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ALMOST SURE EQUICONVERGENCE
OF CONDITIONAL EXPECTATIONS

By H. G. MUKERJEE

University of California, Davis

If (X, 4, P) is a probability space then a pseudo-metric é can be defined
on the sub-o-fields of & by

6(% _@) = supAEgmeegP(A A B) \ SupsegianeyP(A A B).

Boylan, Neveu, and Rogge, among others, have considered equiconvergence
of conditional expectations of uniformly bounded measurable functions given
sub-g-fields { #,:1 < n < o} in probability and in L,, 1 < p < «, as §(F», Fw)
— 0. This paper proves the corresponding almost sure equiconvergence results
when %, 1 Fwor %, | Z«. A sharp uniform bound for the rate of conver-
gence is given. A consequence is that if %, 1 % or %, | Z. then the sequence
of conditional expectations given %, converges uniformly for all uniformly
bounded measurable functions to the conditional expectation given % if and
only if 6(F,, Fw») — 0.

1. Introduction. Let (X, % P) be a probability space. If d is any pseudo-
metric on % then a pseudo-metric can be defined on the sub-o-fields of % by

(1.1) 0(f B) = supscwinfpesd(A, B) V suppesinfacd(A, B)

for sub-o-fields o and 4. A different metric 6’ (used by Boylan, 1971) may be
defined by using “+” instead of “V” in (1.1). It is clear that é and 6’ are equivalent,
0=<06',and 6(H B) = 6'(A, B) if &/ C B or BC  Using the “standard”
pseudo-metric d given by d(A, B) = P(A A B), A € ¥, B € %, Boylan (1971)
_ was able to show that for sub-¢-fields 7, | Fwor 7, | Fs, if 8(Fn, =) — 0 as
n — o, then

(1.2) sup{ | E[f| Z.] — E[f| Z=]l1:f €E ®} -0 as n— o,

where ® is the collection of Y~measurable functions bounded by 0 and 1, and
[l - I, denotes the usual L;-norm. Rogge (1974) sharpened this result (see also
Neveu, 1972) and showed that for any sub-s-fields &/ and #Z of & with &/ C
B

(13) sup{lE[f| /]~ E[f| Z]l::f € &} < 26(4 B)/(1 - 8( B)).

He also gave an example to show that this inequality is sharp. As an application,
he was able to show that

(1.4) sup{ | E[f| Zu] — E[f| Z=1l1:f € 2} > 0.a5 n—®

if and only if 6(%,, Z=) — 0 as n — « for sub-o-fields { %,:1 = n < o} without
the.assumption that {£,} is nested. Thus 6 appears to be just the right pseudo-
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734 H. G. MUKERJEE

metric for investigating the equiconvergence of conditional expectations in prob-
ability (and L,) of uniformly bounded measurable functions. Extensions to sets
of uniformly integrable functions have also been given by Neveu (1972) and
Rogge (1974) as well as rates of convergence in L,, 1 <p < .

There are natural almost sure analogs of all these results. Boylan (1971, page
558) gives a counterexample (due to Burgess Davis) to show that almost sure
convergence of the conditional expectations of even a single indicator function
fails in a case where 8'(%,, %=) — 0 as n — . However, in this example the o-
fields are not nested. The purpose of this paper is to derive a (sharp) upper bound
for

(1.5) supjee P{sUpnzm| E[f| Fn] — Elf| Fw]| 2 &}

when {Z,:1 < n < «} is a nested collection of sub-o-fields of 7 and to use this
to show that if %, 1 Fwor %, | Fwthen (1.5) — 0 as m — o for all ¢ > 0 if and
only if 8(F,, F=) — 0. Thus 6 also appears to be just the right pseudo-metric
for investigating almost sure equiconvergence of conditional expectations of
uniformly bounded measurable functions when the o-fields are nested. Extensions
to uniformly integrable functions are also given. The methods also yield what
appears to be new proofs of convergence of conditional expectations of a single
integrable function when 7, 1 %« or 7, | % without any assumptions on
N(Fny F).

