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THE HYDRODYNAMICAL BEHAVIOR OF THE COUPLED
BRANCHING PROCESS

BY ANDREAS GREVEN

Cornell University

The coupled branching process (n¢) is a Markov process on (IN)°
(S = %% with initial distribution x and the following time evolution: At rate
by(x) a particle is born at site x, which moves instantaneously to a site y
chosen with probability g(x, y). All particles at a site die at rate pd, individual
particles die independent from each other at rate (1 — p)d. Furthermore, all
particles perform independent continuous time random walks with kernel
p(x, y). We consider here the case b = d and the symmetrized kernels g, § are
transient.

We show that the measures & (n(- +[avx])), (« € R*, x € R?) converge
weakly for t — 0 t0 v,,n. Here v, is the invariant measure of the process
with: E”%(5(x)) = p and which is also extremal in the set of all translationin-
variant invariant measures of the process. The density profile 7(a, x) is
calculated explicitly; it is governed by the diffusion equation.

0. Introduction and main theorem. We are interested in transport phe-
nomena for the coupled branching process. The “coupled branching process” is
a Markov process on ()5 (S = Z°) evolving as follows: (Denote by n an element
of (N)%). A new particle is born at site x at rate by (x); it moves instantaneously
to the site y chosen with probability ¢(x, y). Individual particles die at rate
(1 — p)d, while at rate pd all particles at a site are extinguished. Furthermore all
particles perform independent from each other random walks with kernel p(x, v)
and rate m. The process with initial distribution  is denoted by (n#),cp+-

In the case b = d, p < p* there exists a set (v,) g+ of invariant measures with
the properties ([2]):
(i) v, is translation invariant
(1) (i) f n(x) dv, = p, f n*(x) dv, <

(iii) limewE"(| Tyes r:(x, y)n(y) — p|?) =0 with

rdx, y) = Yn-oe™ g r(x, y)
2

b
r(x, y) =7 q(x, y) + b p(, ).

The property (iii) characterizes the measures which are extremal in the set of all
translationinvariant invariant measures. (This is the most convenient character-
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HYDRODYNAMICAL BEHAVIOR 761

ization in models where one has only knowledge about the first and second
moments of {5(x)}.esunder the invariant measure. Compare also [3].)

In the sequel we will always assume: p < p*, b = d, the matrices p and q are
transient. p* can be calculated as follows: ([2])

[ - }. b N - R © 2n
(3) p - (2 m + b Gr(Oy O)) ’ Gr _ ZO re,
(4) Fx, y) = % (r(x, y) + r(y, x)).

A typical question of interest is: How does .<’ (%) behave for t — o if x is of
the form 6i,=1onH,y=00n vy Where H := {x € Z% x; < 0}. We will show that in
the case where p, ¢ are homogeneous and symmetric matrices such that:
Yyes (p(x, y) + q(x, ¥)) |y |? < o, then £ (n#) converges weakly to v/; and an
observer traveling through Z¢ along the path [aVix] (a € R* x € RY) will
observe the process converging weakly to 7, where 7(a, x) can be calculated
explicitly (in terms of a normal distribution with mean 0 and covariance matrix
(0ij) depending on r).

Following H. Rost [4] we call 7(., -) the density profile. By [x] we denote
([x1], - - -, [%a]) € Z° The methods we use to prove the results outlined above can
be adapted to other models as for example the processes introduced in [3] (coupled
random walk, potlatch, etc.). For other systems like simple exclusion, voter
model, the hydrodynamical limit has been studied by different methods. [4], [5].

In order to formulate our main theorem we have to introduce some notions:
consider a translation invariant measure » on (IN)*S which is shift ergodic and has
the properties: [ 7%(x) dv < o, [ n(x) dv = p and lim ,—y—=E (n(u)n(v)) =
E(n(w))-E(n(v)) = p% Now let H C R? be a halfspace.

We define a measure u through:

5) u({n € A}) = v({n 15 € A}) V: measurable A C (N)5(S = z9).

