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NORMAL APPROXIMATIONS TO SUMS OF SCORES BASED
ON OCCUPANCY NUMBERS

By M. P. QUINE AND J. ROBINSON
University of Sydney

A central limit theorem and remainder term estimates are given for the
distribution of the sum of scores based on the occupancy numbers resulting
from the random allocation of N balls to n boxes. The proof involves bivariate
characteristic functions, exploiting the equivalence of multinomial and con-
ditioned Poisson variables. The results are shown to include the statistics for
the empty cell test, the chi-squared test and the likelihood ratio test.

1. Introduction and results. Let (U, ---, U,) be a multinomial variable
with parameters (N; p;, ---, pp,) such that 7., pr = 1 and Y}, U,
=N.Let{c(j,k):j=0,k=1, ---, n} be sets of constants. The random variables,
the parameters and the sets of constants all actually depend on N and rn but for
_ simplicity this dependence.is suppressed in the notation.

Let S = Y71 ¢(Uyx, k). We will obtain a central limit theorem and a bound
on the rate of convergence for S as n, N — o. It is well known that S has
the conditional distribution of T'= Y7, ¢(Y%, k) given Y’ = Y7_; Y, = N, where
(Y4, ---, Y?,) are independent Poisson variables with parameters (ay, - - -, a,),
with o, = Np,. We expect the joint limiting distribution of T and Y’ to be

bivariate normal, so instead of T we consider Z’ = T — v Y’, where « is chosen -

so that Z’ and Y’ are asymptotically independent. To this end, let Z4) =
c(Y%, k) — vY%, where

v = cov(T, Y")/var(Y’) = ¥k cov(c(Y%, k), Yi)/N,
define Z, = (Z}, — EZ%)/o = d(Y4, k) and Y, = (Y% — ax)/a'’?, where o = N/n
and o2 = n7' Yr, var[e(Y% k) — vY4%], and let Z = n™¥2 Y2, Z, and

Y= n_1/2 Z;::l Yk.
The conditional characteristic function of Z given Y = 0 can be obtained from

the joint characteristic function of Y and Z. The central limit theorem will be.

proved by showing that this conditional characteristic function tends to the
characteristic function of a standard normal variate. Rates of convergence are
obtained from bounds on the difference of these characteristic functions. The
result for the central limit theorem is now given; in the scquel C,, C,, ¢y, ¢o, C
and ¢ are positive constants which do not depend on n or N; C and ¢ may change
value at each appearance.

THEOREM 1. If ax < Cia for all k, if na® — o, if there exists ¢, such that
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a<nifn, N— oandif foralle >0
(1.1) n'Yry EZ3I(| Z,| > n*%) — 0,
then A — 0, where
A = sup, | P(S — $-1 ue < n'?ox) — &(x)]
for ® the standard normal distribution function and u, = Ec(Y%, k).

This result is similar to that of Theorem 4.2 and Corollary 4.1 of Morris
(1975). However, our conditions neither imply nor are implied by his. The
Lindeberg condition (1.1) is weaker than his condition (4.12) which implies a
Liapounov condition on the fourth moments of Z. For example if c(j, k) = j*/*
and @ = 1 for 1 < k < n, then (1.1) holds but third moments do not exist. Also
we use the condition o < C,a in place of the weaker conditions max;p, — 0 and
either the very complicated (4.12) or the condition a; > ¢ > 0 for all k, which
replaces (4.12) in his Corollary 4.1. It seems to us more natural to restrict the
relative size of the a; than to insist that none of them tend to zero. We also need
the rather weak conditions that na? — ® and a < n°; however these can be
avoided at the cost of conditions on the scores given in Theorems 3 and 4 later.
Theorem 1 implies the results of Holst (1972), those of Steck (1957) given in
Morris (1975, page 182), for the particular case of a chi-squared statistic and
those of Rényi (1962) for the empty cell statistic. Mann and Wald (1942) also
state a limit result for the chi-squared statistic; other earlier partial results are
cited in the above papers. :

The major results of this paper are the bounds on the rates of convergence
given in the following theorems. The only earlier results of this type of which we
are aware are in Englund (1981) and Quine and Robinson (1982) (referred to as
QR in the sequel) which concern the empty cell statistic, and Quine (1983) which
considers the case of ay = a, E = 1, - - -, n, under restrictive conditions on the
scores. The present results subsume all of these. The common method of proof
used for the central limit theorem and for the rate results is closely related to
that of Rényi (1962) and Holst (1972) but is very different to the methods of
Morris (1975) which do not appear capable of giving results on rates.

