
PQ5|H, > u) = 3P| HS > u)

=3.2.P(Haujy = t1) by Lemma 6.2
(6.14) =6#AU {(jHP,(H; = t) by symmetry
= 6(1 + #A) 6271 + e2(d)) by Lemma 2.8(b)

= %.2792 for d sufficiently large, by (4.3).
Next, since o C {H4 > u} the continuous analog of Lemma 6.4 gives

P(X(u+t)=F|V,Hi > u)
PiQ|V, H > u)

(6.15) =%P(X(u+t)=k|V,Hi>u) on
=%.27%1+27% onQy, by Lemma 6.5

Pi(X(u + tl) = kl V, Qo) =

=2.277 on Q, for d sufficiently large.
Now fix 0 < v =< u. By definition of V, ©, and the Markov property at v,
6.16) PiX(u+t)=Fk|V=0,Q) =PXu+ti—v)=k|Hiy,,>u+t—v).
So
s(,AU{j}hbu+t —v) =max, P(X(u+ t, —v) = k|Hiyj >u+t —v)
=max Pi(X(u + t;) = k|V=0,2) by (6.16).
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So
s(,AU {(j},u+t — V) =max P(X(u + t) = k|V,%%) on{V>0}
=2.27% on@ N {V>0} by (6.15),
and now the lemma follows from (6.14).
ProoF oF LEMMA 4.19(b). By hypothesis (i, A, t) is regular. Let u be as at (4.5). In

order that (j, A U {j}, L;) satisfy condition (a) of (4.4) we need L; = ¢ — u. In order to
satisfy (b) we need s(j, A U {j}, &i) =2-27% for i = u + t; + L, — ¢. So it suffices to prove

(6.17) P(Lij<t—uli,A,t)=<3.279?
6.18) PSG,AU(ju+t+L,—t)>2.2%t—u<L;<t|i,A t)< 27

Say “X enters j during [, t]” if there exists r € [, ¢] such that X, = j, X,_ # j. To estimate
(6.17),

P(L;j<t—ul|i, A, t) = P(X enters j during [u, t]|H} >t) by time-reversal (6.1,
_ PiX entersj during [u, t]|HA > u)
P(H%>t|HA>u)
2P (Hf<t—u)
A i
1-— 2—ed
=<2.279%(1 + &(d))/(1 — 2% by Lemma 2.8(b),

and so (6.17) holds for sufficiently large d.
To prove (6.18), time-reversal (6.1) shows that the probability in (6.18) equals

by Lemma 6.4

by Lemmas 6.2 and 6.3, since ¢t < 22,

Pi(s(j, AU (j},u+ t — V) >2.279 V> 0, X does not enter j during [u, t]|HAi > ¢).
Since u < ¢t =< 2%?, Lemmas 6.13 and 6.4 show this quantity is at most
%272/ P(H% > t|Hi > u).
Now P(H% > t|H} > u) = P(H: > 27 Hi= u)
=1-2" by Lemma 6.3
and this establishes (6.18).
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