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A CHARACTERIZATION OF RECTANGULAR DISTRIBUTIONS

BY GEORGE R. TERRELL'

Rice University

It is well known that the smaller and the larger of a random sample of
size two are positively correlated. The coefficient of correlation is at most one-
half, and the upper bound is attained only for rectangular distributions.

1. Introduction. There has been considerable interest in recent years in alternate
characterizations of distributions in terms of properties of independent samples from them.
The most famous of these is the characterization of a normal distribution as one whose
measures of location and scale are independently distributed. A number of these charac-
terizations are phrased in terms of properties of order statistics, where the ith order
statistic X(;) of a sample of n is that sample point with i — 1 smaller sample points and n
— 1 larger sample points. For example, an exponential distribution is one for which Xy,
X(z) - X(l), X(3) - X(z), e, X(n) - X(n_l) are mutually independent. The main result of this
note may be interpreted as a simple condition for a continuous distribution with finite
variance to be a rectangular distribution. For other characterizations of this kind, see e.g.
Ferguson (1967) and Driscoll (1978).

Bartoszynski (1980) proposed that a result of this type might exist in connection with a
problem in cell division. Since the two daughter cells cannot always be distinguished later,
the times till their further division can only be recorded as the earlier event and the later
event. The correlation between these ordered pairs thus may provide the only information
on the independence of the two events.

2. A bound for correlations between ordered sample pairs.
THEOREM. Let X1 = X be an independent sample of two from a continuous
- distribution F with finite variance. Then Xq), X are positively correlated, and p12 < %

with equality if and only if F is a rectangular distribution.

ProoF. Let F7'(Y) be the inverse of the cumulative distribution function. It is clear
from a change of variables that X having a variance is equivalent to the condition:

f (F(Y))*dY
0

is finite. Thus F ! is a member of the class of nondecreasing square-integrable functions

on (0, 1). Now, functions in this class may be approximated arbitrarily well by polynomials,.

using the L%-metric on (0, 1). Let {L:(Y)} i = 0, 1 ... be the normalized Legendre
polynomials on [0, 1] with the properties

1
jLi(Y)Lj(Y)dY=s,-j and L;(1) > 0 for all i, j.
0

Then we can expand
F(Y) =Y& a:Li(Y)
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824 GEORGE R. TERRELL
where
1
J L(Y)F7(Y)dY = a,
0
and thus
1
j FNY) dY=Y%oai<w
0

and our polynomial series converges in the L? metric. We will need some particular
properties of the Legendre polynomials in the sequel:

LEMma. (i) j 2L, X)L:i(Y)dXdY =0, i>0
0=X=<Y=1

-1
Jei-1nei+1)’

(i) J 2L, 1(Y)L:(X) dY dX =
0=X<Y=1

1

, 1>0
Jei-1)@2i+1) '

j 2L 1 (X)Li(Y) dX dY =
0=X=Y=1

1
(iii) j 2XL}(X)dX =1, i=0
0
! 1
(iv) J 2XL(X)Li-1(X) dX = ,i>0
o V@i -1)(©2i + 1)

Proor. (i) and (iii) follow from the alternate oddness and eveness of L;’s with respect
to %. (ii) and (iv) follow from the observation that J Pi(X)L«X) (where P; is a polynomial
of degree i) depends only on the coefficient of X’, since L; is orthogonal to terms of lower
degree. 0O

Let X1y = X(2) be a sample of two from the distribution with quartile function F ~*, Then

Cov(Xy), X2y)
P12 =
«/Var(Xu))Var(X(z))
Cov(Xuy, X@) =J 2F ' Xw)F ' (X@) dXo) dXe)
0=X,=Xp=<1

1 1
- J 2X o F ' (X)) dX, J 2(1 = Xo))F (X)) dX;
o o
=¥%o J’ 2a?LiX)LiXe) dXo) dXe
0=Xn=Xn=1
+ Yo J 2a:0:1 Li(X 1)) Lin(X») dX) dXe)
0=Xn=Xp=1

+¥ o J 20041 Li(X ) Liv1i( X)) dX1) dXi2)
0=Xn=Xp=1

(o33
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The other cross product terms are zero by orthogonality of the L;s. Now, applying the
Lemma allows us to cancel almost all terms, leaving

1Y)
o

a? a! a
J 2aiLo(Xw) Lo(Xe) — af + 3" af—af+—=—
0=Xn=Xp=1

3 3
Thus, the covariance of an ordered sample of two depends only on the second (or linear)
Legendre coefficient.

Now

1 1

2
Var(Xy)) = J’ 2(1 — X)) F (X)) qu)]

0

2(1 — X)) (F ' (Xw))? dXo) — “’

0

1

=2¥%0 af — Yo J’ 2aiXLiXw)? dXq)

0

1

2

a
- 2?—0 400,11 XyLi(X 1)) Lir1(X ) dX ) — (ao - —1) ,
o V3

where once again a great many terms disappear because of the orthogonality of the L;’s to
lower degree polynomials. And, once again applying the Lemma

20 + Daitin (a _ﬂ)z
J2i+)@itd \ . 3

These terms can be reorganized by completing squares:

T < 2
w ,l.+l /z+1
Var(Xy)) = z=1( 2i+laz maz+l)
[i+1 [i+1 2
Var(X) = i=1( ‘2—i—ﬁai+ 2i—+3ai+1)
o= i+1a~— i+la~ d = i+1a~+ i+1a~
TNz 1% Vzir 3™ “TVoiv1%" Voiv 3@

Var XiVar X; = Y&, ¢? Y21 d? = (3% ¢ d)?

=sz=0 azg _Zgu

Similarly

Let

Then

by Cauchy’s inequality. But
i+1 , i+1 ,

Gdi=g 1% T3
So ]
‘ 2, - aF ? 2, ?
== © 2 ) =(2
VarX(l)VarX(z)_ (3 a1+2,_22i+1) 3a1
Thus

Cov(Xa, Xo)) _ al/3
=53
vVar X Var Xz 2a1/3

Further, equality is attained precisely when a3 = a3 = ... = a? = ... = 0. It is readily

_ _1
P12 —2.
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seen that this is the case only for a rectangular distribution. This completes the proof of
the theorem.

3. Conclusions. Despite the computational nature of the preceeding proof, it is fairly
easy to interpret the theorem. The covariance of a pair of sample values depends only on
the second Legendre coefficients. The correlation is largest when the higher coefficients
are zero; i.e., for a rectangular distribution. A simpler result of the same class states: The
variance of a random variable is at least the square of the second Legendre coefficient,
with equality only for rectangular distributions. Thus, the theorem is related to Bessel’s
inequality.
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