The following results give rates in terms of

A=nYr  E|Y:|®? and 4 =n""2 3 i, E|Z:|>

THEOREM 2. If ap < Cia and ¢z < a < n®, then
(1.2) A < Ct.

THEOREM 3. If ap < Cia, a < Cy and
(1.3) |d(1, k) — d(0, k)| < Cn'?4, for all k,
then
(1.4) A< C(4 + 4+ 735%™ N).
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If in addition
(1.5) 4 = CN™V?
then (1.2) holds.

THEOREM 4. If oy, = Cia, a>Cand
(1.6) E|d(Y}; + 1, k) — d(Y, k)| < Cap'?, whenever oy, > 4 «,
then (1.2) holds.

We will prove these results in Section 2 and discuss three important special
cases in Section 3.

2. Proofs.

PROOF OF THEOREM 1. Let Y=n""23, Y, Z =n""23,Z,, so that
EeY+itZ — i gk(n—1/2v’ n\2t),
where
gx(n"V?, nV%t) = E exp(in Y, + in"Y2tZ,,).

According to a result of Bartlett (1938),
aNV/2
yn(t) = E(e™| X, Yi=N)=d f i I1 18 ("%, n™V2t) dv,

where
NleV
27rNN+ 1/2

Theorem 1 will be proved if we can show that ¥ (t) — exp(— Y%t?) for all fixed
t. To do this we consider the partition

| ¥n(t) — exp(— 2t?) |

d=[2xNYV*P(3, Yi=N)]"' = = (27)™*(1 4+ O(N™).

=d f | I g(n™"%, n7Y%t) — exp(—Y%v® — Y2t?)| dv
2.1) !

+d f | TIx gx(n Y20, n™2t)| dv + CN™* + Cexp(—c/1?)
Ry

where
Ri=1{v:|v| <A7Y -and Ry ={v: \/1'<|v|<aNY3,

where A > 0 is specified below. We will bound the first two integrals here using
the following two lemmas.
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LEMMA 1. Under the conditions of Theorem 1, for fixed t, ¢ sufficiently small
and n sufficiently large,

(2.2) | T1x8x(n~2v,n"/%t)— exp(—Yov? — V4t?) | <eP (v, t)exp(—(v® +1%)/12)
for |v| < A1 with X = V5 C1'2, where P(v, t) is a polynomial in |v| and | t| of
degree 4. .

We will defer the proof of this to the appendix, since it follows the same lines
as that of Lemma 2 of QR.

LEMMA 2. Forfixedt,a>c;>0and \/7' < |v| <aN?
(2.3) | T1xge(n™ 20, n7%t)| < €™

ProoF. We have
| gr(n™?v, n7V2t) |
< | E exp(inYY,) | + E|exp(in™"?Y})(exp(in™"?tZ;) — 1)|
< | exp(ax(exp(in™2/a"?) — 1))| + n|t| E| Z|.
Since cos x —1 < —2x*/w% for — r <x <,
Y20, n_ypat) |
< exp[—20,0%/Nx? + n?|t | E| Z|
< exp[(exp(—2a,0%*/N72) — 1) + n V2|t | E | Zi]]
< exp[—c + n”Y?| t | E| Zx|]

for k € B = {k: aj, = Y a}, since | v | > A/ 7> Cn'”2 for a > ¢,, from QR (equation
(13)). Now from QR (page 669), B contains m = n/(2C; — 1) elements, so

| TLxge(n™20, n7%t)| < exp[—cm + n™?|t| Zi E|Ze|]

| gx(n~

(2.4)

2.5
(25) < exp[—cn + | t|n*?

using the Holder inequality. The lemma follows for any fixed ¢.
Now from (2.1), we get, by integrating (2.2) over R, and (2.3) over R;,

| ¥n(t) — exp(—2t?)| < eC + CNY%e™" + CN7' + Ce™" =< C

if o < @ < n°, in which case the theorem follows since ¢ is arbitrarily small.

If we allow « to tend to zero, we can only expect the joint characteristic
function of Y and Z to be O(exp(—cN)) for |v| > A\/t* = O(N'?), so Lemma 2
is replaced as follows.