When the o-fields {7, } are not nested, we prove almost sure equiconvergence
as above if 3, 8(F,, %) < . Examples are given to show that we may or may
not have such equiconvergence when Y, 6(F,, F) = ®.

2. Results. All upper case script letters, with or without subscripts, will
indicate sub-o-fields of 7 ® will denote the collection of Fmeasurable functions
fsuch that 0 < f < 1. All functions are real-valued.

To avoid technical problems involving measurability with respect to sub-o-
fields of % we will assume all sub-o-fields are endowed with all the null-sets of
7 (note that this makes 6 and §’ metrics). For the sake of brevity in the examples
given below, we do not explicitly indicate the null sets so that the trivial o-field,
for example, is {J, X} U _#, where _# = the null sets of %

Equalities (inequalities) among measurable functions are almost sure equalities
(inequalities), and all convergences are almost sure convergences.

The indicator function of a set A is written both as I, and I(A). We write A
+ B and Y A; to indicate disjoint unions of sets. AB = A N B. We also write A
CBif P(A—B)=0,sothat A=Band A — B=Jif P(A AB) =0. A’ denotes
the complement of A in X.

For future reference we note that if o7 and % are o-fields and B € %, then

iane_q/P(AAB)
(23) = infac AEL4 (E[Ig| &1 — I4)] + E[Is(Is — E[Ig| &)1}
= infac o E[ | E[Ig| &1 — I4|] = E[E[Iz| &/] N\ Ellg'| ]},

and this infimum is a minimum actually achieved by any o/ measurable set S
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such that {E[Ig| &) > Y.} C S C {E[Ig| &) = %}. This fact will be a key to all
the proofs.
We first present a technical result before proceeding to the main results.

LEMMA. Suppose &7 and B are o-fields, {B,, Bs, - - -, Bi} is a pairwise dis-
Jjoint collection of % -measurable sets with A = ¥<i<x B € &, and E[lg,| &] < A,
1 < i < k. Then there exists a #-measurable set B C A such that {E[Ig| &) = 4}
= A and P(B) = (%)P(A).

PROOF. Let & = (¥), 1 < i < k, and order the k; distinct unordered i-tuples
without repetition from {1, 2, - - - , &} in some arbitrary but fixed manner. Let I;;
be the jth i-tuple in this ordering, S;;= Y.es, E[ls,| 2], and Si = 0. Now define
Ec=A,andforl<i<kandl=<n<kdefineE,=AN{S;<%,1=<j=<ki
F,=E_ N !S,’j< s, 0 Sj <n- 1}, G,',-,= Fi.0 !1/3 < S,‘,-,S l/2}, and H;, = F;, N
{S;,> %2}. Since H;,,C E;,.,C E, for i = 2 we have . < S;, < % on H,, 1 =2 2; H,,
= O since E[Ip| &/] < Y% for all j.

Since ¥; B;= A € o/ we have {E[Ip| &/]1> 0} C A for all jand }; E(I5| /]
=IA.N0Wn0tethatA=Eo=Fn DF]zD DF]),,DE] =F21 D oeee DF}‘*‘D
E, = . Indeed, since ¥; E[Ip| /] = I4, E; = @ for all i = k — [k/2], where [-] is
the largest integer function. From their definitions, {G:,, H.}in s a collection of
-measurable sets, G;,H;, = @ and G;, + H;, = F;,F’; .+, (with the convention
F,'_k‘..,.] = E,) for all i and n, and A = E,",, (G.‘,, + H,',,). Let B = E,",, [G,‘,,n E}‘¢[‘" Bj +
HinN Yjes,, B;] which is a subset of A. Now for all i and n we have Y2 < E[I(Gia
N Yjer, B))| &) = I, (1 — Sin) < % on Gi,and 0 elsewhere and Y2 < E[I(H;, N
Yier, Bj) | ) = Iy, Sin< % on H;, and 0 elsewhere (H;, and G;, may be null for
some values of i and n). Thus {E[Ig| &) = &} = Y. (Gin + Hin) = A and P(B)
= E[E[Iz| &]] = (#5)P(A).O