Our method of analysis works also for more general initial distributions. To
avoid complicated notation, we focus here on the case described above. In order
to make our coupling arguments work we need some homogenity ([ #(x) dv does
not vary too much in x) and some (very weak) form of mixing: E(n(u)n(v))
converges to E(n(u))E (n(v)) for (u — v) — . For more details, see the Appendix.
_# denotes the normal measure on R¢ with mean 0 and covariance matrix o;
given by:

2

d . :
(6) gij = 50-16—0]' (ers r(x, O)e“‘"") |0=0 6 e [0, 27r]d.

THEOREM 1. Assume that p, q are homogeneous and symmetric matrices and
have the property:

(7) Yees 10, x) |x[2 <o ¥, r*0,x) >0 V:ix € Z%
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Then we have:

®) 8) L(nf) Simw v, 7 =p A (H)

9 b) < (- HavVEx) Siow Vo V:ia ERY, x ER?
(10) E (@t (-+[aVtx])) > 7(a, %)

(11) ¢) 7(a, x) =p M(H — ax).

This theorem tells us how the population starting in one half-space spreads
out through the whole space. Define 7(a, x) := 7(a™", x). Then: 7 is governed by
the diffusion equation, 7(0, -) = plu(-).

The density profile is the same as for a system of particles performing
independent random walks. But in the latter case the local equilibria are Poisson
systems (propagation of chaos), while in our model the local equilibria have

slowly decreasing positive correlations [2].
The proof of our theorem proceeds by means of two propositions, formulated

and proved in the next two sections.

1. The density profile. The first step in the proof of Theorem 1 is to show
the existence of a density profile and to identify it. (Assume m + b = 1.)

PROPOSITION 1. Make the same assumptions as in Theorem 1. Let t, be a
sequence with t, 1 ®. Then for all « € R, x € R%: { (n*(- +[aVtzx]))}new is
weakly relative compact and a limit-point \ has the property:

(12) E*n(z)) = p#(H — ax) V:z € zZ°

PROOF. One observes first that our process has the property (denote by S(t)
the semigroup of the process):
(13) A= A= MS(E) = N\S(8) Vit ERY.
Here A\, = ) is defined as follows:

M= A (A, f)= (N, f) for all positive increasing functions f on ().
The property (13) implies (using the construction of u:(5)):
(14) E*(n}(z + [aVtx])) < E'(n}(z + [aVix]) = C <

V:ze 2z tER

The last inequality follows from Theorem 1(b) in [2]. So we obtained so far that

the sequence {.< (n% (- + [« Vt,x1))} ney: is weakly relative compact and the random

variables {1(z + [a«Vt,x])}nen are uniformly integrable under the measures uS(t,).
Now we finish the proof by showing:

(15) lim,wE(nt(z + [avix]) = p#H(H — ax) V:z € Z°%
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We have the following closed system of differential equations for
(16) hi(x) := E*(n:(x)) (see [2])

d
(17) a h(x) = EyES r(y, x)h(y) — h(x)

or in other words:

(18) %ht(x>=(Ght>(x> with G(x, y) = r(, x) = 6(x, y).

As generator, G determines uniquely a semigroup (U;):cr+ on L.(S). We can give
the following alternative description of this semigroup: Denote by (X{?),e)+ the
continuous-time random walk on Z? with kernel r(y, x) jump rate 1 and initial
position z. Then:

(19) Ulf)w = E(f(XP)) V:z€ 2z f€L*S).
For our special case we obtain therefore:
(20) hi(x) = p Prob(X{® € H).

Then we calculate as follows:
E(t(z + [a\/Zx])) =p Prob(lea\/?x]+z} € H)

= p Prob(X? € H — ([aVix] + 2))

rf (S B (el 2
_meb<<~/EE«/Z ( \/Z+~/E .

. Now the central limit theorem gives us immediately our assertion (15).0

(21)

2. The coupling. We start with the following observation: Denote by »,
the invariant measure of the process with property (1)-(2). Then we have:

(22) L@%(- + [avix])) = v, V:tE R
so we will try to construct a coupling between the processes:
(23) @+ [avVixD)eges (- + [aVEx])) eps

with 8 = 7(a, x). This means we construct a process (7;):cn+ With state space
()% x (1) initial distribution »; ® u and the property that the marginals of
(5ie) = (ni, n?) are versions of (1), (n¥).