LEMMA 3. For fixed t, a < (2C)) " and \/ 7' < |v| = aN'?,

(2.6) | 1 xgs(n "2, n™2%t)| < exp[—v?/n® + n'?|t]|].
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ProOF. If a < (2C;)! then oy < Y. In this case 2a,0?/N7? < 1, so from the
second inequality of (2.4)

| ge(n 2, n7Y%t)| < exp[— axv?*/Nx?+ nV?|t|E|Z:|],

since e”* —1 < Y2x for 0 < x < 1. The lemma follows using the Holder inequality
again. ’
Integrating (2.6) over R, gives a value bounded above by

C exp[—(A\/1Y/7)2 + n?| t|] < C exp[-nY*(n'?Ca — | t|)]
which is arbitrarily small for fixed ¢ if na® — . Using this result in (2.1)
completes the proof of Theorem 1.
PROOF OF THEOREM 2. Fort >0,
Yn(t) — exp(—Y2t?)

= exp(—;t?) J; % exp(¥es?)yYn(s) ds

t =NV2
= exp(—%t?) d f [ f — exp(¥2s?) [[rge(n™?v, n™Y2%) dv] ds.
o —xNV2 ds

So
t7 | Y (t)—exp(—Yat?) |

d
— exp(¥2s?) [1x gx(n "%, n™Y3s) | dv.

ds

. We will use the smoothing inequality as in Loéve (1955, page 285), that for any
6>0,

aN1/2
2
< exp(—'.t?) f 2 Sup 5| =<t
—.

5/3"
(2.7) A=< 7—2r f T Y (t)—exp(—Yet?) | dt + C4/s.
0

From Lemma 2 of QR (which, as indicated in the proof, is true for an arbitrary
score function c(j, k)) we have

| (d/ds)exp(*2s®) [1x8:(n""?v, n7"/%)|

(2.8) s

, 112 s?
SC(|s|+|v|+1)(4+/2)exp YR

for |v| <% /7% |s| <6/32' <% /3" solong as 4, 4 < 127%2, This will enable
us to bound the integral of the term on the left over the region R, with A
henceforth taken to be 2/9. To bound the integral over R;, we note that

| | (d/ds)gw(n™"%v, n7V%)| = | En"*Z(exp(in Y, + in™%sZ,) — 1) |
=n ' |E|YsZe| + n7'|s| EZ},
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so that using the Holder inequality
(2.9) |(d/ds)exp(Yes?) [1x gr(n 2, n7%)| = (| v| + 2]|s|)exp(v2s®) [T%

where

* = max;| []renrs (n 2, n7%)]|.

The following lemma provides a bound on []* which we can use for v € R, when
c;<a<nand for %/7' < |v| < 4n'? when o > n.

LEMMA 4. For a > cs,
(2.10) [*=<e™

ProoFr. From (2.4)
[1* < exp(—c(m — 1) + n™2|s| $x E| Z:|) < exp(—cn + 6n)

using the Holder inequality and noting that |s| < 673! < én'/% The lemma

follows by choosing é small enough.
To prove Theorem 2 we integrate the bound given by (2.8) over R, and the
bound given by (2.9) over R,, bearing in mind Lemma 4, to obtain for ¢ > 0

t7' | ¥n(t)—exp(—14t?) | < P(t)exp(—t*/24)(4 + 4) + Nte™";
from this inequality and (2.7),
A=CAa+ 4L+ nNe ™) =Ch
since o< a<nand 4 =n""2=cA.
PrOOF OF THEOREM 3. For the same reasons given immediately prior to
Lemma 3, (2.10) fails for « — 0. However in this case the same argument as
above combined with the following lemma yields (1.4). If (1.5) holds then (1.2)

follows easily from (1.4) using 4 < cN~Y2 for a < 1. Since the constant c; in
Theorem 2 can be taken arbitrarily small, Theorem 3 follows.

LEMMA 5. For sufficiently small a, if (1.3) holds,
I* < eV
Proor. We have
| ge(n™2v, n71%5) | < e™H(Mu + M)

where M, is derived from the first two terms of the series for the expectation
and M, from the other terms. Then

M < | 1 + azexp(iN~Y20+in"2s[d(1,k)—d(0,k)]) |

= (1 + 2axcos 7 + ai)?
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where
=N + nY%[d(1, k) — d(0, k)], and

My, < e** =1 — ay.
Using tNY?> |v| > CNY? | s| < 6/3"and (1.3), we can choose n > 0 such that
n<C—38C<|7|<m+8C<m+%C '
if § is chosen small enough. Since cos 7 — 1 < —7%/5 for | 7| < + Yso,
My < (1+21—m)ap+af)”?<1+ (1 —n2)os

with 5, = 7%/5, if 5o < 1, and a < 2(n1 — 12)/[12(2 — 12)] = ns. In this case, from
the inequality e* <1+ (1 +8)xfor 0 <x <0 < 1.5,

