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In this paper we provide a general framework for the study of the central
limit theorem (CLT) for empirical processes-indexed by uniformly bounded
families of functions % From this we obtain essentially all known results for
the CLT in this case; we improve Dudley’s (1982) theorem on entropy with
bracketing and Koléinskii’s (1981) CLT under random entropy conditions.
One of our main results is that a combinatorial condition together with the
existence of the limiting Gaussian process are necessary and sufficient for the
CLT for a class of sets (modulo a measurability condition). The case of
unbounded ¥ is also considered; a general CLT as well as necessary and
sufficient conditions for the law of large numbers are obtained in this case.
The results for empiricals also yield some new CLT’s in C[0, 1] and D[0, 1].
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1. Introduction. Let (S, &) be a measurable space and let P be a proba-

bility measure on (S, ). Let {X;}%, be independent, identically distributed
(i.i.d.) S-valued random variables with common law P. The empirical distribu-
tions P, corresponding to the sequence {X}i, are defined as the random
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930 GINE AND ZINN

measures
Pn = (l/n) E:l=l 6X.~9

where 4, denotes point mass at x € S. One of the most persistent problems in
probability and statistics is that of recovering the law P from the random laws
P,. A subject of particular interest in this connection is that of the convergence
of P, to P uniformly over classes of sets or functions (a.s. convergence to zero of
P, — P and weak convergence of n/?(P, — P) to a Gaussian process), the
pioneering results in this area being the celebrated Glivenko-Cantelli and Kol-
mogorov—-Smirnov theorems. A strong new impetus was given to this question by
the works of Vapnik and Cervonenkis (1971) on the weak law of large numbers
and Dudley (1978) on the central limit theorem. (For a survey of recent work on
empirical processes see Gaenssler and Stute, 1979.)

Modulo measurability considerations, Vapnik and Cervonenkis characterize
the families of sets ¥ for which ‘

supsc« | P.(A) — P(A)| - 0 inpr. (in facta.s.)
as those families of sets satisfying
(1/n)In A(X,, -+, X,) =0 inpr.,

where A¥ is the number of distinct sets of the form C N {X;, ..+, X,},C€ &
Dudley proved weak convergence of

“ZL{n*(PC) - P(C)): CE &Y

to a Gaussian process indexed by the sets in % under several different conditions
on %, in particular, under some measurability hypotheses, in the case of poly-
nomial growth (in n) of supy,,....jcsA X, -+, %) (Vapnik-Cervonenkis
classes). The methods of proof for the law of large numbers were mostly combi-
natorial, whereas the central limit theorems (CLT) were often proved using
“metric entropy” techniques (see, e.g., Dudley, 1978, and references therein).

In this article we continue the study of the CLT for the empirical process

{ffd(P,,—P):fE 57}

particularly in the case of a class % of measurable functions on S such that
| flle =M< o for all f € F although we also consider the case of unbounded
% in connection with both the CLT and the LLN. We give general results which
contain and unify most of the known CLT’s for empirical processes, improve
some of these and consider new situations. Our results for classes of sets & are
rather complete. We obtain “random combinatorial” conditions which together
with the existence of the limiting Gaussian process are necessary and sufficient
for the class & to satisfy the CLT. (This last result may be considered as the
analogue for the CLT of the Vapnik-Cervonenkis law of large numbers for classes
of sets.) Then we show that the random combinatorial quantities can be estimated
with enough precision to obtain all the general CLT’s (for sets) which are known
to us. In addition to drawing on the work of Dudley (1978, 1982, etc.) and



LIMIT THEOREMS FOR EMPIRICALS 931

Le Cam (1983b), we make extensive use of the theory of Gaussian and subgaussian
processes.

Now we describe the contents of this paper. In Section 2 we collect basic
prerequisites. The measurability hypotheses needed throughout are described.
Randomization, one of our basic tools, is discussed: using ideas in Alex-
ander (1982) and Pisier and Fernique (private communication), we show that
Yii1(dx, — P) can be replaced by Y- :6x, and Y7, gi0x, both in the CLT and in
the law of large numbers, and to deal with both necessary and sufficient conditions
for these theorems. Here {¢;} is a Rademacher sequence and {g;} is an orthogaus-
sian sequence, and both are independent of the processes {f(X;), f € . (These
are standard practices for proving CLT’s in Banach spaces; they originated in
Kahane (1968, page 7: principle of reduction), and were first applied by Jain and
Marcus (1975); see also Pisier (1975), Marcus (1978, 1981), Giné and Marcus
(1980), Pollard (1981), Giné and Zinn (1983, Corollary 2.7) and Marcus and
Pisier (1983).) We then explain exactly what we mean by CLT arid state Dudley’s
equicontinuity condition, which is the starting point of our investigation. After
the work of Dudley and Philipp (1983) by CLT we really mean an invariance
principle in probability. Namely, that there exist i.i.d. centered Gaussian proc-
esses Y;(f), f € Z, with the covariance of dx,(f), whose sample paths are bounded
and uniformly continuous on (%, L,(P)-dist.) and such that the random quantities

n "’ max,< Supre 5 ’ X (f(Xi) - f fdP - Y(f )) ’

converge to zero in Pr*. If this holds, . is called a functional P-Donsker class
of functions (See Section 2(b)). (Under measurability hypotheses, this implies
the weak convergence to £ (Y,) of the processes n™2 Y%, (f(X;) — [ f dP),
f € % as random variables in /°(%).) For this convergence to take
place it is necessary and sufficient that % both be totally bounded for
pi(f, 8) = J (f — 8> dP — (J (f — g) dP)? and that it satisfy the “asymptotic
uniform equicontinuity” condition: for all e >0

(L1)  limyplim sup,Pr*{supyse sopsg=sn /| (Pn = P)(f — 8)| > ¢} = 0

(Dudley and Philipp, 1983, Dudley, 1982). (Here and in what follows, if u is a
measure we write u(f) for [ f du). We show how (1.1) can be replaced by a
“randomized” equicontinuity condition, with either {¢;} or {g;}, Pr* or E* (outer
probability, upper integral: see Section 2). This result is useful later in the paper.
In the next subsection we state all the basic results on Guassian processes that
are used throughout (which are due to Dudley, Fernique, Marcus, Pisier, Shepp,
Slepian and Sudakov). Finally, the last part of Section 2 is devoted to random
distances

dn,p(f) g) = (2?=1 | f(Xz) - g(Xz) 'p/n)l/(pVI)’

their associated random covering numbers N, (¢, &) and entropies In N, ,, the
related combinatorial quantities A“(X;, ---, X,) introduced by Vapnik and
Cervonenkis, and their law of large numbers.

Section 3 gives the basic framework for the CLT in the bounded case. We say
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that % is P-pregaussian (or GpBUC) if the centered Gaussian process on
(& pp) which has the covariance of the process f — f(X), admits a version with
bounded uniformly continuous paths. Using Gaussian randomization and the
theory of Gaussian processes we show that (under measurability assumptions)
% is a functional P-Donsker class if and only if both % is P-pregaussian and
satisfies a “reduced” randomized equicontinuity condition. This condition is

(1.2) limsylim sup,Pr*{sup;e sp—gi<emiz | Tic1 e (X:) — 8(X))/n?| > ¢} = 0

for all ¢ > 0 (where one can replace {¢;} by {£:} (and there are equivalent statements
with E* instead of Pr*). Here P(f — g)? = [ (f — g)? dP. This is one of our main
results (Theorem 3.2). Measurability may in some cases be a nuisance but it can
be circumvented if instead of & P-pregaussian one assumes the Lj-entropy
condition

(1.3) J; (In N(¢, &, e,))"* de <

where e3(f, g) = P(f — g)°. This result (Theorem 3.1) is strong enough for most
of the applications but, since condition (1.3) is not necessary for # to satisfy
the CLT, Theorem 3.2 is qualitatively superior. We remark that the proof of the
main result (Theorem 3.2) does not make use of the typical “chaining argument”
associated with entropy (so commonly used in the CLT for empiricals), but rather
a recent result of Fernique (1983) on comparison of Gaussian processes for
sufficiency, and Sudakov’s “minoration” for necessity—both applied condition-
ally. On the contrary, Theorem 3.1 uses the chaining argument, but we stop at
the level e%(f, &) = ¢/n/? because below this level the tails of the variables
nY%(P, — P)(f — g) are not necessarily Gaussian-like. One should compare
Theorem 3.1 with Le Cam’s (1983a, Lemma 2) which is a similar result, and also
to some of the statements at the end of Kol¢inskii (1981), however our proof is
extracted from the proof of Theorem 5.1 of Dudley (1978).

In Section 4 we give several applications of Theorem 3.1 with no measurability
hypotheses. In particular we obtain an improvement of Dudley’s (e.g. 1982)
theorem on “metric entropy with bracketing”. We also obtain a sufficient con-
dition for the CLT for classes of sets involving a condition on the speed of
convergence to zero of the probability that about 7en'/? X/’s fall simultaneously
in one of the sets A A B, A, B€E€ %, P(A A B) < ¢/n*?2 Then we apply this last
result to obtain quick proofs of the CLT under “metric entropy with inclusion”
(with an improvement), for VC classes and for sequences of sets (Dudley, 1978)
as well as in other situations.

In Section 5, under measurability, we approach the problem of handling the
reduced equicontinuity condition (1.2) in more elaborate ways. Below the level
e3(f, 8 = ¢/n'? the tails of n**(P, — P)(f — g) are not Gaussian-like as remarked
above, but if we randomize they are conditionally Gaussian-like, and we can
either apply a simple form of the entropy argument (we apply a suitable modifi-
cation of a “trick” of Le Cam (1983b) at a crucial step—see Lemma 5.2) or the



LIMIT THEOREMS FOR EMPIRICALS 933

ready-made upper estimates of Dudley (1973) and Marcus and Pisier (1978). In
the first case the resulting condition is a tail condition for the random entropy

In N,i(e/n"?, F.,) where F.,={f—g:f & € Z ek(f, 8) < ¢/n'%}

which in the case of families of sets turns out to be also necessary (Theorem 5.7)
because of Sudakov’s minoration. Theorem 5.7 and its variations is one of our
main results.

In Section 6 we relate random entropies to the combinatorial quantities of
Vapnik and Cervonenkis and show how they can be computed in many cases. As
examples, we obtain new results on metric entropy with inclusion, sequences of
sets and the CLT for discrete distributions (the Borisov-Durst-Dudley theorem;
see e.g. Dudley, 1982).

Section 7 contains applications of Section 5 to the CLT for uniformly bounded
random variables (processes) taking values in C[0, 1] and D[0, 1]. The results
obtained do not seem to follow from known general theorems (such as the
Jain-Marcus, 1975, CLT or the extensions by Hahn, 1978, and Pisier, 1980, of
the CLT under the Kolmogorov conditions). )

If the class F is not uniformly bounded not only does Bernstein’s inequality
fail to apply (at least directly) but neither does the other main ingredient of the
proofs in Section 5 (Lemma 5.2). However, a direct application of any of the
above randomizations to (1.1) makes it possible to use the standard Gaussian
“majoration” conditionally. This gives a sufficient condition for the CLT in terms
of the random entropy N,:(e, ¥). Sudakov’s minoration gives a necessary
condition which differs from the sufficient one by only “a log”. The same
techniques apply to the law of large numbers, in which case we obtain neces-
sary and sufficient conditions (modulo measurability) in terms of N, (e, ¥),
p € (0, ].

For more concrete applications of the results of this article, we refer to Dudley
(1978, 1982) and references there, Le Cam (1983a), Pollard (1979, 1980), Yatracos
(1983), and also to the forthcoming books by Le Cam and by Pollard. Modulo
measurability, all the CLT’s for empirical processes that we are aware of have
either been surveyed in this article, or follow from those surveyed here, with two
exceptions: the CLT for the empirical characteristic function (Marcus, 1981) for
which our results do not provide a significant simplification, and Dudley’s (e.g.
1982) theorem on entropy with bracketing in the unbounded case.

2. Basic preliminaries. In this section we collect several definitions and
propositions used throughout.

(a) Measurability and randomization. Since suprema over uncountable fam-
ilies need not be measurable, some measurability assumptions are needed, and at
times we will use outer measures and upper integrals, which are defined as
follows: if (A, & u) is a u-complete probability space, then for every E C A,
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w*(E) = sup{u(B): E C B, B € o/} and for every

f:A—> [0, o}, E¥= inf{f gdu:g=fg ﬁ-measurable} .

We have chosen the following conditions, which are based on those in Alexander
(1983). See Dudley (1978, 1982) for other approaches to the measurability
problem.