Such a coupling was introduced in [2]. One makes a birth at x for both
components appear at rate ¥, r(y, x)n*(y) A n*(y), a death for both components
appears at rate d(1 — p)n*(x) A n%(x). Death for all particles at a site for both
conmponents occurs at rate pd. Similar is the procedure for the random motion.
Then one introduces transitions of the single components so that the marginals
become versions of the original process.
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We introduce the following abbreviations:
(24) ENa, x)(y: = 14 (- + [avEx]), E2(a, x)): = 72(- + [avVix])
(25) é(a, X)) = ne(- + [a\/Zx]).

PROPOSITION 2. Make the same assumption as in Theorem 1. Then:
lim,_.Prob(¢} (a, x);) = £2(a, x)) VizE A) =1

(26)
V:AC 2z with |A| <o,

We summarize the main steps of the proof of this proposition in the following
two lemmata:

LEMMA 1.
lim, o Prob(¢} (a, x);) > £2(a, %)), £ (a, X)) < E2(e, x)5) = 0

(27)
V:2 z € zZ°

Knowing (27) it remains, in order to prove (26), to show that the coupled
process does not put in the limit ¢ — o any mass on the set {£! > £2 or £! < £%}
C NS x NS, This is excluded by:

LEMMA 2. Let t, be a sequence with t, T . Suppose X is a weak limit point of
(< (% (-+ [« Y, %]))}nen. Then we have:
(i) X is translation invariant

(28) 1
(i) lime BN Yyes ri(x, y)n(y) — 7(a, x)|?) = 0.

These two lemmata together with Proposition 1 prove of course immediately
Proposition 2.

ProOOF OF LEMMA 1. For this proof we use a “Liapunov function”. We need
the following definitions:

(29) G,(u) = E*®#(ni(u) — nf(w))*

(30) bi(x, y) = E**»(n}(x) = 0} ())*]j-spi—on<o
(31) Ai(a, 2)y) = @ (y + [avVix])

(32) Bi(a, %), = by + [avix], z + [aVix]).

A,(a, x)(,ywill be our “Liapunov function”. Denote by (t,) the points on IR* where
[a §/Zx] changes it’s value. (We consider «, x to be fixed for the moment.) Now
we decompose A, (a, x) ) as follows:

(33) A,(a, x)(y) = A?(a, x)m + A?(a, x)(y)
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(34) A(a, X)) = Do = lime (A (a, 2)(y) — lim,_ - (A (e, x))).

Now we calculate the derivative of A¢ (on R\{t,}) by applying the generator G of
the coupled process to the function (n*(u) — 7%(u))* (N5 X (N)S —» R*). We
find: (Assume m + b = 1 for convenience.)

(35) %A?(a, D = Syes 1y, u + [aVtx)Ai (a, x)) — A (e, %))

(36) — Yyes r(y, u + [avVtx)Bi(a, %) -

Altogether we obtain the following expression for A, («, X

t
/L(O(, x)(u) = AO(“} x)(u) - ZyES L "(y, u)Bs(a’ x)(y,u) ds

(37) + J; Xyes r(y, u)Ag(a, x)y) — Ag(a, x)w) ds

+ Ai(a, x)w.
We will show later that:
Af(a, x)@) Is decreasing in tfor x € £H
| Zyes (3, 0Ada, 2)y — Ala, 20| = O(7).

Suppose first that A,(a, x)) is decreasing in ¢ for t = t,. (Assume without loss of
generality that x € £ H from now on). Then we have,

(39) limwBi(e, x)yy =0 V:u,y with r(y, u)>0.