EXAMPLE 1. Inthelemmaif k=3, A =X, P(B;) =%,i=1, 2, 3, &/ is the
trivial o-field, and & = o(B,, Bs, B3), then min{P{B € Z:{E[Iz| /] = Y2} = A}}
=% = (%4)P(A). Thus the fraction (%3) cannot be reduced in general. 0

PROPOSITION 2.1. Suppose o7 and & are o-fields, {B;:1 < i < k} is a partition
of X by %-measurable sets, {A;:1 < i < k} is a pairwise disjoint collection of
&-measurable sets, and {0 < b; < 1:1 < i < R} is a collection of real numbers. Then
for every e >0

P{|E[S: bilp| 2] = % bil| = ¢} = P(%i AB{)/e + P(%: A,
where ¥ (+) = Yr=i=k (+).

PROOF. Fixe>0.Forl <i<kletG;={E[lg]| o] <1 —¢}. Then on A;G/
we have

bj —e< Z,’ b.‘E[IBil M] < 6,' + 2,‘,;,‘ biE[IBil .(Y]

(2.2) .
<b+E[lg| F)<bj+e 1=<j=<k



736 H. G. MUKERJEE

Thus

(2.3) {|E[Zi bils| ] — X bilp| = ¢} C 3i AiGiB: + X AiB! + (3 A)’.
Now for 1 =i <k, P(A;G:B;) = E[I4gE|[Ip,| 2]] < (1 — ¢)P(A;G)) so that
(2.4) eP(A;G:B;) = (1 — ¢)P(A,G;B!) = (1 — ¢)P(A;B)).
Applying (2.4) to (2.3) completes the proof of the proposition. 0

THEOREM 2.1. Suppose %, 1 ., m is a positive integer, and 0 < ¢ < 5. Then
forallfE€ ®

(2.5) Pl{supuan| E[f| #a] = Elf| %]l 2 &) < 6(Fn, Fo)e.

PrOOF. First suppose (2.5) is true for all f € ® such that E[f| -] is a simple
function of the form Y,<;<x bils,, where {B;} is a partition of X by #.-measurable
setsand 0 = b;< 1,1 < i < k. Now fix f € &. Since E[f| F.] € &, for every 0 <
7 < ¢/2 there exists a simple function of the form above such that | E[f| ] —
Yibidp| <. Then | E[f| %] — E[Z: bilg| Fal| = | E[E[f — Zi bilp,| =] | Zul |
< n also. Thus using the triangular inequality and our assumption, the Lh.s. of
(2.5) is bounded by §( F,, F)/(¢ — 27). Since 0 < < ¢/2 is arbitrary, this will
complete the proof of the theorem. Thus it is sufficient to prove (2.5) when
E[f| %] is a simple function of the form given above, and we do assume such is
the case.

Let {A;:1 =i <k} be an arbitrary pairwise disjoint collection of #,,-measurable
sets. Then {A;} C &, for all n = m. Now for n = m and 1 < i < k define G, =
{Ellg,| #.) =1 — ¢} and Cpi= Upn<,<nGri. Note that G,;and C,;are #,-measurable
for all r = n. From the proof of Proposition 2.1 it is clear that

{SUPnam| E[X: bilp| Fn] — i bil,| = ¢}
C Y AiBi N (UnamGui) + i AB! + (2 A))'.
We now prove by induction
@7 P(AC:B) < (1 — e)P(AC:B{)/c forall r=m and 1=<is=k

Fix1<i<k. (2.7) is true for r = m by (2.4). Now assume (2.7) is true for m < r
< n. Then P(AiC,,,iGn...l,,'B,') = E[IA,C;,,G,,“_,-E[IBJ .9;;...1]] =< (1 - C)P(A,'C,’"'Gn...l,,') SO
that

(2.8) eP(A;C1iGri1,iBi) <= (1 — e)P(AiCriGre1,iBi).