M < naay;
SO
| ge(n™ 20, n72t)| < e™(1 + (1 — mp)ax + m3cte)
< exp(—(nz — m)ax) <1

if 93 < 7, that is if n3 > 2(n1 — 12)/(2 — n2), which can be achieved by choosing
7 sufficiently close to n,. Thus for small «,
[1* < max;exp(—c Y rep pxe;ar) < € D
and the lemma follows.
PROOF OF THEOREM 4. Although (2.10) is true for all & > ¢, a tighter bound
is necessary when a > n for Cn'? < |v| < N2
LEMMA 6. Under the conditions of Theorem 4,

(2.11) II* = @n2/|v|)™

PROOF. Writing p; = e™*a4}/j! and d; = d(j, k),
| ge(aa, b) |
= | X0 exp(iaj + ibd;)p; |
= |eia -1 |—l| 2;;0 (eia(j+1) _ eiaj)eibdjpj |
= (n/(2]a|))[po + X0 | exp(ibd;.1) — exp(ibd;)| pj + Tjzo | Pjs1 — pj 1],
using the summation formula
Y olfisr — fi)8j = — fofo — Xj=o (8j+1 — &i)fina
and the inequality —

lei — 1| = [2(1 — cos a)]"?* = 2|a|/x for |a| <.
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Now
%, | exp(ibdjs1) — exp(ibd;)| p; < |b| E|d(Y} + 1, k) — d(Y, k)|
and ‘
po+ Xt | pjsr = pj | =po + 2% | pr—=pral = 2o Pl 1= Zau|
= ai' E| Yi = au| < i, o
Thus for k € B and small §, (1.6) and |s| < /3" impiy

wn'/?

2|v|

1/2
| ge(n™"2v, n72%)| < [Co + 1] <£> <3n'*/|v|,
. a
and the lemma follows.
To prove Theorem 4, we argue as before for v € R, use the bound (2.10) for

% /7' < |v| < 4n'? and the bound (2.11) for 4n'? < |v| < N2 to get

£ Wa(t) — e 27| < P(t)exp(—t%/24)(A + 4) + (1 + t)(e™" + (%4)™).
Theorem 4 now follows from (2.7).

3. Some examples. We consider three examples from statistics, in which

it is most natural to work with third moments. We therefore concentrate mainly

on rate results. A
The empty cell test is based on c¢(j, k) = §o;. Rényi (1962) showed that when

ar=a,k=1, ..., n, anecessary and sufficient condition for A — 0 is ng% — o,
In QR it was shown that when o, < Cyo, k=1, -+, n,
(3.1) A = 0((ne?)™1?),

so that no% — o is sufficient for A — 0 in this case too. (3.1) also follows
from our present theorems as we now show. Since (QR equation (14)) 4 =
O((ne?)~'/2), Theorem 2 gives (3.1) immediately for ¢; < o < n“* and we need
only check the conditions for « — 0 and a — .

When o — 0 (so v | — 1) we have

n24 =1%n" 672 Y e + (2 — i) |Pate
= Ca?/e® = C/lo = Cl1+v|/o=Cld(1, k) —d(0, k)|
using ¢ = O(a?). Similarly n'/?4 = C/a, so Theorem 3 applies. When o — ,
E|d(Y,+ 1, k) —d(Yi, k)| = (v + e)/o = O(1/ag)

since 0% = 4 ¥, aje 2", so Theorem 4 applies.

"The x? test is based on c(j, k) = (j — ax)?*/ax. Morris (1975) showed that
A—>0ifay=c>0,k=1, .-, n, and max,p, — 0 (the latter being equivaient
to 4 — 0). Our results are somiewhat different as discussed in Section 1; apart
from providing a bound on A, they also improve substantially the results of Steck
(1957) as quoted in Morris (1975) and those of Holst (1972), as we now show.
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It can be shown that v = 1/a, 62 =2 + n™' Y1 axB% where 8x = 1/ay, — 1/a,
and that
8+ n7' Y arfi + 22n7" Tk anBi + 4/a

=n!' Y. E(Z}, — EZ})®
(3.2) <=n'Y.E|Z} - EZ}|?