First we give some notation used throughout. (S, %) is a measurable space
and P is a probability measure on (S, &). £ (P), 0 < p < », will denote the set
of functions f: S — R which are measurable and such that [ | f|? dP < if 0 <
p <. Welet

Pf :=ffdP for all f€ A(P),

p?(f, &) = P(f — 8)* — (P(f — &),
eb(f, 8) = P(f - &), f, & € 4(P).
For a class & C %4(P) and 6§ > 0, we let
F' ' ={f-gfge F}
Fi=1{f-8f8g€ Febf, g <d
For later use we also define
Flp=Flan
In general we define, for any real function h on a set T,
I A ll7 = supwer| h(t) |.

Often our parameter set is a set of functions ¢ and in this case, since it is more
convenient to write f(X) rather than X(f) or even 6x(f), we use notation such
as the following: for a;, b € R,

| ¥ a:f(X) — bPf || « = supgew | X aif(X:) — bPf |
and
I i aif %X | » = supre | T a:f3(X) |.

We use the same notation for classes of sets %, which we identify with their
indicators.

In this paper we use the following general setup. (S, &/ P) is a probability
space and {X;}Z, are the coordinate functions on (S™, &%, P™). For a class ¢
of real measurable functions on S consider the following statements.

(a) the quantities
supev{Xii a:f(X;) — bPf}, a, bER, NEN

are PM-completion measurable;
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(b) the quantities
supre o {(Xh1 a;f A X))? — (CFpr1 a:f2(X))VY, 6,20, n€EN

are PN-completion measurable.
The following definitions are close to those in Alexander (1983).

2.1. DEFINITION. ¥ is linearly supremum measurable for P (LSM(P)) if (a)
holds for < and moreover supe« | f(s) | < = for all s € S. ¥ is 4-supremum
measurable for P (SM(P)) if ¢ is LSM(P) and satisfies (b).

2.2. DEFINITION. ¥ is 4-deviation measurable (resp., linearly deviation
measurable) for P if both & and ¥} for all 6 > 0 are SM(P) (resp., LSM(P)).

2.3. DEFINITION. ¥ is nearly supremum measurable (NSM(P)) (resp. nearly
linearly supremum measurable (NLSM(P))) for P if there exists a 4-supremum
measurable (resp. linearly ...) & C ¥ such that for alln >0

Pr*{supe v | va(f) | # supse,« | va(f) |} = 0.

~

where v,(f) = n™V2 Y%, (f(X) — Pf). & is nearly #4-deviation measurable
(NDM(P)) (resp., nearly linearly deviation measurable (NLDM(P))) if there
exists an 4-deviation measurable (resp., linearly deviation measurable) class
0¥ C ¥ such that forevery 6 >0andn=1

Pr*{supe s, | va(f) | # supse,; | va(f) |} = 0.

2.4. REMARKS. (1) Definition 2.3 is introduced in order to include the case
considered by Pollard (1982), i.e. that the processes f — P,f,n EN, f € (Z, e,),
be stochastically separable. In this case, & is NDM and % C ¥ is countable.

(2) Let {£;} be real random variables defined on a probability space (2, Z, Q).
Then if ¥ is 4-supremum measurable, the quantities

(a) supes{Xin E(f(X) — bPf)}, nEN
and
(b) supe o {(Th EFFUX))Y? — (T £7FA(X))A), nEN,

are each jointly measurable in the product probability space (2 ® S¥, = ® &™,
Q ® P") since they are continuous in the coefficients &;, £, £;. (Similarly if &
is linearly supremum measurable then the quantities in (a) are measurable.)
Usually {¢;} will either be a Rademacher sequence or an orthogaussian sequence.
A sequence {¢;} is Rademacher if the ¢; are i.i.d. and Q{e; = 1} = Qfe; = —1} = 14,
and a sequence {g;} is orthogaussian if the g; are i.i.d. N(0, 1). This is the context
in which we always work even if we do not explicitly mention it. And in this
context E; (hence E, or E,) denotes integration with respect to  and Ex denotes
integration with respect to P". Also at times we use P;(P,, P,) for @ and Px
for P™,
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(3) Since PN is invariant under permutations, if & is supremum measurable
then

L Ty e (X)) = f(Xnsd)) | &) = L (| Zi=1 (X)) = f(Xnsd) || 0).

This remark is crucial in what follows.

The following lemma (Vapnik and Cervonenkis, 1971, Lemma 2; Alexan-
der, 1983, Lemma 3.2) bounds tail probabilities of | X || by tail probabilities of
I X — X’ || where X and X’ are independent but not necessarily equidistributed.

2.5. LEMMA. Let T be an index set and let X(t), X'(t), t € T, be two indexed
collections of random variables which are defined on (@ X @', Z X Z’, Pr =
P x P’), X depending only on w € Q and X’ on «’ € Q'. Then for all s > 0 and
all u> 0 for which sup,erPr{| X’'(t) | 2 u} <1,

Pr{|| X | r > s}

(2.1) .
< [1 = superPr*{| X' () | = Wf]7'Pr*{| X — X" 7> s — u}.

PROOF. We have
Pr{| X — X' |l7>s — u}
2 ERPIIX - X' |lr>s—u}
= P*{|| X | 7 > s}infiuyxew 1>0(P)*{| X(w) = X' |7 > s — u}
2 P*{| X | r > slinferP'{| X' (t) | < u}
as if || X(w) | > s then | X(w, t) | > s for some ¢t € T.0

Using Chebyshev’s inequality, the previous lemma gives:

2.6. COROLLARY. Under the hypotheses of Lemma 2.5, if 6 > superE(X’(t))?
then

2.2) PHI|X|r>s}<2Pr*{| X - X' |lr>s— (20)*}, s>0.

In what follows the probability measure @ X P of Remark 2.4 (2) will be
denoted as Pr. In the proof of Lemma 2.7 below we use the following facts:
(Q X PM*A) = E&P™)*(A), (@ x P")*B x C) = Q*(B)(P™)*(C) and P" =
PY o 771 for any permutation = of the coordinates.

2.7. LEMMA. Let ¥ C “(P). Then
(a) Pr*{supes | X af(X) | >t}
< 2 maxp<, Prfsupre = | T5a (X)) | > (£/2)), t>0, n=1;

(b) Assume

SUDfe & f (f — Pf)?dP = a?2 < .
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Then, for t > 2"2an? and for all n € N,
Pr*{supre 7 | X (A(X) — Pf)| > t}

(2.3)
< 4 Pr*{supe # | T &f(X) | > (t — 2¥2n'2a)/2).

(In the right-hand side, f(X;) can also be replaced by f(X;) — Pf.)

PrOOF. Part (a) goes as follows:
Pr{|| X% ef(X) | # > t}
< Yirmsrizn Pr¥{{es = 7i, i < 0} X {|| Zpmgy AXD) = Zirm-ny AX) | 5+ > t]]

1 t
=2 E!r,ﬂ:tl,isnl i maxksn(PN)*{ " 2?=1 f(Xt) "f > 5}

t
=2 maxksnPr*{ | S5y AX) | 5 > 5} .

For (b), we apply Corollary 2.6 to the process f — Y&, (X)), f € Z Then, if
X! =X,,i=1, ---, n, Corollary 2.6 gives (for any 7; = £1)
Pr{|| T (X)) — Pf) | & > ¢}
= 2 Pr¥{|| 2% (AX) — AXD) | 5 > t — 2/n'2q)
= 2(P™)*{|| 21 7 fX) — f(XD)) | = > t — 2V°n'/%a)
= 2EH(P™)*{|| Tt e (X) — X)) | = >t = 2/°n'a)
< 4 Pr*{|| 3% &f(X) | #> (¢t — 2¥2n"%0)/2}). O

It is easy to show that part (b) admits a version for non-identically distributed
variables X; if & is linearly supremum measurable.

For symmetric variables it is often possible to replace probability statements
by statements about expectations, which are easier to work with in some in-
stances. The following lemma of Hoffmann-Jgrgensen (1974) is the result we
will use for this. We state it adapted to our needs.

2.8. LEMMA. Let & C % (P),p >0, be a linearly supremum measurable class
for P. Then for every n € N,
(2.4) E supes | Xk &f(X) P < 2 - 3°E max<.Supres | f(X;) |P + 8 - 3°t8,
where
to = inf[t > 0: Prisupe .~ | Xk &f(X) | > t} = 1/(8-37)].
In the next lemma we examine the relationship between Y &f(X;) and

Y g:f(X;). It is a simple modification of an inequality communicated to us by G.
Pisier and X. Fernique; the proof below may be new.
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2.9. LEMMA. Let & C %(P) be a linearly supremum measurable class (for P).
Then the following inequalities hold for every 0 < no <o and no<n € N:

Zg=1 ckf (X&)

n1/2

M, E supge 5

D=1 &ef(Xk)

n1/2

<E SUpe 7
(2.5)

< no(E supjes | f(X1) | (E maxy<n| g |/n"?)

ng<c= X
+ MzmaXno<kSnE SUPfe 7 2 </_I:lj2/ f( /)

’

where My =E | g,| >0 and My = [§ (P{|g:| > u})*/? du < .

PROOF. The left-hand side inequality is a simple application of Jensen’s
inequality: if {er, g», Xi}i-1 are all independent, then < ({ex|g:l|}i-1) =
< ({8k}i=1) and

" Th=1 8f(Xk)

1/2

Yh=1 e | 8| f(X)

1/2

F .

- E “ Shor o (XDE | & |

n1/2

F

. F

More surprising is the right-hand side inequality, which we prove now. For
{gr}iy, let g¥ = g% = ... = g} be the ordered values of {|g:|}i-1. Then, as in
Remark 2.4 (3), we have

(26) E| X1 gfiX) | 5 = E || Zh-1 | 86| exf(Xi) | 7 = E || Zher gkerf(Xi) || 5
Now let
Ti(f) = Tno<r=n e-f(X.)/RY?

(note Ty (f) = 0). Then, setting g¥., = 0

Tng<hzn8ierf(Xi) = Tnosn(gt — gE)R*Ti(f);
50,

E || Zno<rsn 8Eerf(Xi) |
< Ynp<k<n B?E(g% — g5 )E | Tu(f) |

< [maXpy<kenE | Tu(f) | FNE{Znoeien B*(g% — ghr)}l.
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But the last expected value is equal to
€k 8;»04»1
E{Zno<k5,, f kY2 du} =E f (#r=1: gF =2 u})? du
0

841

< j (nP{| g | > u})"? du = M,n'?,
0

using Jensen’s inequality. This, together with (2.6) gives
Yh=1 &ef(Xe)

g

n1/2 P
no * n *
w21 8herf(Xh) Yh=ny+1 8 enf(X)
=E B a— +E .Y
7 7z

=< no(E | f(X1) | 5)(E maxess | g | /n'?) + Mymaxa<inE | Te(f) | . O

(b) Functional P-Donsker classes. The asymptotic equicontinuity criterion.
For the reader’s convenience, here we describe the setup and main result of
Dudley (1982), Section 4.1. Then we obtain some useful variations of it.

Let P be a probability measure on (S, &) and let {X;}2, be i.i.d. with law P.
Define the random measures

2.7) P. = (1/n) 3 bx, va=nY*P, - P).

P, is the empirical measure corresponding to {X;}. With the notation

u(f) = ffdn

for any measure u on S, we have by the finite dimensional central limit theorem
that for any finite set of functions fi, - - -, f, € £(P),

ZLn(f1), -+ 5 valf)) =0 ZL(Ge(f), - - -, Ge(f:)),

where Gp(f) is a centered Gaussian process on %(P) with covariance

EGp(f)Gr(g) = PI(f — Pf)(g — Pg)), f &€ A4(P).

So, the “limit law” of {Y%; (A(X)) — Pf)/n*%: f € F} should be the law of
{Gp(f): f € F} for some version of Gp (two processes are said to be versions of
each other if they have the same finite dimensional distributions). The following
is then a natural definition:

2.10. DEFINITION. A class of functions & C “4(P) is a GpBUC class if the
process {Gp(f): f € F} has a version with all the sample functions bounded
and uniformly continuous for pp. We will also say (instead of GpBUC) that #
is P-pregaussian.
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The following definition is convenient in view of the theorem that follows it.
We let (Q, =, Pr) = (S, &V, PY) x ([0, 1], 4, \), where X\ is Lebesgue measure
and as in subsection 2(a), the X; are the coordinate functionals of S™.

2.11. DEFINITION. A class of functions & C Z(P) is a functional P-Donsker
class if it is GpBUC and there exist {Y;}Z;, i.i.d. verions of Gp, defined on
(2, =, Pr), which have all their sample functions bounded and pp-uniformly
continuous, such that

(2.8) Pr*{n™"’maxis, | 21 (AX:) — Pf = Yi(f)) |5 >¢} >0 as n— oo,
All the results in this article have the following theorem of Dudley and Philipp

(1983) as their starting point. See Dudley (1982, Theorems 4.1.1 and 4.1.2) for
the proof.