(38)

" We can rewrite this as:

limt-—moPrOb(E}(ay x)(u) > g?(a, x)(u)’ E}(a’ x)(y) < EtZ(a, x)(y)) = O
(40)
Viu,y with r(y,u)+r(u,y)>0.
(The symmetrization of the restriction on the pair u, y is obtained by interchang-
ing u and y in (37).)
With the techniques developed in [2] we extend (40) to (details are left to the
reader):

lim, .. Prob (£} (a, X)) > (e, ), &, %)) < E(a, x)5) = 0
(41)
V:2 z € zZ°
If A/a, %) (0 is not eventually decreasing, it is either increasing (which is obviously
excluded by (38) together with arguments as above) or an unbounded set of local
maxima exist. Pick a sequence (¢,) of those local maxima with ¢, / o. Using
Proposition 1 and Lemma 2 it is easy to conclude with similar arguments as
above that a weak limit point of {< (g,"(a, x))}newn is concentrated on {£! = £2
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and therefore A, (a, x)() converges to 0 and (41) holds. Now let us prove the
statements in (38).

The following fact is crucial: consider a measure g constructed from v by (5)
but using H + (z — u) instead of H. Then we have:

(42) L (W), i) = £ i (2), 17(2))

where we construct (7}, 72) as the coupled process for the initial distribution z
® v;. We can now think of the process () as follows: consider a process with
initial distribution A constructed from v by (5) but using H A (H + (z — u))
instead of H. Then

(43) =i % &
The above relation allows us immediately to conclude that for x € ¥ H we have:
(44) / a(y + x) < d(y) forevery y€E Z°
Furthermore, we obtain:
| 4:(u) — @:(2) | < 2p Prob(X{” € (H — u)AH — u — (z — u))))
= 2p Prob(X!" € (HA(H — (z — u)) — u)).
In the case u = [aVix], z = [« Vtx] + y we can rewrite this as:

| A(a, %)) — Acla, X))

(45)

(46) {0}

<2 Prob(% € 1}_2 (HAH — y)) — [aﬁx])> .
This allows us to conclude with the local central limit theorem that:
(47) | Ada, %)y — Ada, X)) | = O(™2).

The last relation allows us immediately to conclude (38).

PRroOF OF LEMMA 2. Let A be a weak-limit point of
(L @t (+ [Vt hen (0] ).

The translation invariance is easily established using (42) and arguments
based on (43). We know already that E*n(u)) = 7 (e, x) V: u € Z* Therefore a
straightforward calculation shows that in order to prove (28) it suffices to show:

(48) lim Supj;—y B n(x)0(y)) = (7(a, x))%

With the results in Section 1 of [2] we obtain:

lim sup)y—. - E*(n(y)n(2))

: < lim Supjy—;|—wlim sup;_,e(Tup r(ye, w)r(z:, v)f(u, v))
(49) Y=y + [a«/ix], z =2z + [a\/zx]

fu, v) == E*(n(u)n(v) — 6(u, v)n(u)).
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The way in which u is constructed from v (see (5)) allows us to conclude:

JO for x€ £H
lp2 for x€ H

and with the central limit theorem we obtain (48). (Note that r,(x, y) describes
a continuous time symmetric random walk.)

(50) lim,_,of (u + ex, V) =

APPENDIX

A thorough examination of our proofs shows that we can apply our methods
to every initial distribution u having the properties (f(u, v) as in (49), p(u) :=
[ n(u) dp):

My (Syes re(z, ¥)o(-+ [avix]) = 7(a, x)

(51)
imy e (f (U, ) = p(U)p(v)) = 0, sup.f(u, u) <o

t
J; YSues re(ye, u) | p(u+2) — p(u) |dt <
forall z with T,(u)# u.

(52)

Here T, denotes translation by z, y, := y + [aVx].
For all z € 29 there exists a distribution A € (N)° X (I)S with marginals
T.(u), u such that:

(53) f | n'(w) — n2(u) |d\ < | p(u +2) — p(u)| forall u€ 2%

For given p(u) the condition (52) can be checked using large deviation theory for
the random walk with kernel r(x, y).

A way to generate measures fulfilling (53) is to pick a measure v which is
translation invariant, shift ergodic and has property (51). Then selected indepen-
dently at each site a random number of particles. The induced new measure has
then the property (53).
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