From (2.7) (with r = n) and (2.8) we get P(A;Cr+1,:Bi) < (1 — ¢)P(A;Cpr41,:B/)/¢
< (1 — ¢)P(A;B/)/e. This proves (2.7), and in conjunction with (2.6) we get an
upper bound for the Lh.s. of (2.5) given by P(}; A;B!)/e + P(3; A;)’. Now for
1 <i=<klet A; = {E[ls| Fu] > ). Then [A:} is a pairwise disjoint collection
of #,,-measurable sets. It is clear that {E[la5,| Fn] > Y%} = A;, 1 =i < k. Now
(ZiA)' =3;BiN(ZiA) and E[I(B;N (5 A)") | Fwl < E[I(B,NA[) | Ful =
IyE[lg| #,] = ¥, 1 = j < k. Thus an application of the lemma to the sets

(2.6)
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{B; N (X A;)’} shows that there exists B € % such that B C (}; A4;)’, P(B) <
()P (X: Ai)’, and {E[Ig| Fn] = %} = (3 Ai)'. Thus {E[Isap+s] Ful = 4} = X.
From the fact that 0 < ¢ < % and (2.1), we finally get P(3; A;B!)/e + P(3; A:)’
= P(X: AB! + [(3: A)' — Bl)/e = mingez P(A A (3; A:B; + B))/e <
0(Fm, Za)/e, which completes the proof of the theorem. O

ExAMPLE 2. If in Theorem 2.1 (X, & P) = ([0, 1), %([0, 1)), P), where P is
the uniform measure, 0 <6 <e <, A; = [0, 6/2¢), Ay =[6/2¢, 1 — 6/2¢), Az =
[1—0/2¢,1), B=[(1~-¢)d/2¢,1 = 5/2), Fn=0(A}, As, A3), and F,, = Fppy =
v = Fo=0(A1,Ag, A3, B),n=m+ 1,then E[Ip| %,] =eon A;, 10n A,, and
(1 — ¢) on As, and P{supn=n | E[Ig| Fn] — Ig| = ¢} = P{| E[Ig| %] — Ip|
=e} = P(A, + A;) = 0/e = P(BA(As + Ay))/e = 6(Fn, F)/e. Thus the bound
on the r.h.s. of (2.5) is sharp. 0O

For M > 0 let A j be the collection of Z-measurable functions f such that | f |
=M.

COROLLARY 2.1. Suppose Z, 1 Fw, m is a positive integer, M > 0, and 0 < ¢
<2M/3. Then

(29)  supen, Pisupnzm | Elf | Fu] = Elf | Zoll = ¢} < 2Mo(Fn, F)]e.

OUTLINE OF PROOF. First assume M = 1. From the proof of Theorem 2.1 it
is sufficient to prove (2.9) assuming E[f| %] is an Z.-measurable simple
function ¥,<;<xbilp, as in the proof of Theorem 2.1 but with -1 <b;<1,1<i=<
k.Let A; = {E[lp| Fn]1>%},1<i<k and G, = {E[Ip,| F]=1—¢/2},n=
m, 1 =i < k. Now note that for n = m if b; = 0, then on A;G;; we have b; — ¢ <
b;(1 —¢/2) — E[lp; | #,] = b;(1 — ¢/2) — Tixj | bi| E[Ip,| Fu] < X:biE[Ip,| ]
=bj+ Xixj | bi| E[Ip,| #.] < bj + Ip; <b; + ¢/2, and, similarly, if b; < 0 then b;
—¢/2<¥:bE[Ip,| #,] <bj+e,1=j=<k. Thus (2.6) still holds. Now using the
fact that 0 < ¢ < %5 and a similar analysis as in Theorem 2.1, we get