2.12. THEOREM. ¥ C (P) is a functional P-Donsker class if and only if both
(a) (& pp) is totally bounded;
(b) for every e >0

(2.9) lim;olim sup,Pr*{supy.ee #,p(re1<s | n(f — &) > ¢} = 0.
Moreover, conditions (a) and (b) with pp replaced by ep are sufficient (but not
necessary) for & to be a functional P-Donsker class.

In order to apply the available theory of Gaussian and subgaussian processes
(see the next subsection) it is convenient to have a “randomized” L, version of
Theorem 2.12. The following corollary is required in the proof.

2.13. COROLLARY. Let ¥ C £(P) be a NLDM(P) class which satisfies Con-
dition (b) in Theorem 2.12. Then

(2.10) lim;jolim sup,—t?Pr{|| f(X1) |, 5; >t} = 0.

As a consequence,

(2.11) lim; olim sup,n™"2E maxu<. | f(Xi) | ,5; = 0.

PROOF. By (2.9), the definition of NLDM, and Lemma 2.7 (a) it follows that
lim;olim sup,Pr{ | 31 enf (Xl g5 > en'? =0

for all ¢ > 0. Then, Lévy’s inequalities (see e.g. Araujo and Giné, 1980, Theorem
3.2.6) imply that

lim;olim sup,Pr{max,<, | f(X:) |, > en'/? =0
for all ¢ > 0. Since, for independent real random vgriables &,
P{max,<, | £ | >t} = 1 — exp{—Xi=1 P{|&:| > t}}
= Yio Pl &| > t}/(1 + Zi P{l & > t}),
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\

it follows easily that
lim; olim sup,n Pr{|| (X)) ,5; > en'? =0,

thus proving the limit (2.10). Given # > 0, we can find, by (2.10), 6o > 0 and
to < o such that

Prilf(X) |, 5, >t} <n?, t>t, §<do
(note that this function is monotone in 8). Then, for & < d,,

lim sup,n™2E maxe<. | f(Xi) .5

< 7 + lim sup,n'/? f o PR FXD 74 > t} dt
wn

< n + lim sup,n'/? f " 7%t~% dt = 2.

nn

Since 7 is arbitrary, this proves the limit (2.11).0

The result that follows is a direct consequence of Theorem 2.12, Corollary 2.13
and the randomization inequalities of the previous subsection. In what follows
we let

ZUP) = {f € XS, & P): Pf=0}.
Note that pp = ep in L YP).

2.14. THEOREM. (1). Let & C £ Y P) be a NLDM(P) class of real functions on
S. Then the following are equivalent:

(a) & is a functional P-Donsker class.

(b) (% ep) is totally bounded and

(2.12) lim;olim sup,Pr{|| Tiy &if (Xi) |54 > en'/?} = 0
for all ¢ > 0.
(c) (% ep) is totally bounded and
(2.13) limolim sup, E ’ 2= Cli/fz(Xi) 0.
n 0F}

(d) (% ep) is totally bounded and
(2.14) lim; jolim sup,Pr{|l T2 gif (X))l ,5, > en'/?} = 0;
(e) (& ep) is totally bounded and

2 &if (Xi)

=0.
ni/2

07}

(2.15) lim;jolim sup,E ’

(2) if the NLDM(P) class % is only in <(P), but is £ -bounded (that is,
supse #P| f| < ®), then the previous statements (a) — (e) are also all equivalent.
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(8) If the NLDM(P) class . is only in £(P), then each of the conditions (b),
(c) and (d) implies (a).

Proor. Condition (2.12) is equivalent to condition (2.9) by Lemma 2.7.
Hence, by Theorem 2.12, (a) and (b) are equivalent. Condition (2.13) implies
(2.12) by Chebyshev’s inequality and therefore (c) implies (b). Suppose now that
(b) holds. Then (2.9) holds, and so does (2.11) by Corollary 2.13. Using (2.12)
and (2.11) in Hoffmann-Jgrgensen’s inequality (Lemma 2.8), we obtain (2.13).
Hence (b) implies (c). That (e) implies (c) is a direct consequence of the left-
hand side inequality in Lemma 2.9. We now show that (c) implies (e). First note
that as in the proof of Corollary 2.13,

1/2

E max;<,|gr|/n'*—>0 as n— o,

(Alternatively, it is well known that E max,<,|g:| = (In n)l/"’) Hence there
exists k, — o such that

2 _50 as n— oo,

k., E max,<,|g:|/n

Now we just apply the right hand side of (2.5) in Lemma 2.9 with no = k,. (e)
clearly implies (d). The implication “(d) implies (e)” follows again from Hoff-
mann-Jgrgensen’s inequality and Corollary 2.13.

(2) follows from (1) and the fact that a ~;-bounded class is ep-totally bounded
iff it is pp-totally bounded.

The sufficiency of the conditions (b), (c) and (d) in case the functions in F
are neither centered nor uniformly bounded follows as in case (1).0

(¢) Gaussian and Subgaussian processes. The processes which appear in
conditions (2.12) and (2.14) of Theorem 2.14 above are respectively subgaussian
and Gaussian for fixed {X;(w)}. We will use to our advantage the fact that there
exist very sharp “majorations” and “minorations” for these processes. We recall
in this subsection the relevant facts on Gaussian and subgaussian processes.

Let Z,, t € T, be a stochastic process defined on some parameter set T. Z is a
subgaussian process (more precisely a process with subgaussian increments) if
there exists 7 > 0 such that for all s, t € T and for all real A,

E exp{\MZ(s) — Z(t))} = exp{\*7E(Z(s) — Z(t))*/2}.

(This definition is taken from Jain and Marcus, 1978; see also Kahane, 1968.)
We are interested in the following example of a subgaussian process: if Z(t) =
Y2, eihi(t) and T2, h#(t) < o for all ¢t € T, then Z is subgaussian with 7 = 1.
In fact, since

A2n A2 n )\2
E exp(Ae) = 37-0 oy el = Zn—O( ) /n! = exp(—é—> , VER,

it follows that
E exp(MZ(s) — Z(t))) < exp{\* X7, (hi(s) — hi(t))?/2}.
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This shows that, for fixed w € S™, the random process
(2.16) fo Ik ea()f(Xiw), fEF

is subgaussian with + = 1. It is well known and easy to see from the above
exponential inequality, that for any {a;} C R,

(2.17) P{| 3 aiei| >t} = 2 exp{(—t?/2 Z;ad)}, t>0

which we will refer to as the “standard subgaussian inequality.”

A related inequality due to Bernstein (see, e.g., Bennett, 1962) is as follows:
let {£}21, n € N, be independent real valued random variables bounded by M
and with mean zero; then for ¢t > 0,

(2.18) P{YLi & = t} < exp{— t°/(2 Ti E£} + 2M1/3)}.

Let (T, p) be a metric or pseudo-metric space. Then, the covering number
N(, T, p), e €[0, | T|,], where | T|, denotes the diameter of (T, p), is defined
as

(2.19) N, T, p) = min{n: 3ty, ---, t, € T s.t. min;p(t, ¢;) < ¢ for all t € T}.
The metric entropy H (e, T, p) is defined as
H(e, T, p) = In N(e, T, p).

Given a subgaussian process Z(t), t € T, let

(2.20) a(s, t) = (E(Z(t) — Z(s)))"?,
and
(2.21) &) =46(In In 4| T|.6°H2 0<8=<|T|..

With these definitions we have:

2.15. THEOREM. Let Z(t), t € T, be a subgaussian process on T with r = 1 in the
definition. Assume that (T, o) satisfies the metric entropy condition

I1Tlq

(2.22) HY?(e, T, o) de < .

0

Then Z has a version Z with o-uniformly continuous sample paths, and there
exists C > 0 independent of Z such that

1]
(2.23) E sup,en=s|l Z(t) — Z(s)| = C [j; HY(e, T, ¢) de + <I>(6)] .

In particular, for any to € T
1Tl,

(2.24) E supier|Z(t)| < E|Z(to)| + C[ A HY%(e, T, o) de + (| Tl,)].

This theorem is essentially due to Dudley (1967, 1973) for Gaussian processes,
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and it is stated and proved in the present form in Marcus and Pisier (1978,
Theorem 3.1).

Note that if Z(t) = %, &;hi(t), h; continuous in (T, o), then Z = Z in Theorem
2.15.

To obtain necessary conditions for the central limit theorem we must consider
the Gaussian processes (w fixed)

(2.25) f— Tk &()f(Xi(w))

where {g;} is a N(0, 1) i.i.d. sequence independent of { X;}. We will require a lower
bound for the supremum of a Gaussian process in terms of its metric entropy,
which is due to Sudakov (1971) (“Sudakov’s minoration”: see e.g. Fernique (1974),
2.3.1 and 2.3.3), and an integrability result for Gaussian processes (see Fernique,
1974, 1.3.2, for a more general result).

2.16. THEOREM. Let {Z(t),t € T} be a centered Gaussian process on a parameter
set T and let o be as in (2.20). Then there is a constant C > 0 such that

(2.26) E* supier| Z(t)| = C supr=oAH2(A, T, o).
Furthermore
(a) if supser| Z(t)| is measurable and finite a.s., then E sup:er| Z(t)| < «, and

(b) if Z has almost all its trajectories bounded and uniformly continuous on
(T, o), then

(2.26)’ limy_oAHY*(\, T, o) = 0.

Note that (2.26)’ follows from (2.26) by considering the Karhunen-Loéve
expansion of Z and the inequality N(e, T, d; + d2) < N(¢/4, T, d1)N(e/4, T, d2)
for metrics d; and d,.

In some of the proofs below we will need to compare different Gaussian
processes. Next we state two results in this direction. The first one is due to
Fernique (1974, 2.12) after substantial contributions by Slepian and by Marcus
and Shepp. The second one is a beautiful recent result of Fernique (1983, 1.6 and -
proof of 2.2).

2.17. THEOREM. Let {Zi(t), t € T}, i = 1, 2, be centered Gaussian proc-
esses defined on a countable set T. Let d;(s, t) = [E(Z(s) — Zi(t)Y? s, teT,
1=1,2.

(a) Assume that the set T is countable and that for all s,t € T,

(2.27) di(s, t) < da(s, t).
Then
(2.28) E supierZ,(t) < E supierZs(t).

(b) Assume that T is a compact metric space and that Z, and Z, have continuous
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paths a.s. Then, if inequality (2.27) holds, we have for all 6 > 0,
E supgy,.0)<s| Z1(s) — Z,(t)|

2.29
( ) =4 supseTE supd,(,,,)s,sl Zz(S) - Zz(t)l + 135H1/2(5/2, T, dz)

Another useful result is the following (see e.g. Dudley, 1973, Theorem 0.3):

2.18. LEMMA. If & is Gp BUC, then so is its pp-closed, convex symmetric hull,
in particular &' .= {f—g:f,8 € Z } is also Gp BUC.

(d) Random entropies and Vapnik-Cervonenkis classes. The Vapnik-Cervo-
nenkis law of large numbers. Given a sample {X;}}; from P we consider the
random distances

(2.30) {dn.p(f, g) = [k | f(X)) — g(X)|?/n]/?VY, 0 <p <.
. dn,ao(f9 g) = maX;<n l f(Xt) - g(X‘)l

for f, g € & (and more generally, for f, g measurable). Then we define the
covering numbers of ¥ for these distances:

(281) N,ple, F)=Nle, & dnp), Nuwle, F) = Nle, F dnw),
which are random, and the random entropies
H,p(e, &) =1In Nuple, F), Hnole, F)=In Npole, F).

Of particular interest to us in this article are H, 1, H, 2 and H, .. These random
numbers may not be random variables. They have been first used in connection
with empirical processes by Vapnik and Cervonenkis (1971, 1981), and also by
Kolcinskii (1981).

Vapnik and Cervonenkis (1981) proved the following result. In their version
some measurability conditions seem to be missing; looking at their proof of
necessity and using Theorem 8.3 below for sufficiency as well as Corollary 8.8,
one obtains:

2.19. THEOREM. Let % be NLSM(P) such that ||fll- <1 for all f € & and
such that N, (e, 0% ) and Np(e, o F ) are measurable where o % is as given in
Definition 2.3. Then (a) and (b) below are equivalent.

(a) | P.—P|ls—0a.s.

(b) for everye>0
EHn,m(e, 0?) -
e

If, moreover, the class & = {|f—g|:f, 8 € & } is LSM(P), then (a) and (b) are
also equivalent to
(c) there exists a finite function T(e) such that for all e > 0

lim,_o Pr{N, (¢, o F) > T(e)} = 0.

(2.32) lim, e 0.
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In the case of sets Vapnik and Cervonenkis (1971) proved this theorem with
convergence in probability. Steele (1978) showed that this convergence is a.s.
(see also Kuelbs and Zinn, 1979, and Pollard, 1981). These proofs of a.s. conver-
gence extend to the case of NSM(P) classes of functions.