=n 'Y E(Z, - EZ,® + 2 X, E((YE — a)?/a + 1)°

<10+ n7t' 3. Bl + 220713, arBE + 10/

In this and the next example, we make the simplifying assumption

(3.3) ca<ar=<Ca k=1, ---,n,
which is equivalent to | 8| < C/a, k=1, -- -, n.
From (3.2),

n24<CA+n"' Yar|Bel®+ n'Yarfi + 1/a)/o®
<= CA + maxy|Be| + 1/a) = 0(1) + O(1/a).

Since (1.1) is implied by 4 — 0, it follows from Theorem 1 that A — 0 so long
as na? —  and a < n°. We remark that when e, = o, k=1, ---, n,and « — 0,
na? — o is necessary and sufficient for A — 0 (Quine, 1980). Theorem 2 and
(3.4) show that the rate of convergence is O(n~'/2) for ¢, < « < n®, and for larger
o the same result is implied by Theorem 4, since for k € B

E|d(Yi + 1, k) —d(Yi, k)| = E|2(Yi — aw)/ex + Brl/0 = O(ai™?).

The likelihood ratio test is based on c(j, k) = j log(j/ax) with 0 log 0 = 0.
Related results are the central limit theorems of Morris (1975) under the same
conditions as his x 2 result and Holst (1973) under o < C;a and « fixed. In this
case the analysis is facilitated for a > ¢, (which we now assume) by use of the
function I(j, a) = j log(j/a) — j + a, some of whose properties are given in
Lemma 5.1 of Morris (1975). In particular it gives

(3.4)

35)  not=% T a/2 + an)? = Y Taenal/(2 + Cra)? = Cn,
and since 0 < I(j, o) < (j — a)¥/a,
(36) |y —=1|=|N" Zreov(I(Y}, ai), Yi)| = 1/a + C/a?,

Since Z;, = I(Y4, ar) — (v — 1)(Yi — ag), it follows that
E|Z, — EZ} |® = 0(az® + 0Q1),

so that from Theorem 2, A = Cn~? if (3.3) holds and cs < a < n°, The same
result is true for larger o as well from Theorem 4, as we now show. We have

E|d(Y, k+1,k) — d(Y}, k)|
cT'E|I(Y,+ 1, ax) — I(Yi, ) +1— 7|
o Mar' + E|Yi— apl(ar* + 2/(Yi+ 1) + |1 —v])

(3.7

IA
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from Morris (1975, equation (5.31)). Now
E|Yi—ax|/(Yi +1) = EQ/(Yi+ 1) + E|1 — ar/(Yi + 1)
=ap'(l —e™) + ar (E| Yi — ax| = are™)
= O(ar"?),

which together with (3.5), (3.6) and (3.7) gives (1.6).
APPENDIX

ProoF OF LEMMA 1. We have
| ge(n™2v, n7V2t) — 1]
< Y% nlEWY, + tZ,)? < n71C1v?% + et < Yo + et?

for n > n,, using (1.1) and #1' < n'% summing the first inequality over & also
gives

(A2) Selge(n™2, n7%) — 1| < % (v + t?).

If & is small enough to make the final bound in (A1) less than % for all k then
using the inequality |log(1 + z) — 2| < |22 |z| < “% in (Al) and (A2), we find
that for n > n,,

Yk |log g(n™%v, n7V2%t) — (gr(n~Y2, n7V2t) — 1) |

(A1)

(43 < min(% ¢(v? + 9% %(v? + t9)).
Next,
| e (o2, n2) — 1 + % n~W2EY? + Yo n-1t2EZ3) |
= | Y. E(exp(ivn™2Y, + itn™2Z;,) — 1 — i(vn~Y2Y, + tn™Y2Z,)
+ Yo (vn~Y2Y, + tn~V2Z,)?) |
=% Xx Elb'n'l/Zva + nVY%Z, 1] 1(| V22, | < )
(Ad) + S EnYY, + n7V4Z,)? I(|n7YV?Z,| = ¢)
=B I E|InVY, |2+ %e|t| Xp E(n"V2tZ,)?
+ 202 T, nTEYZI(| n"V2Z,| = &)
+ 2t2 Y. nT'EZAI(|n"Y?Z, | = ¢).
Now

YenEYRI(|nTY?Z,| 2 &) < Yu nT'EY: | nY2Z, /e | Y3
< (Eh n—lEl Yk |3)2/3(2h n—lE(n—1/2Zk/8)2)1/3
= (4/e)*",
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which together with (A3) and (A4) gives for n > n,
| 3rlog(gr(n~2v, n™Y%t) + Y%v? + %t?)| < min(eP(v, t), %2(v? + t2))

and the lemma follows using |e* — 1| < | z|e'?.
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