P{sup,=m | E[X: bilp,| ] — i bilp,| = ¢}
< (i AiBi N (UnanGri)) + P(3: ABY) + P(5: A’
< (2 — )P(3s AB!)/e + P(S: AiB!) + (3 Ay)' = 2P(S: ABY)/e
+ P(Y: A))' < 2P(3; AiB! + [(X: A))’ — B))/e < 26( P, Fa)/e,

where the set B C (¥;A;)’ is as defined in the proof of Theorem 2.1. The proof
can now be completed using this result and the fact that f € A 5, implies —1 <
f/IM=1. O

T};eorem 2.1 shows that if &, 1 . and 6(F,, F=) — 0 as n — » then
supsee P{SUpnom | E[f | #2] — E[f | Z2]| = ¢} — 0 as m — o for all ¢ > 0. Since
this implies (1.4) and Rogge’s (1974) analysis shows that (1.4) implies
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M Fn, =) — 0 (even without the assumption that the { #,} is nested) we have

THEOREM 2.2. If 4,1 %, then
supses P{supp=m | E[f| Zn] — Elf| Z&ll = ¢} = 0

as m— x for all e > 0 if and only if 6( #,, Fx) > 0asn— . [

Theorem 2.2 can be extended to any uniformly integrable collection of
Z-measurable functions as can be seen from the following theorem.

THEOREM 2.3. Suppose #, 1 Z, I' is a uniformly integrable collection of
F-measurable functions, m is a positive integer, M > 0, and 0 < ¢ < 2M/3.
Then supfer P{supn=m | Elf | #u] — Elf| Zx]l = &} = AM(Fn, Fu)/e + 4
suprer E[| f1I(| f| > M)]/e.

ProoFr. FixfeT.Letg=fI(|f|<=M)andh=fI(]| f|> M).From Corollary
2.1 we have P{sup,=n | E[g| %] — El[g| F=]| = ¢/2} < AM&( Fn, F)/e. The
proof is completed by noting that P{sup.-.|E[h| Z.]| = ¢/2} and
P{| E[h| Z.]| = ¢/2} are both bounded above by 2E[| h|]/e by the maximal
inequality for martingales. 0

The following example shows that Theorem 2.2 does not hold for all tight
collections of functions even with uniformly bounded expectations.

ExaMPLE 3. Let (X, o7 P) = ((0, 1), #4((0, 1)), P) where P is the uniform
measure. For 2 = n < wlet %, = ¢((0, 1/n) U (¥, 1), B([1/n, £])) and Z, = A
Let fe(x) = kIp,1/1)(x), x € X, k = 2. Then {f:} is tight and F.-measurable, E[f}]
=1, fr = E[fx]| Z=] = 0o0n (%, 1) and E[f.| %] = 2n/(n + 2) on (%, 1) for all
k=zn=2 0

The methods above yield what appears to be a new proof for a special type of
martingale convergence.

THEOREM 2.4. Suppose f is an F-measurable and integrable function and %,
1 Zw. Then E[f | #,] > E[f | Z].

ProOF. The maximal inequality for martingales allows us to consider by
truncation only the case | f| = M for some M > 0. From the proof of Theorem
2.1 it is sufficient to consider only the case when E[f | ] is a simple function
of the form Y ,<;<xbilp,, with | b;| = M and {B;} C % a partition of X.

. Let 0 < e < 2M/3 be arbitrary. Since F. = o(U,%,), from a standard result
in measure theory there exists a positive integer m and {C;:1 =i < k} C %, such
that P(C; A B;) < ¢#/2Mk, 1 < i < k. Now define A; = {E[Ip,| Fn] >}, 1 =i
< k. From (2.1), P(A; A B;) < P(C; A B;) < ¢¥/2Mk, 1 < i < k. From the analysis
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of Corollary 2.1 it is clear that
P{sup,m | E[¥:biIp,| F7] — Yibilp,| = ¢}
= 2MP(3Y;A;B/)/e + MP(3:A))".