In the set case condition (2.32) takes a special form. Let % be a family of
measurable sets. As in Vapnik and Cervonenkis (1971), define A “(X, -+, X,)
as the number of different sets in the collection {C N {X;, ---, X,,}: C€ ¥}, i.e.

(2.33) ANXy -, X)) =#CN{X,, -+, X,}: CE Z.

Identifying & with .= {Ic: C € ¥}, it is clear that for all e < 1,
Noole, £) = 09Xy, -+, X,),

so that condition (2.32) becomes

* K LR
(23211) lim,,_..,,, E ln Ae (;’fl, ’ Xn) = O,

which is equivalent to

In AO'W(Xl, c ity Xn)
n

-0

in outer probability (see Lemma 2.20).

Now we show that this equivalence persists for N, , as long as the functions
in # are uniformly bounded. Although trivial, this is relevant for our results on
the law of large numbers in Section 8.1.

2.20. LEMMA. Let % be a uniformly bounded class of real functions on S and let
12¢>0,0<p=o,0<r<o, Then,

In Nuple, F) _ 5}
n

lim,_,., Pr* { =0 forall 6>0

if and only if
lim,_. E* (M) o,
n
PRrROOF. We may assume that for f € &, sup,es|f(s)| < 1. Let

In N, (e, &)
— .

We need only observe that since Ny (¢, F ) < Npw(e® V0, F) < (2/eP7VI)",

. R, R;
r %* *
ER.zE Q+RJZE Q+c)

where ¢ = In(2/¢®7VY). 0

R, =




LIMIT THEOREMS FOR EMPIRICALS 947

2.21. REMARK. In the case of A“(Xj, ---, X,) one can modify an argument of
Hoffmann-Jgrgensen (1974), page 164, to obtain the equivalence of

ln AZ(XI’ ) Xn)
a -

0 in Pr*

and

Z,
E*<lnA <X;,---,x,.)>_>0

for any r > 0 and any sequence a, — .
Finally we describe another remarkable result of Vapnik and Cervonenkis
(1971). Given a class & of subsets of S, define
m¥(n) = max{A“(sy, ---, sn), i €S}, V(¥) = inf{n: m¥n) < 2"},
V() =4+» if m*“(n) =2" forall n.

Dudley (1978) calls ¥ a Vapnik-éervonenkis class of sets, (a VCC for short) if
V(%) < . It is not difficult to prove by induction that if o/(A,, ---, A)
denotes the algebra generated by the sets A, - - -, Az, then for any k& < +oo, the
family of sets ’

Mk(g)=U{—M(AI’ "'9Ak):A19 "'sAke -%}

is a VCC if ¥ is (Dudley 1978, Proposition 7.12). What is most remarkable and
useful about VCC is the following combinatorial lemma of Vapnik and Cervo-
nenkis (1971):

2.22. THEOREM. m“(n) = nV') + 1 forall n = 1, and m4(n) < n¥'? for all
n=2.

Dudley (1978, Lemma 7.13) uses this theorem to prove another beautiful
result:

2.23. THEOREM. Let & be a VCC. Then for any p.m. P on (S, &), the metric
entropy N(e, %, || * | up) := N(e%, & P) is bounded by
N £ P)<AW@) (e neH)?, 0<e<¥

wherev =V (¥), and A(v) < .

Using the technique of the proof of Theorem 2.23, we have the following
lemma which will be useful below.
2.24. LEMMA. Let F(x), x > 0, be a nonnegative differentiable function satisfying

F(x)

(2.34) F(x) 1 o, — 10 (asxt®) and f x72F (x) dx < 0.
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Let F be a class of measurable functions uniformly bounded by 1. Suppose that
there exist T > 0 and n, such that for all n > n,,

In N, ((rF(n)/n)"2, F) 1
F(n) > 1} < 2

(2.35) Pr* {

Then, for all n > ny,

v24rF(n)/n 0
(2.36) f VI NG, Zep) de < 243 ) 4 57 | E®) g,
0 n

nl/2 232
which converges to zero as n — o,
PROOF. Letf,, -+, fn € F be such that E|f; — fj|2 = ¢ for all i # j and
some 0 < ¢ < 1. Let X}, be i.i.d. with law P. Then, for0 < <e
P{max;<, | fi(Xz) — fi(X:)| < 6 for some i # j}

<1A (ﬂ"32;1—’ - max [P{|fi(X1) — f;(Xy)| = 6}1")

2 _2\n
<1A ('% <;—_—;2) ) < 1 A (mPexp(~=n(e® — 8))/2).
Therefore

(2.37) Pr*{N, (s, F) = m} =1 — 1 A ((*2) m®exp(—n(c® — §2%))).

Let now M(e?) = supf{n: 3f1, -+, fn € & such that E|f; — f;|2= > i #j}, and
note that

(2.38) N(2¢, & ep) = M(cP).

Let ¢2 = sup{e®: M(e®) = e’"™}. Then there exist f;, ---, firF=w such that
E|fi — f;|1?2 = (*2)e2. Take m = 7F(n) and & = (rF(n)/2)"2 Then (2.35) and
(2.37) give that for n > n,,

() > 1 — (1 A (Yo)exp{37F (n) — ne2/2})
or
exp{37F(n) — ne2/2} > 1
or
e2 > 6rF(n)/n.
So, by (2.38) and the definition of ¢,,

N((247F (n)/n)?, & ep) < exp(rF (n)).
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Hence, for n > ny, since F(n)/n'? — 0, we have

VEEF R
f (In N(e, & ep))/? de
0

) 1/2\
< —4V3 1 f (F(x))2 ((P—’fci)) ) dx

=2\/§1%+~/§1 igfz)dxao as n—o. 0O

3. The general CLT for uniformly bounded families of functions.
Given ¥ C % P) and a pseudo-metric p on F we say that (% p) satisfies
the metric entropy condition if

(3.1) J(:(ln N(e, & p))? de < .

It is known (Dudley, 1973) that the metric entropy condition for (% op)
implies sample continuity of Gp| &, but does not necessarily imply that & is a
functional P-Donsker class.

The following theorem based on Dudley (1978, Theorem 5.1), shows that,
however, for uniformly bounded classes % condition (3.1) with p = pp (or
equivalently, with p = ep) does control the size of “part” of (2.9), namely, of

SUDy, e 7e/n12<ed(fg)<s I Vn (f — 8 )l
for all e > 0.

3.1. THEOREM. Let & be a family of measurable functions on (S, &) such
that | fllo <1 for all f € F Let p be an e,-uniformly continuous pseudo-metric on
& such that ep(f, g) < p(f, 8), f, 8 € % and p(f, g8) = 0 if f = g P a.s. Assume
that ( F; p) satisfies the metric entropy condition (3.1). Then & is a functional P-
Donsker class if and only if there exist 7, eo > 0 such that for all 0 < ¢ < &,

3.2) lim,,_.,,,oPr*{supf,gefpz(f’g)s,:/nm |vo(f — 8)| > 7¢} = 0.

PrOOF. The metric entropy condition on (% p) implies (together with the
assumption ep < p) that both (& p) and (& ep) are totally bounded. So, by
Theorem 2.12, in order to prove sufficiency, we must show that (2.9) with ep
(instead of pp) holds. We will actually prove (2.9) with p replacing pp. Now, let
& be the set of equivalence classes of % mod P (that is, f ~ g iff f = g
P- as.), and let F be the completion of ¥ with respect to p. Then (., p) is a
compact metric space and (., ep) is Hausdorff. Hence the identity map (%, p)
— (&, ep) is a homeomorphism, in particular the inverse map is continuous. So,
(2.9) for p implies (2.9) for ep.

The metric entropy condition also implies that given ¢ > 0 we may take u
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large enough so that

(3.3) Yi=w @7 In N277, F; p))? < ¢/32
and

Qitug2 €
(3.4) Yi=o exp {— G + 1)4} < 6

Let r = p be large enough so that 8, := 27" < ¢2. Let 6, = 6o/2" = 27%" and b} =
27% In N(6}/2, Z p). Choose no > ¢%/2566%, and for each n = no let & = k(n) be
such that

1/2
(3.5) 1 8w ™ _
2 €

Fori=0,1, ---,let N;= N(}?, % p) and let &; = {hi, ---, hiy} C & such
that for each f € & there exists 1 = j(i, f) = N; with

p(f, Rjup) < 612
Now assume f, g € F with p(f, g) < 6¥/2. We have:
lva(f = 8)| < |valf = Bfap) | + | va(g = hfng)
+ Yosi<k | va(hiip — hithin) |
+ Yosi<k ll'n(hzi(i,g) - h}}t—il,g))l
+ | va(hon — hlop) |-
Since, e.g., p(hiup, hitiLp) < (36:)Y2 i =0, and p(hlo,5, hlo.») =< 3887 we have
Sllpf,ge.%p(f,)sasﬂl wm(f— 8| =2 Supf,gexpmg)sa,{/ﬂ v(f — 8) |
+ 3 Yosick SUPfge 7U Fpo(fer=3s 2| vnl(f — &) |.
Hence, for 7 as in (3.2),
Pr(Sup e sy =it 1alf = 8)| = @7 + 3)e)
< Pri{sup, e s <omie | vn(f — 8)| = 7¢)
+ Pr*{Yosi<k Supf.ge_9}U_9}+1,P(fv5)536}/2I va(f — 8)| > ¢}
= (I) + (II).
By (3.2), (I) =< ¢/2 for n sufficiently large. To estimate II, let
d; = max{(i + 1)7%¢/32, 2""%b;yy}, i=0,1, ---.
Then, by (3.3)
Yro d: < ¢/8.
Hence,

(H) = 205i<k 4N?+1Sllpf,g65€p(f,g)535}/’Pl‘*{ | Vn(f - g)l > Sdi}-
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Since ||f — gl = 2, pp(f, 8) =< p(f, 8) < 36}2 and for 0 < i < k, n"%; <
en”Y%/8 < 25), < §; (see (3.5)), Bernstein’s inequality (2.18) gives
(II) = 8 Yosi<x N%iexp{—64d?/(64/3 + 18)5;}.
Therefore, using (3.4) and the definition of d;, we obtain

.3 d?
(II) = 8 X2, exp {4 2ip2,, — 64-3 i}

118 o,
- 74 d;b’ - 21+r62 e
= 8 Lio exp {_ 118 a,} =8 Xio exp {_ m} <3

Hence sufficiency is proved.
Necessity of (3.2) follows directly from Theorem 2.12 since pp < ep.

While the entropy condition (3.1) is sufficient for the existence of the limiting
sample continuous Gaussian process in Theorem 3.1, it is not necessary (Dudley,
1967, Proposition 6.10). In the next theorem, essentially at the expense of some
measurability, we replace the entropy condition by the necessary condition that
% Dbe pregaussian.

3.2. THEOREM. Let & be a uniformly bounded NLDM(P) class of functions on
S. Then the conditions

(i) & is P-pregaussian

(ii) there exist 7, &g > 0 such that for all 0 < ¢ < ¢,

(3.6) lim sup,.Pr*{supf,geoy;pq—g)’sdnm Lz oilf (ffli/)2 — 8(X.) } > ‘re} =0

are necessary and (together) sufficient for F to be a functional P-Donsker class.

Proor. Sufficiency of (i) and (ii). We assume without loss of generality that
[ fllo <1 forall f€ & For simplicity of notation we write # for % By Theorem
2.16 and condition (i), (& pp) is totally bounded, and, by uniform boundedness,
(& ep) is also totally bounded. Hence for every ¢ > 0, and n € N, the number
m(e, n) = max{m: there exist hy, ---, h, € F such that P(h; — h;)?* > ¢/4n"/?
for i # j} is finite. Let & = &, n) be a collection of m(e, n) functions h; € F
satisfying P(h; — h;)?> > ¢/4n'/?, i # j. Note in particular that

(8.7 Supse & Ming, o P(f — h)* < ¢/n'/2.
Then by (3.7), for every 6 > 0 and for n sufficiently large (depending on §),

e | B ], o

szp,*{ “ B of (X) “ B >n} . Pr { “ Bk 0f (X)

> 're} .
e
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So, by Theorem 2.14 and (3.6), it is enough to show
21=1 le (X )

1/2

(3.8) lim;_olim sup,Pr { > ‘re} =0.
s

Let % (e, n) = &’ \{0} and let

A(e, n) = {Supfe.%’(z,n) E;=;IfJf(2X) 4}

(& and A for brevity). We decompose the probability in (3.8) as

e eh(X;
o220 | )
(3.9) n
< Pr{A°} + (r¢)'ExE, < ' Lﬂ—;‘;g(i ].A), = (I) + (II)
s

(see Remark 2.4(2) for the notation Ex and E.). Now we compute the limit of
(I). By condition (i) there exists a centered Gaussian process Y(f), f € Z with
the covariance of Gp (as in Definition 2.10) and with all its sample paths bounded
and uniformly continuous with respect to pp. If g is a N (0, 1) variable independent
of the process Y, then the process

(3.10) W(f)=Y(f) +g(Pf), fE F
has uniformly continuous paths with respect to ep and
E(W(f) — W(g)*=P(f—g)} (= (er(f, 8))).
So, by Theorem 2.16 (Sudakov),
(3.11) limy_oA(In N(\, Z ep))? = 0.
Since # #(e, n) < N(¢V/2/2n'*, % ep), (3.11) implies the existence of ¢, = ¢,(¢)
— 0 (as n — =) such that
(3.12) #L(e, n) < exp(c,n?/e)
for all ¢ and n. Then, using (3.12), | f|l~ < 1 and Bernstein’s inequality (2.18) we
obtain
lim;jolim sup,Pr{A°}
(3.13) < lim;olim sup, (#7)%supse « Pr{Xi, f3(X:) > 4nP(f*)}
< lim;jolim sup.exp{2c,n'/?/e — 9en'/?/16} = 0.

Hence, by (3.8) and (3.9), we need only show that lim,lim sup,(II) = 0.

By the first inequality in Lemma 2.9 applied conditionally on {X;} (i..
considering { X;} fixed) we can replace {¢;} in (II) by {g:}. So, for each n € N and
w ¢ A let us consider the Gaussian process

Zyn(h) = T gh(Xi(w))/n'?, h € &
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Its increments obviously satisfy, for all h, b’ € &,

Ey(Zun(h) = Z,n(h"))* = EQW(h) — 2W(h'))%.
Hence, by Theorem 2.17 (b)
i1 8f (Xi(w))

12

E, < 8 supre 5 E sup,e sp(f-g2<as | W(f) — W(g)|

L)
(3.14) + 26(5 In N(6'%/2, & ep))2

By the well known integrability properties of Gaussian vectors (Fernique, 1974,
1.3.2), and since supse 5; | W(f)| — 0 a.s., the first term on the right side of
inequality (3.14) tends to zero as é — 0. The second term also tends to zero by
(3.11). Since moreover these two terms are independent of w € A and n € N,
lim;_,olim sup, (II) = 0; this proves sufficiency. ’

For necessity we note that (i) follows by definition and (ii) follows from
Theorem 2.14 (2).0 .

3.3. REMARKS. (1). {e;} can be replaced by {g;} in (3.6).

(2) As in Theorem 3.1, other distances p = ep can be used in Theorem 3.2. For
instance, the following can be proved: Let p = ep be the distance induced on &
by a sample continuous Gaussian process on (% ep) and assume that p is
ep-uniformly continuous and that p(f, g) = 0 if f = g P—a.s. If there exist
7, & => 0 such that for all 0 < ¢ < &,

S alf(X) — g(X0) l - } —o

limjolim suPnPr{squ.gEof;p’(f.g)<e/n"’ .

then & is a functional P-Donsker class.

In order to compare the differences between Theorems 3.1 and 3.2, we describe
a randomized version of Theorem 3.1. We skip the proof because it is completely
analogous to the proof of Theorem 2.14 (except that Corollary 2.13 is not needed).

3.4. PROPOSITION. Let % and p satisfy the hypotheses of Theorem 3.1 (including
(3.1)). Assume further that ¥ is NLDM(P). Then the following conditions are
equivalent (where {£;} is either a Rademacher or an orthogaussian sequence):

(a) F is a functional P-Donsker class.

(b) There exist 7, eo > 0 such that for all 0 < e < &

. =1 &i(f(Xi) — g(X;
(3.15) hmnPr{Squ,geof;p’(f,g)Sc/n"’ ISR (f(nl/)2 £(X) >1'e} =0.

()

1 =1 & Xi - X,'
(3'16) llm,,E Supf’geof;pZ(f,g)sc/nl/z 1 (f(nl/l g( )) = 0.
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4. CLT’s without measurability assumptions. In this section we apply
Theorem 3.1, which does not require measurability, to derive a strengthening of
a result of Dudley on metric entropy*with bracketing” (see e.g. Dudley, 1982,
Theorem 6.2.1) and to prove a general CLT for classes of sets with applications
(old and new). (But our main results for classes of sets, which do require
measurability, are given in Section 5; the rest of the paper is independent of this
section except for Theorem 4.3, so it may be skipped by those readers who are
not concerned about measurability constraints.)

Given a family of measurable functions & and ¢ > 0, define

My(%, e, P) (=Mo(%¢))

(4.1) = inf{r: there exist measurable functions f,, - - -, f, such that for
eachg€ ¥, f,i=|g|and [ (fi— | g|) dP <27 for some
1=i=r}

For any family of functions %, pseudo-distance p, ¢ >0, and n €N, set
(4.2) F'(e,n,p)={f—g:f,8 € F o(f, 8 < ¢e/n'?}.
Finally, let | f |, = P| f |. With this notation we have:

4.1. THEOREM. Let & be a uniformly bounded family of measurable functions
on S. Assume:

(@) JoIn(N(e, & |+ [¥*)/*de <o

() n™2ln My(F'(e, 1, || * |11), ¢/n*? P) = 0as n — o for all e > 0.
Then & is a functional P-Donsker class.

ProOF. We may assume without loss of generality that supe s || f |- < %.
Obviously the pseudo-distance p(f, g) = | f — gli/* verifies the hypotheses of
Theorem 3.1. Hence, by (a), the theorem will be proved if we show that for some
7>0andalle>0,

> -re} = 0.

Since P|f| <e/nforf€ F'(e, n, || * 1), it will be enough to show

=1 (f(X) — Pf)

n1/2

(4.3) lim,,_mPr*{SUP/ef'(e,n,n g

(4.4) lim,,_,wPr*{sup,e Fe m, I+l Lﬂ% > Ue} =0

for some o > 0 and all ¢ > 0. We may assume o > %. Let m = Mo(F (¢, n, || * [|1),
¢/n'2, P) and fy, - - -, f be the functions given by the definition of M, (in (4.1)),
which we may assume to be bounded by 1. Then

2 | X | 2 XD |

(4.5) SUDfe e, ) T i S MA¥j=m T s

Taking into account that P(| f;| — P| fi|)> < P|f;| < 3¢/2n"/* we have that for
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each j,
Pr{Yk; | (X)) | > oen'/?
(4.6) s Pr{Zh (1 f(X) | — E|f(X)]) = (6 — %)en?)
=< exp{—(c — %)*(2 + 20/3)'en'/?}

by Bernstein’s inequality (2.18). Hence, by (4.5) and (4.6), the probability in (4.4)
is bounded by

(exp{—(o — %)*(2 + 2¢/3)'en A )Mo(F (e, n, || * 1), ¢/nV?) — 0. O
4.2. REMARK. (1) Dudley (1982) defines metric entropy with bracketing for a
class & C A(S, & P) as log NfYj(e, & P), where NfJ(c, % P) is the smallest

r such that for some f,, - - -, f, € 4 (P) and for each f € F there exists some i,
J=srwithfisf<fand | f— f;|l, <e Then it is obvious that

Mo(F (e, n, |+ [11), e/n'?) < 2[N{}(e/4n'?, F)].

(Use as the approximating functions for F'(e, n, | *||,) the functions
max(f; = fi, f» — f), where the f’s come from the definition of N{}.) Hence,
hypothesis (b) in Theorem 4.1 may be replaced by

(b’) lim,_0¢ In N{Y(e, % P) = 0.
Hypotheses (a) and (b’) are weaker than the condition

fo (In N{j(e?, F P)? de <

and therefore, Theorem 4.1 implies Theorem 6.2.1 in Dudley (1982).

(2) Here we translate Theorem 4.1 to sets. It includes Theorem 5.1 on metric
entropy “with inclusion” in Dudley (1978) (see page 917 and 918 in the same
paper to appreciate its wide applicability). For any class of measurable subsets
of S, I, define

My(Z, &, P) = M|(Z, ¢)
4.7) =inf{r:r=1,3A,,.--,A, € & such that forall A € 9 and
for some j, A C A; and P(A\A) = ¢/2}.
Given a class of measurable sets, here and in what follows, we write
(48) ¥'={AAB:A,BE ¥} and %/,={CE€ ¥': PC < ¢/n'%}

(for ¢ > 0 and n € N), where A denotes symmetric difference; and we denote by
N(\, % P) the \-covering number of & for the distance d(4, B) = P(A A B).
With this notation, Theorem 4.1 for classes of sets £ becomes: if

1
(1) J; (In N(e%, & P))Y? de <
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and
(2) n"2ln Mo(Z.n, e/n**, P) >0 as n— o, forall ¢>0,
then ¥ is a functional P-Donsker class of sets.
Next we consider classes of sets (i.e., classes of indicator functions). The
difference with the case of functions is that for sets we can dispense with the

centering, even in the nonrandomized version of Theorem 3.1: if eb(ly, Ip) =
P(A A B) < ¢/n"?, then n*?| PA — PB| < ¢. So, Theorem 3.1 becomes

4.3. THEOREM. Let ¥ C < satisfy the entropy condition
1
(4.9) f (In N(¢?, & P))Y? de < .
0

Then ¥ is a functional P-Donsker class of sets if and only if there exist 7, ¢o > 0
such that for all 0 < e < &,

n1/2

S(5x(4) — 8x(B) l - “’]f _ 0,

(4.10) limn—»«:Pr*{supA,BeY;P(AAB)Sc/n‘/’

Sometimes, x,(A A B) = | x,(A)— 8x,(B) | is easier to deal with than 9x,(A) —
x,(B). So, we state the following

4.4. COROLLARY. Let ¥ C & satisfy (4.9). Then ¥ is a functional P-Donsker
class of sets if there exist T, &g > 0 such that for all 0 < ¢ < ¢,

. ",0x(AAB
(4.11) hm,,_,mPr*{supA,Bey;p(Aw)Sc,nl/z 2 1 };5/2 ) = TC} = 0.

4.5. REMARK. (a) If & is countable, condition (4.11) is also necessary for the
CLT. To see this note that for X; fixed, the (conditionally) Gaussian process
T2, 8i(dx,(A) — 8x,(B)) dominates the process Yi1 £idx(A A B) in the sense of
Theorem 2.17; then the result follows by application of Theorem 2.17 (as in
(3.14)) and Proposition 3.4.

(b) Note that the conclusions of both Theorem 4.3 and Corollary 4.4 still hold
if we replace condition (4.9) by & being NLDM(P) and P-pregaussian.

The main result in what follows is Theorem 4.8 where condition (4.11) is
replaced by a rate of convergence to zero of the probability that [ren'/?] random
variables X; (i.i.d. with law P) fall simultaneously in some set A A B, A, B€E %,
with P(A A B) < ¢/n"/. From this we rederive several results from Dudley (1978)
and consider also a new situation.

We let r = r(r, ¢, n) denote the smallest integer larger than or equal to ren'/?
(r,e>0,n €EN).
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4.6. LEMMA. Let{X}} bei.i.d. with law P, and % a family of measurable subsets
of S. Then

Pr*{sup,,e Fim E”Lf/)‘}gél = 318}
n

= (Z) [2 Pr*{supse «pa<s./mi20x,(A) - -- 0x(A) = 1}

+ Pr*{supa,pe pa,pB>2:/n"%PasB)<cn20x,(A A B) - - 6x(A A B) = 1}].

Proor.
Yi-1 0x,(A A B)
Pl‘*{supA,Bez;P(AAB)Sc/nW nkl/g = 3¢
Yh=1 0x,(A) | YEo 8x,(B)
= Pr*{supA,BeZ;PA,PBssc/n‘/z nl/; + nl/; = 27¢
Yh=1 0x,(A A B)
+ Pl‘*{supA,BeZ;P(AAB)S»/M/Z;PA,PB>2m1/2 r:l/g = T€
h=1 0
<2 Pr*{supAEZ;PAsac/n‘/z &:1_15-;&(—4‘2 = TC}
n
Yi-10x,(A A B)
b=l X\ 2 )
+ Pr*{supA,BEZ;P(AAB)Sc/nl/z;PA,PB>2c/nl/2 V) = TE( .
Now,

n
2k=1 0x,(A)
Pr*{ SUPAe %; PA<3:/n/2 12 =

= Pr{Uj<.. <js,.{8UPAc #;Pas3/mi20x, (A) - - - 8x,(A) = 1}]

= (:)Pr*{supAGZ;PAssc/nl/z 0x,(A) .- 0x(A) =1},
and similarly
k-1 0x,(A A B)

ka1 Ox,
Pr*{supA,BEK;P(AAB)Se/nl/z;PA,PB>2c/n1/2 72 = 78}

= (:.L)Pr*{supA,BEf/;P(AAB)Sc/nl/z;PA,PB>2e/n1/2 0x(A AB) ... 6x(A AB)=1}.
The lemma is proved. O

4.7. REMARK. Exponentials are easier to use than factorials. Let us note to this
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effect that, since In 7! > 1 In x dx = r In r — r = In(r/e)", we have

()=

and that (en/r)" 1 for 0 < r < n. It is worth mentioning that the argument in the
last part of Lemma 4.6 and this inequality give:

k
P{Bin(n, p) = k} < (;‘);)k < (i’i’) .
k
This inequality is comparable to the usual exponential inequalities.
Combining this remark, Lemma 4.6 and Corollary 4.4, we obtain the following

theorem, which is the main result of this section.