Now (¥;A;)" CU;AB;and P(};A;)’ < Y;P(AB;). Thus the r.h.s. of (2.10) is
bounded by 2M[P(Y:A;B}) + X:P(AB))]/e =2M Y; P(A; A B;)/e < e. Since 0
< &< 2M/3 is arbitrary, the proof is complete. 0O

(2.10)

Theorems 2.1-2.4 continue to hold if %, 1 Z. is replaced by %, | F, the
proofs needmg only slight modifications for Theorems 2.1-2.3.

THEOREM 2.5. Theorem 2.1-2.3 continue to hold if %, 1 Fw is replaced by
G|, P

INDICATION OF PROOF. Here we indicate only the modifications necessary
to prove Theorem 2.1 when &, | “..

Fix f € ® and 0 < < Y. It is sufficient to prove only the case when E[f | #,]
is an ,-measurable simple function in & of the form ¥<;<xb:J5,. Form = n <
o let Gu = {E[Ip,| 2] =1 —¢}and A; = {E[Ip,] /m]>1/2},1<l<k On A;B;
N (Nmsn=xGri) we have b; — e < E[Y; bIBlﬁ]<b + ¢, 1 =<i =<k, and thus
Unmsnsof| E[Xi bilp,| 2] — E[Y: bilp,| Za]l| = ¢} C Y:A:Bi N ((Umzn<wGri) U
G=i) + X AiB! + (X;A;)’. The analog of the key equation (2.7), eP{A;B; N
((UersnGri) U Gooi)} = (1 - S)P{AIB[ N ((UmsrsnGri) U Gwi)} = (1 -
e)P(A;B/) for alln = m and 1 < i < k can be shown by (backward) induction in
a manner similar to the proof of (2.7). The rest of the proof is the same as that

of Theorem 2.1. 0O

In proving Theorem 2.4 where %, 1 %, since . is the o-field generated by
the field U,~; #,, we were able to approximate a finite number of fixed sets in
.« arbitrarily closely (in terms of probabilities of symmetric differences) by sets
from %, for all n sufficiently large. This technique cannot be used when %, |
“-. However, the following proposition, interesting in its own merit, offers a
different method for proving Theorem 2.4 when %, | .

PROPOSITION 2.2. Suppose &, | % and B € & Then fort € (0, 1)
{E[Ip| Z»] <t} Clim inf {E[Ig| Z#,] = t} C{E[Ipz| F=] < t}

and
{E[Ip| #x] >t} C lim inf {E[Ig| %] =t} C iE[Igl Fol = t}.

ProoF. Fixt € (0, 1). Let F.'= {E[Ig| ] < t}, G, = {E[Ig| Z,] =t} for 1
=n=0wo,C, = N,G for n = 1, and C = lim inf, {E[Ip| Z,] = t} = lim,C,. If n
is a positive integer then C, C G, and P(C,G.B) = El[lcg.E[lz| & .]] =
tP(C,Gs) = tP(CG<). Since C,G=B 1 CG.B, we have P(CG.B) < tP(CG%). But
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C and G5 are Z.-measurable. Thus P(CG.B) = E[l.; E[Ig| #.]] > tP(CG.) if
P(CGL) > 0. Thus P(CG%) > 0 leads to a contradiction. Hence, C C G...

Now for 1 = m < nlet Crp = Un<k=nGi. Then Cr, 1 Croas n — © and Cp, |
C’ = lim sup,G,. By induction P(C.,FuB) > tP(CpnF) for allm = n. CrnFe
CrF.asn— o, Thus P(C, ,F.B) = tP(C}.F,) = tP(C'F.), m = 1. Since C;,F.B
| C'F.B, we have P(C'F,B) = tP(C'F.). However, C’ and F. are #.-measur-
able and thus P(C'F.B) < tP(C'F,) if P(C'Fs,) > 0. Thus P(C'F.) = 0 and
F.cC.