4.8. THEOREM. If

1
(1) f (In N(e2, & P))Y? de < o,
0
en r(r,e,n) :
@) limn—»oo(m) Pr*{supae «;pazyni?dx,(A) - -+ 8x,.,(A) =1} =0,
en r(e,7,n)
(3) lim,,_,w<————
r(r, & n)

. Pr*{Supa pe «PaaB)<e/nV%pa,PB>2:/n20x,(A A B) - 8%, (A A B) =1}
=0

for all 0 < ¢ < &, for some ¢, 7 > 0, then & is a functional P-Donsker class of
sets.

4.9. COROLLARY. If

1
(1) f (In N(¢2, % P))"* de <
0
and
en r(r,e,n)
(2) limn_.oo(m) Pr*{supac«;,0x,(4) - 0x,,,(A) =1} =0

for some >0, ¢, > 0 and all &, > ¢ > 0, then ¥ is a functional P-Donsker class
of sets.

PrOOF. Obvious (assume ¢ € ¥).0

4.10. REMARK. Condition (2’) in Corollary 4.9 is not far from being necessary
for the CLT. In fact, it is not difficult to check, using Kuelbs’ or de Acosta’s
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exponential bounds for Banach space valued r.v.’s (see e.g. de Acosta, 1981,
Theorem 2.2) that
Pr*{supe «;pa<e/mi2dx,(4) - 0x,(A) = 1}

< Pr*{sup,qe @ 2zt (6X‘(/i) =~ P) =1- #} < ¢ exp(—dn'/?)

for some ¢, d € (0, x).

A first consequence of this result is another (easier) proof of the CLT under
metric entropy with inclusion (Remark 4.2 (2)), which follows directly from the
simple observation that

(4.12) Pr*{supse«;,0x,(A) - -- 0x,(A) = 1} = (3¢/2n*YM( L n, ¢/n'?, P).

We skip the details. .

As another consequence of Theorem 4.8 we prove a CLT result for sequences
of sets under summability conditions for their probabilities (Dudley, 1978, Theo-
rem 2.1). :

4.11. COROLLARY. Let ¥ = {A,} C & and let p,, = PA,.. If for some s > 0
Y1 Pin <, then ¥ is a functional P-Donsker class of sets.

PROOF. We may assume p,,}, p, < ¥, hence that p,, < m~/* (we may discard
a finite number of sets A,, from our collection if necessary). Then N(m™', &
P) < m, and therefore the metric entropy condition (1) of Theorem 4.8 holds for

% and P. Next we verify condition (2) in Theorem 4.8. With r = r(r, ¢, n) and
7> e, we have

en\’
(7) Pr{supg,.pa,<cmi20x,(Am) -+ 0x,(Am) = 1}

r r r
en en & _
= (T) Zlm:PA,,,Sc/nl/zj(P Am)r = (T) I:st(nl/z/c)‘<n1/2> + Zm>(nl/2/c)'m r/{l

Tl.'nl/2 1/2 8 Ttnllz 1/2 8
e n e n _ -
< <—> <——) + <-> <——) (renY?%s 1 — 1)1 >0 as n — oo,
T & T &

As for (3) in Theorem 4.8, we observe that there are at most (n'/2/2¢)® sets A,
with PA,, > 2¢/n'/?, and therefore,

en\
(T) Pr{suppa,, pa,>2/m20x,(Am A A,) -+ 0x(Am A A)) = 1}

(e[ Y (Y < (e (Y .
“\r/\nv? 2¢ “\r 2e - as n—

Now the result follows from Theorem 4.8.0
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Next we derive from Theorem 4.3 the CLT for VC classes (in the following
sections we give other proofs of this result; here we are only interested in showing
that it follows from Theorem 4.3). This is one of the main results in Dudley
(1978). The measurability hypothesis required in this proof is different from
that in Dudley (1978) and weaker than the one required in the proof given in
Section 6.

4.12. COROLLARY. Let % be a NLDM(P) VC class. Then ¥ is a functional
P-Donsker class.

4.13. REMARK. To prove this corollary from Corollary 4.9 we need to use an
eg:ponential bound. But this need not be the strongest; in fact, the Vapnik-
Cervonenkis bound (1971, Theorem 2) suffices.

ProOOF. By Lemma 7.13 in Dudley (1978) (see Theorem 2.23) the metric
entropy condition (1) in Corollary 4.9 is satisfied. So it is enough to prove (2').
By NLDM(P) it is enough to prove (2’) for o &. For ease of notation we use also
¥ for o % :

Given m > 0, let G be the permutation group of {1, ---, m} and let u be the
uniform probability on (G, 2°). Denote elements of G by = = (w1, - - -, ). Define
new variables Y;: (SY X G, ™ x 20, Pr X u) — R (where Pr = P") by

Yi(“’) w,) = X‘tr,-(w')(w)-

Since ¥ is VC, so is ¥’. Let v = V(Z’). For m > 1, let An(w) =
AL (Xy(w), -+, Xm(w)). Then, by Theorem 2.22 An(w) < m’, and if we call
Ay(w), -+, Asw)(w) the An(w) different sets in £, N {Xi(w), - -, Xn(w)}, we
have, form = r,

plw’: SUPae ., 0y, ww)(A) -+ dyww(4) = 1
= & plo’: BX,l(w:)(w)(Ai(w)) o 0x, ) (Ai(w) = 1}

(4.13)
= Yin@ (mP'"(:li(w))> / <T) where we let <i> =0 if z<r

1 r
= mvsupAey;’(;l 25":1 5Xj(‘,,)(A)) .

Since G is finite, the measurability assumption implies that the variable
SUp4e &, 0v,(4) - - dy,(A) is jointly measurable in (w, ). Then, since obviously
Pr{supacs«:,0v,(A) - -+ 8y,(A) = 1} = Pr{supaec«;,0x,(4) --- 3x(A4) = 1}
for all w’ € G, the bound (4.13) gives ‘

Pr{supac«;,0x,(4) - -+ 8x,(4) =1}

(4.14)
= E,u{supac«;,0v,(A) - -+ 6y, (4) = 1} = m® E| (1/m) T ox, ',



LIMIT THEOREMS FOR EMPIRICALS 961

Now by Theorem 2 in Vapnik—éewonenkis (1971) we get

2¢
Pl‘{ o > W}

en

1
\ m Yk 0x,(A)

= Pr{

for m = 2n/e% We take m = [27°] and 7 = 8e. Then by integrating over the event

1 2¢
{SupAeSf;,, — Tk 8x,(A) > W}

2

1 m € v em
- | > i) < domrem- 51}

and over its complement in the last term of (4.14) we obtain

% \ . 2
Prspie ) -+ 35 =11 =] () omers - {52},
Therefore,
r 1 r
(%) Prisupsc«;,0x,(A) --- 0x(A) =1} < 2(§>
for n large enough. This proves 4.12 by Corollary 4.9.0

Let us finally apply Theorem 4.8 in a situation which doés not fall in any of
the last three cases.

4.14. COROLLARY. Let { %,,}%-1 be a countable number of independent collections
of measurable sets and let & = Upn—1 %p. Assume:

(a) Ym [supses, PAF < o for some s> 0
and either

() ¢ In[sup,Mo(Zh, e, P)l > as ¢—0 and

f(ln N(e? % P))Y? de <
)
or

') %n.,m=1,-..,are NLDM(P) VC classes with uniformly bounded
VC constants.

Then % is a functional P-Donsker class of sets.

PrOOF. As in Corollary 4.11 we may assume without loss of generality that
Dm = SUpacs, PA decreases, p, < % and p, < m™". Then, under either (b)
or (b’), ¥ satisfies the metric entropy condition. Let us now assume (b). To
prove (2) in Theorem 4.8 we assume 7 > 3e/2 and n large enough so that
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Mo %, ¢/n?) < (3¢/27) V27" We then have

en\
(7) Pr{supae «;pa=c/n20x,(4) - - 0x,(A) = 1}

e r
< (7n) >m Pr{SUpAex;PAs:/nl/’ax,(A) T 6X,(A) =1

en) e \[ 3¢ 1Y

< (7) 2l ) 5
en\(2n2\'(3e\" 2 3¢\

S —_— — ——
@E)E G
N en r % —(1/2)7enl/? 1 3 \™*

r / \2r ren2s7l — 1 \2n'/?
_ <‘3_e (1/2)7en}/? 2n1/2 s
“\or 3e

+ (2 @/ (opisz\e 1 0 o
27 3e Tent2s™l — 1 - as n— e

To prove (3) in Theorem 4.8 let us notice that PA, PB > 2¢/n'?, PA, PB < %,
P(A A B) < ¢/n'/? is impossible if A and B are independent. Therefore,

en\’
(7) P{sup pe #;pa,pB>2:/nV%P(AnB)=e/n20x,(A A B) --- 8x(A A B) = 1}

en\)
< <7) Pm=n2/2ey P{SUD A Be 57,,; PaaB)=e/n20x,(A A B) --- 6x(A A B) = 1}

and if we assume n large enough so that

¢ 3e —(1/2)rent/?
)= ()

then, as in (4.12) this is bounded by

en r ﬁ s §g —(1/2)rent/? 3¢ r - % (1/2)rent/? ﬁ s o
r\ 2 )\er on'2] = \2r 2 )
as n — o, assuming 27 > 3e.
This shows that if % satisfies (a) and (b) then it is a P-Donsker class. A

similar proof, using computations similar to those of Corollary 4.10 (instead of
(4.12)), gives the CLT under (a) and (b’). We skip it. 0
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4.15. EXAMPLE. Take (X, Z, P) = ([0, 1], BY, A¥), and
%n=1{0,1]% ... X[0,1] XA X[0,1] X .. .:
A=]a,b],a,b€[0,1],b—a=(1/m)}.
Then ¥ = U %, is a P-Donsker class by Corollary 4.14.

4.16. REMARK. Corollary 4.15 cannot be improved to general { %} since for
example if %, = {C € Z: #C = m}, then ¥ = all finite subsets, which is not
Donsker. Also, condition (b’) is not stated in full generality: the VC constants of
%, can be allowed to increase moderately, but we do not pursue this issue, since
this is just an illustration of our main results.

5. The CLT under random entropy conditions. In this section we
replace the equicontinuity conditions (3.15) from Proposition 3.4 and (3.6) from
Theorem 3.2 by conditions expressed in terms of the random entropies N,
defined in (2.31), obtaining sufficient conditions for the CLT in the case of
families of functions, and necessary and sufficient conditions in the case of
families of sets.

(a) Families of functions. Although we present results in the i.i.d. case and
for a single class .%, since our estimates are made for each fixed n and since i.i.d.
is not required for randomization, most of the results in this section admit
generalizations to non-i.i.d. variables and to varying classes of functions %, as
considered by Le Cam (1983a).

The starting points are either Theorem 3.1 (or Proposition 3.4) or, preferably,
Theorem 3.2.

5.1. THEOREM. Let ¥ be a NDM(P) uniformly bounded class of real measurable
functions on S such that:

(i) & is P-pregaussian,

(i) there exist v, o, g0 > 0 such that for all 0 < ¢ < &,

1/2 ’
(5.1) lim,.Pr*{ln Noslye/n ™, o F cr) > ae} =0.

n1/2

Then & is a functional P-Donsker class.

The proof of Theorem 5.1 is based upon Theorem 3.2 and the lemma that
follows, which elaborates on a technique of Le Cam (1983b). This lemma, the
“square root trick”, seems to be of independent interest (see Pollard’s forthcoming
book for applications in other situations).

If ¥ is a class of functions, we let

@ ={h* he 9V,

5.2. LEMMA. Let <2 be a class of functions such that < is NDM(P) and
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uniformly bounded, say, by r. Set
(5.2) M, = n"*sup,e+Pg, n € N.

Let t > 0 and p > 0 be such that \ := 27/2tY/2 — 2V2M}/> — 2p > 0. Then for all n,
m>0,

Pr*{supyes Ti1 8(X)) > tn'/?

(5.3)
< 4 Pr*{N,o(p/n"4, 9'?) > m} + 8m exp(—\’n'/*/2r).

PROOF. As usual, we write ¥ for (&< Let
N.(8) = Yiisne=1) 8(Xi), N_(8) = Ziizne=-1) g8X), s€ ¥4

Then N, and N_ are equidistributed, they are conditionally independent given
{ed™1, N+(g) — N_(g) = I, €:g(Xi) and N.(g) + N-_(g) = ¥, 8(X;). We also
have

(5.4) E(NY*(g))* = EN_(g) < n'’M,

and
| (NY%(g) — NY(g)) — (N¥*(h) — NY*(h)) |

< 2[Th (8"2(X) — WXV = 2nVid,s(8V% b,

Then, using these properties of N, and N_ ((5.4) and (5.5)) together with
Lemma 2.7 and Fubini’s theorem, we obtain, with a = 27/%tY/2 — 2Y/2M /2,

Pr{|| $%; (X)) | « > tn'/?}
< 2 Pr{|| N¥2(g) | » = 27V%"?n'4}
< 4 E.Px{| N¥*(g) — N¥%(g) | » > an'’*}
= 4 ExP{| N¥*(g) — N¥(g) | ¥ > an'¥}
< 4 Pr*{N,.s(p/n"*, ¥ > m}
+ 4E%P.{| N¥%(g) — NY*(g) | « > an'’*, Npa(p/n'*, %) = m).

Let 2 be a d,2(p/n"*)-dense net of &2 of cardinality N,2(p/n'*, ¥'/%). Then
the P, probability of the last event is bounded from above by

m sup,e P.{| NY*(g) — NY*(g)| > An'/4)
_ IN.&) = N-(&)| _ \ 14
=m sngEQP‘{Nl/z(g) T N(g) > An

| Yy e:8(Xi) | 1/4
= m SupgcF ‘{(zz;l sy

| Sy 6ig(X) | An —N\n'/?
=m supgech{(Z?=l (X)) > 72 = m exp|—— |

(5.5)

(5.6)

This and (5.6) give (5.3).0
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PROOF OF THEOREM 5.1. We will assume without loss of generality that
| fllo <% forall f € # and as usual we write ¥ for ¢.% Let us fix ¢ € (0, &).
By Theorem 3.2, it is enough to show

‘ > 're} =0
Fon

El-l elf (Xl)
Tz
for some 7 > 0. Let 2 denote the set of centers of a minimal covering of ¥/,
by dn1-balls of radius at most ye/n'/% Then

(5.7) lim,_..P r{

(5.8) #9 = Nualve/n'?, F ).
Let X! = X,4i,i=1, -+, n. Let

(5.9) u=(r—v)en'?

Then

Pr{|| X1 &:f(X) | #;, > ren*/?}
= ExP.{|| Tk &f(X) | 5, > Ten'/?)
= Pr*{N ( 73 5’!.;) > m} + Pr{ll Y XD | 5, > 2}
(5.10)
+ E?cP{IIE Ly &f(X5) ||5~' > rent/

N, ( 172 9’;") m, || X FA(X) | Fon = g}

The P,-probability of this last event is bounded from above by (see (5.8))
m supse o, P.{| Xk ef( X)) | > u, X fAX) = u/2} < 2me™

where in the last inequality we use the standard subgaussian estimate (2.17).
Summarizing from (5.10) we get:

Pr{|| &, ef(X) || =, > en'/?}

(5.11) u i}
< Pr*{N,. 1,2, Fin)>mp + Pyl T FAX) | 5, > 5[ + 2me™

We now use Lemma 5.2 to estimate Pr{|| X%, f2(X) || 5;, > u/2}. Take F.,
as ¥'2 in Lemma 5.2 and observe that for f, g € F /., nz(f, g) < 2Y2dYi(f, g)
so that if d,.(f, 8 < ye/n*? then d.s(f, g < 2/*v'/2 1/2/n1/“ So the quantl-
ties appearing in Lemma 5.2 become r = 1, M, = = 212y 1/21/2 and
oA = [(r — v)2 — 2¥2(1 + 2v*/?)]¢*/%, and we obtain

Pr{ I 2 aif(X) | 5, > g}’

—A2n1/2
54Pr*{N ( 73 5’:")>m}> + 8 mexp( 2 >

(5.12)
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which applied in (5.11) gives
Pr{|| T% e:f(X) ||+, > men'/?)
(5.13)

—2\2,,1/2
<5 Pr*{Nn,l(r—;yliﬂ , _9’;’,,) > m} + 2me™ + 8m exp( >‘3'2’ )

Choose now m = exp(osen'/?) and 7 large enough (depending only on o and v) so
that oe — un""? and ge — A\?/2 are both negative. Then the limit in (5.13) is zero
by (5.1), and this proves (5.7).0

5.3. REMARK. Since the e-covering number of %’ is bounded by the square of
the ¢/2-covering number of % each of the following conditions implies (5.1):

1/2 ’
In Nos(ye/n'?, oF3) “} — 0

n 1/2

(5.14) lim;olim supnPr*{

1/2
(5.15) lim sup,,Pr"‘{ln N"'l('yr‘:{g » o %) > ae} = 0.

Also, ¢ can be replaced by % in these expressions.

From the point of view of the CLT it seems more natural to impose conditions
on d,, than on d,;. The estimate (5.12) can clearly be given in terms of Ny,
and we can use Theorem 2.15 in the first part of the proof. This yields the
following result: '

5.4. THEOREM. Let Z be a uniformly bounded NDM(P) class of functions.
Assume:

(i) & is P-pregaussian,

(ii) foralle>0,

=14
(5.16) lim,.E*[l A f (In Nug(N, o F L)) d)\:I =0.
0

Then & is a functional P-Donsker class.

PROOF. Asin 5.1 we assume | f || < % for all f € % and write & for (%
So,

Pr{|| Z&: &if(X) || 2, > Ten'?)
< Pr{ll St 20 | s, > 47)
+ ExP{|l 3% eif(X) | #;, > 7en'’?, | 3 fAX) || 5, < 4703
= (I) + (II).

To estimate (I) we apply Lemma 5.2 as in the previous theorem, to get

(5.17)
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(for & < Ve4):
(5.18) (I) = 4 Pr*{N,.(2~*n""4, F!,) > m} + 8m exp(—2~°n'/?).

Then, by taking m = exp(2-'n'/?) we see by (5.16) that lim sup,(I) = 0.
To estimate (II) we use Theorem 2.15 (2.24) with t, = 0, T = ¥/, and
Z = 3%, e:dx/n'2 So,

n-1/4
II) = E*[l A :c; <J; (In Npo(N, FLNV2dN + <I>(n‘1/“)>] -0

as n — o, This and (5.18) give that the probability in the left side of (5.17) tends
to zero as n — . Now the result follows from Theorem 3.2.0

5.5. REMARK. As in Remark 5.4, it is obvious that we can replace %/, by &
(at the expense of some weakening of the resulting statement).

We may ask whether certain random entropy conditions already imply that %
is pregaussian or even that & satisfies the L,-entropy condition ((3.1) with p =
ep). Lemma 2.24 shows that a condition stronger than (5.1) but of the same type
does indeed imply (3.1). Combining Theorem 5.1 with Lemma 2.24 (taking into
account that N,;(6, Z!,) = N%,(6, F) < N2:(5, #) and that if F satisfies
conditions (2.34) then n?/F(n) — 0) we obtain the following result.

5.6. THEOREM. Let & C Z(P) be a uniformly bounded NDM(P) class. Assume
that for some function F verifying the conditions (2.34), the sequence

{m N, ..(8/n'2, 5’)}”
F(n)

(5.19)

n=1

is Pr*-stochastically bounded for every 6 > 0. Then & is a funtional P-Donsker
class.

We do not know if F(n) can be replaced by n'? in Theorem 5.6, but as we
show in Section 6, this theorem is sharp (and so are 5.1 and 5.4). Now we pass
to classes of sets; for examples of application of the previous results see Sections
6 and 7.

(b) Families of sets. Let us recall from (4.8) that the indicator functions of sets
in £/, have the form '

{I1I. —Iz|: A, BE % P(|Is — Iz|*) < ¢/n'?),

which are the absolute values of the functions in &/, if ¥ = {Ic: C € Z}.
Hence random entropies of %/, are smaller than those of #/,. On the other
hand, by a proof which is similar but simpler than that of Theorem 5.1, using
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Theorem 3.2 (via Remark 4.5 (b)) we obtain:

5.7. THEOREM. Let ¥ be an NDM(P) class of measurable subsets of S. Then
% is a functional P-Donsker class if and only if both:

(i) ¥ is P-pregaussian, and

(ii) forsome vy, g,e0>0and all 0 <e < e,

1/2 ’
(5.1)’ lim sup,,Pr*{ln N"’l(’yil/zz » 0% en) > ge} = (.

PROOF. As usual, we write £ for ¢ % In contrast to the proof of Theorem
5.1, we apply Lemma 5.2 directly to prove (4.11) in Corollary 4.4 (see Remark
4.5 (b)). This proves that (i) and (ii) imply that % is functional P-Donsker. Now
assume that & = {I;: C € ¥} is a functional P-Donsker class. Since (i) is
necessary by definition, we only have to show that (ii) holds. By Theorem 2.14
(2) it follows that if # is a functional P-Donsker class, then

-1 &f(X)

n1/2

lim,E =0.

on

Then, Theorem 2.16 applied conditionally to the process Y%, gf(X;)/n?,
fE€ F!,, gives:

(5.20) lim,E supy>oA(In Ny 2(A, F70))2 = 0.

But any f € ¥/, takes on only the values 1, 0, —1, therefore for f, g € F/,,
(5.21) Yo(dno(f, 8))° = dna(f, &) = (dna(f, 8))

This, together with (5.20) implies that

(5.22) lim sup,E supy>o(A In N,.;(\, F!.)Y*= 0.

This implies condition (5.1) as N,,1(\, F/,) = N,1(\, £.,).0

As we see from the previous proof, there is a variety of necessary and sufficient
conditions for the CLT involving random entropies; the weakest (hence the best
sufficient condition) being (i) + (5.1)’, and the strongest (or the best necessary),
(i) + (5.20). Let us also record this last one (which by (5.21) can be given in
terms of N, , for any 0 < p < o but which we give in terms of N, ; for the purpose
of comparison with Theorem 5.4).

5.7’. THEOREM. Let % be an NDM(P) class of indicator functions. Then ¥ is
a funtional P-Donsker class if and only if both,
(i) ¥ is P-pregaussian and
(ii) lim,E supx>o(A’In Np (], 07 a))2 = 0.

In view of Theorem 5.7, it is natural to ask whether the N,,; entropy condition
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(5.1) is also necessary for uniformly bounded classes of functions % to be
functional P-Donsker. We now give an example to the contrary, even satisfying
the usual L,-entropy condition.

5.8. EXAMPLE. Let S = ¢, the space of sequences of real numbers converging
to zero. Let # = {fi}i-1 be the family of coordinate functionals of c,, enlarged
with the zero functional, i.e. for any {\,} € ¢,

fliAd) = My fo(iN) =0, R E N
Define a co-valued random variable as
Y(w) = {aren(w)}i=
where {¢;} is a Rademacher sequence, and
a=0nk)™* k>1;, a=1

Let P= <Z(Y) on (co, B (co)). We show that # is a funtional P-Donsker class
by applying Theorem 5.4 but that nevertheless % does not satisfy condition
(5.1). Let {X,};~: be independent copies of Y which we may assume to be the
coordinate functions on (¢, (Z(c))™, P") to comply with the measurability
framework of Section 2, but since % is a countable class this is not needed.
Then the random variables {f.(X,)}:, are independent with law < (are), ¢ a
Rademacher variable. For convenience we write

fu(X)) = arek.
Note then that
E(fX) = fAX))* = ak + a% < 2(ax V 0,)®
and that
drafus f) = T | A XR) = fAX) P/
= Y% |awek — a7 |/n < 2(ax V a,)?

For e <1, ar < ¢ if k > k, := e'/. So, the Ly(P)- and d,,-balls of radius ¢ and
centers fi, - - -, fx cover % Hence

In N(e, & P)<e™!, InNygle, F) <¢?

showing that the L,-entropy hypothesis (3.1) (with p = ep) and hypothesis (5.16)
of Theorem 5.4 are satisfied. So, ¥ is P-Donsker. We now estimate d,,;. For ¢
< n'2, it follows from the previous computations that

'g—:'" 2 {f' - f:f: L, j= eXP[nIM/el/z]}‘
Since 0 € %, this class contains the family of functions
.9"(0, n) = {ﬁ 1> exp[nl/‘/sl/“’]}.