The other half of the proposition is proven in a similar manner. 0

It is natural to conjecture that lim inf,G, = lim sup,G, = G., or at least
lim inf,G, = lim sup,G,, where G, is defined as in the proof of Proposition 2.2.
The following example shows that both are false.

ExXAMPLE 4. Let (X, % P) = ((0, 1), 4 ((0, 1)), P), where P is the uniform
measure. For n = 1 let

%1 = U(—@((O, an))? [an’ bn)’ —@([bn? 1/2))’ [1/2’ 1- 1/2"), @([1 - 1/2n, 1)))’

where a, = %"+ and b, = Yo — B2 Let F = Np1 P = 0((0, %),
[¥2, 1)) and B = (%, 3%). Then E[Iz| #,] = 0 on (0, a,,), more than ¥ on [a,, b,)
if n is even but equal to ¥ if n is odd, 1 on [b,, ¥2), more than % on [Y2, 1 — 14"),
and 0 on [1 — %", 1). Thus {E.Ip = ¥} = X, lim sup,{E[Ip| Z,] < Y} = (0, %),
and lim inf {E[Iz]| Z,] <%} =@.0

THEOREM 2.6. Suppose %, | . and f is an Fmeasurable and integrable
function. Then E[f| #,] = E[f| Z»] as n — .

PROOF. First suppose f = IB for some “measurable set B. Let ¢ > 0 be
arbitrary. Choose 0 < t; < t, < .-+ < t; < 1 such that X = U,;.;;C; for some
positive integer k, where C; = {t; — c/2 < E[Ig| F] < ti + ¢/2}, 1 < i<k From
Proposition 2.2 we have

C; C lim inf {E[Ig| Z.] < t; + ¢/2}
N lim inf {E[Ig| #) =t —¢/2}, 1=i=<k

Thus x € C; implies | E[Iz]| Z](x) — E[Ig| Z,](x) | < ¢ eventually as n — o, 1
< i < k. Since X = U;-;<:C; and ¢ > 0 is arbitrary E[lp| %,] — E[lpz| Z-] as
n — o, A standard argument of truncating f and approximating the truncated f
by simple functions now completes the proof of the theorem. [J

The last theorem concerns uniform convergence of conditional expectations
when the o-fields are not nested.

THEOREM 2.7. Suppose {Z,:1 = n < »} is an arbitrary collection of o-fields
with #,C Zw,n=1. Then ¥ ,216(F,, ) < o implies supes P{SUpPr=m| E[f| Z.]
—E[f| Ze]| =l —>0asm — o foralle>0.
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PROOF. Let ¢ > 0 be arbitrary. From the proof of Theorem 2.1, if f € ®, then
PULE[fI ] — Elf| Fo) 2 ) < 6(F, Fu)fe, nz= 1.

Thus supseaP{sUPpam| E[f| Zu] — Elf| Zul| = €} < Shom 6(Fn, Fou)e — 0 as
m — 00 since Y =1 0(Fp, Foo) < 0.0 .

The previously mentioned example given by Boylan (1971) shows that condi-
tional expectations of even a single indicator function may fail to converge when
2n 0(Fn, Fz) = o if the o-fields are not nested. The following trivial example
shows that almost sure uniform convergence is possible even when ¥, §( %, %)
= o and the o-fields are not nested.

ExAMPLE 5. Let (X, & P) = ((0, 1), %((0, 1)), P), where P is the uniform
measure. For n =1 let

Fn = o (B((0, "), [, 1/n), Z([1/n, 1))

and let ., = ¥ Then {£,} is not nested, ¥, 6(F,, F) = 3 %" = », and for
0<e =%, supeeP{sup,-n| E[f| #.] — E[f| Z=]l|Zej=1/m—>0asm—ow. 0O

Acknowledgment. The author is grateful to the referee for a careful scru-
tiny which was responsible for the corrected version of Theorem 2.3 and many
other improvements.
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