So, in order to show that the random entropy condition (5.1) does not hold, it is
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enough to prove that for any v, ¢ > 0 there exists ¢ such that for all ¢ € (0, &),
lim,_Priinf[d, ,(f;, f): i # J, exp(n'/*/e'/?) < i, j < 2 exp(on'/?)]
> ye/n'? = 1.
We take & < (4y0)~". Since for i, j < exp(on'/?),
dni(fi, f) = Tia I[,f#}]/2an3/2,
we need only show that
lim,, o Pr{infis j<oexp(ont?) Ti=1 [ihedy > 2v0¢/ n'? =1,
or that
limpPr{Tie1 fihecty < 2y0e/n'/? for some i # j with i, j =< 2 exp(on'/?)} = 0.
This probability is clearly bounded from above by
4 exp(20n'?)Pr{Ti Lipry > (1 — 2vyoe)n}
= 4 exp(2on'?)Pr{Ti-; (Li2-h — ¥2) > (& — 2vy0e)n)
< 4 exp(20n'? — 6n/45) — 0,
by Bernstein’s inequality (2.18).0

We do not know whether the conditions in Theorem 5.7’ are sufficient in the
case of functions.

6. Estimation of random entropies for families of sets with applica-
tions. In the case of sets random entropies can be related to the combinatorial
quantities A“(Xy, - - -, X,,) introduced by Vapnik and Cervonenkis (1971) for the
Glivenko-Cantelli theorem (see (2.23) for the definition). In fact for any family
ofsets L nEN,0<p=<o,¢e>0,

(6 1) Nn,p(c, g) = AK(XI, tt Xn)’ €= O,
' Nole, €)= A7 (Xy, -+, X,), 0=<e<n VOV

(with 1 = n~V*) as if two sets A and B determine the same subset of the sample
Xi, - -+, Xn, then d,, (I, Ip) = 0 and otherwise, d,,(I4, Ig) = n~ VD,

6.1. PROPOSITION. Let & be a NDM(P) class of sets such that
(i) ¥ is P-pregaussian, and
(ii) there exist ¢ > 0 such that for all e > 0

0% ;,n PP
(6.2) lim,,_,mPr*{ln = (ffl‘,; X Ue}

=0.

Then % is a functional P-Donsker class.
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6.2. COROLLARY. Let & be a NDM(P) class of sets such that
(i) ¥ is P-pregaussian and
(ii)

Y' TR
(6.3) lim, . 3-8 ("f;;/z 2 Xn) _ i probability.

Then ¥ is a functional P-Donsker class.
Proposition 6.1 is related to Theorem 1 in Le Cam (1983b).

6.3. PROPOSITION. Let ¥ be NDM(P) and let F be a function verifying the
conditions (2.34). Assume that the sequence

In AXy, -+, X)|™
€4) Jln (F<n> )} »

is Pr*-stochastically bounded. Then ¥ is a funtional P-Donsker class.

Typical functions F(n) are F(n) = n'?/(In n)(Inzn) -- - (Ing-1n)(Ingn)**? for
some k=1 and 6 > 0, where In,n =1In(.-- (Inn) -.-.).

6.4. REMARK. We may ask how close the conditions on A¥ in the previous two
theorems are from being necessary for the CLT. In this respect we note the
following: if the “bounded” CLT holds for ¥ (i.e. if the sequence of laws
{L (2% (0x, — P)/n*2 || «)}n1 is tight) then the sequence

{ln A(Xy, -, X»}f

(6.5) n2ln n

n=1

is stochastically bounded (we assume % countable). To prove this, note that if
this sequence is not stochastically bounded, then there exist + > 0, A, 1 oo,
n; 1 o such that

(6.6) Pr{A“(Xy, ---, X,) > exp(Axni’? In ny)} > 7;

then by Sauer’s theorem (Sauer, 1972), with probability larger than 7, for each
k, & completely shatters a subset of {X;, - - -, X,,} of cardinality [A,n}?/3] (i.e.,
there exists Ji(w) C {1, - - -, ny} with #Ji(w) = [Axn}?/3] such that A% {x;: i € J,}
= 214xn}"/3]) with probability at least 7. Since {7, &;/n'/2} is stochastically bounded
and the bounded CLT holds, by Lemma 2.7,

{ " Yn=1 8i5X,-/ n'/? | Z}:=1

is stochastically bounded, but this is a contradiction with the following (which
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follows from the previous discussion):
lim, olime e 2 Pr{l| 33, eidx,/ni? || « > 4t}
2 limolimp o ExP.{ | Sics, e:0x,/nk? | « > 4t}
= lim,_ e limy o ExP.fmax[#J, N {i: & = 1}, #Jx N {i: & = —1}] > 4tn}/?}
=7>0.

This shows that the conditions on A¥ in the previous propositions cannot be
much weakened, partially answering a question of Le Cam (1983a). It would be
interesting if one could obtain more precise conditions on the CLT in terms of
K instead of In A, where K is the maximum of the cardinalities of the subsets of
{Xi, - -+, X,,} which are completely shattered by %

Next we show that the previous propositions are useful and sharp. Certainly,
modulo measurability, all of them imply the CLT for VC c¢lasses (by Theorems
2.22 and 2.23). Proposition 6.1 implies also a CLT under a metric entropy with
inclusion condition (with only a pregaussian assumption). Even the weaker
Proposition 6.3 implies the CLT for sequences of sets (Corollary 4.11) with
interesting rates on A as well as the theorem of Durst and Dudley (1981) (see
also Dudley, 1982, Section 6.3) for & = 25 and P discrete. For M, as defined in
(4.7) we have

6.5. COROLLARY. Let ¥ be a NDM(P) class of sets such that
(i) ¥ is P-pregaussian, and
(ii) n'Y2In My(Z!,, e/n'?, P) — 0 as n — o for all ¢ > 0.
Then ¥ is a functional P-Donsker class.

PROOF. Let My := My(¥£!,,¢/n*? P)andlet A,, - - -, Ay, be sets in & such
that for each A € ¥/, there is ju = M, satisfying A;, D A and PA; \A < ¢/2n'2.
For any set B, let X N B denote the intersection {X;, ---, X;} N B, and #X N B
its cardinality. Then for ¢ to be chosen below and for all ¢ > 0,

Pr*{A“~(X,, - - -, X,) = exp(oen'/?)}
< Pr{3}f 2#*™ > exp(oen'/?)}
< Momax;<p, Pr{2#*" = exp(sen'/?)/Mo} = (I).

Let m denote the smallest integer larger than or equal to (sen'/? — In Mo)log;e.
Then

(I) = Mymax;<py Pr{there are at least m X’s in Aj}

en\"[ 3¢ \"
<l ) (o)

By the hypothesis on M,, there exists no such that
M, < exp(sen'’?/2), n > ny,



LIMIT THEOREMS FOR EMPiRICALS 973

and therefore, for o > 3e?/(log;e),

3e (oelogoe/2)n/?
—0 as n— oo,

I = exP(“nl/z/z)((logge)u

Therefore, condition (ii) above implies condition (ii) in Proposition 6.1.0

" As in Remark 4.2 (1), we can compare this result with Theorem 5.1 in Dudley
(1978). Corollary 6.5 shows that for a NDM(P) P-pregaussian class %, the
condition

lim,_ e In Ni(e, & P) =0

implies that % is a functional P-Donsker class. (See Dudley, loc. cit., for the
definition of Nj.)

In view of Proposition 6.3, the following corollary implies the CLT for
sequences of sets (Corollary 4.11).

6.6. PROPOSITION. Let ¥ = {An}m=1 and p, = PA,,. Then, for all s > 0 there
exists 0 < ¢, < o such that

ln Ag(le M) Xn) >e¢

7,';,1p‘,’,,<oo=Pr{ ,}’—»0 as n— oo,
Inn

ProoF. Let t, = [2s] + 1, m, = t,(£) and assume 2n > t,. We first observe
that if for every A,,, m > m,, fewer than ¢, X’s (out of X;, --., X,) are in A,,,
then

AF(Xy, --o, Xa) < m + TH03 (',:) = 2t,,(f).

-1/s

Therefore, since p,, = m™"/* for m > m, and n large enough, we have

Pr{A?(xl, ey Xo) > 2ts<f)}

= Pri#{{Xi, ---, Xu} N An] = ¢, for some m > m,)}

=< (?)Pf{supmmnax,(An) e 6X,.(Am) = 1} < (?) Em>mn pf:‘ -0

as n—ooo, [

This proposition should be compared to Theorem 9.3.2 in Dudley (1982) which
yields that no infinite sequence of nontrivial independent sets is a Vapnik-
Cervonenkis collection.

Durst and Dudley (1981) and Borisov (1981) give two characterizations of
those discrete probability measures for which & = 2" is a functional P-Donsker
class, in particular showing that the metric entropy with inclusion result is sharp.
Next we give yet another characterization of these P which shows that Theorem
5.5 (the weakest theorem in Section 5), is sharp.
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6.7. COROLLARY. Let S=N, & =2", and let P be ap.m.on S. Then ¥ is a
functional P-Donsker class if and only if there exists a function F satisfying the
conditions (2.34) such that the sequence

{ln AY(X,, -, Xn)}‘”

(6.4) Fn)

n=1

is stochastically bounded.

PrOOF. Clearly & is NDM(P). Let P{i} = p;. By Proposition 6.3, condition
(6.4) is sufficient for % to be a functional P-Donsker class. If & is P-pregaussian,
then ¥2, p}/? < « (Durst and Dudley, 1981). So, to prove the corollary it is
enough to show that

In A%(X,, ---, X,,>}°°
pl/2 o
6.7) Zipi < =’{ F(n)

is stochastically bounded for some F satisﬁing (2.34).

n=1

Let ¥ p¥2 < », p; |. By a theorem of Boas (1960), if <(X) = P, then

00 1/2
f (Pr{X > u}) < o
u

Let Z be a nonnegative real random variable with a differentiable distribution
function such that

o 1/2
>
f <1_’{Zu_u_}> du<ow and P{Z>u}=P{X>u} forall u>0.

Set G(u) = P{Z > u}/u. We claim that the function

Flu) = G“(—1—>

4deu

satisfies the required conditions. F satisfies the conditions (2.34):

F(u) _ of 1
Fw)? (as G)), - 4e Pr{Z >G 1(4eu)}l’ and

f i(;/? du = 2Ve J;G‘l(yz) dy < @

by Corollary 1 in Boas and Marcus (1973). The sequence (6.4) is bounded in
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probability:

p {m AY (X, -, X)
r F(n)

>2ln2}

= Pr{A" (X, -+, X,) > 22"} = Pri#{Xy, - -, X,.} = [2F(n)] + 1}

< Priat least [F(n)] x/s are larger than F(n)}

- (en Pr{X > F(n)}>m")] - (Zen Pr{Z > F(n)}>m")]
B [F(n)] B F(n)

= (W™ 50 as n—>w 0O

(Note that by taking F(u) = G™'(1/4eu) V u'/?, one can even ensure that the
sequence (6.4) is a.s. bounded if ¥ p}/? < ».)

The results 6.5-6.7 show that it is possible in many instances to estimate
efficiently A“(X;, - - -, X,), and that Propositions 6.1-6.3 are sharp. It is difficult
to compare these results with Theorem 4.8: both types of results cover the best
known cases and we do not know of any example for which one type of theorem
applies and not the other (aside from measurability). Theorem 4.8 has the
advantage of not requiring measurability whereas the results in this section have
the advantage of generalizing to classes of functions, and of course providing
essentially necessary and sufficient conditions in the set case. Note also that in
the applications we have not used the full strength of Theorem 5.1 as we
considered A = N,,;(1/2n) instead of the smaller N,(n~"?).

7. Applications to the CLT for uniformly bounded processes. Let
{X(t): t € T}, T compact metric, be a stochastic process with trajectories in C(T')
(or if T = [0, 1], in D[0, 1]¢: see e.g. Billingsley (1968) for definitions), and let
Py be the law of X. Let F = {6,: t € T}. If ¥ is a functional Px-Donsker class
and if {X;}iZ, are i.i.d. with law Py, then it is obvious that

(7.1) L (T (Xi — EX)/n'?) - L(Z)

where Z is a Gaussian process with trajectories in C(T') (or D0, 1]¢) as given in
Definition 2.11, and conversely. If this limit holds we write X € CLT.
Theorems 5.1 and 5.4 and some observations of Kolcinskil are relevant to the
CLT in C(T'). Below we also obtain results of this type as well as some results in
Djo, 1].
In the theorems below the hypotheses easily imply that the class is NDM(P).

7.1. THEOREM. Let X be a centered, uniformly bounded, pregaussian process on
T. Suppose that there exists a nonnegative real random variable L and a continuous
pseudo-distance p on T such that for some r € (0, 1],

(7.2) EL" <o, lim,eln N(e, T, p") =0
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and
(7.8) | X(t, w) — X(s, ) | < L(w)p(s, t), s,tET, w€EQ
Then X € CLT in C(T).

ProoF. By Theorem 5.1, it is enough to check condition (5.15) for & =
{6:: t € T} and {X;}Z,; i.i.d. with law P. We assume | X || < %. Now,

dn1(3s, &) = X1 | Xi(®) — Xi(s) | /n = (Ek1 Li/n)e’,

where {L;} are independent copies of L. So, it follows that

1/2
p I{ln Noalye/n', F) e}

n1/2

1/2 n r r
< Pr<|[ln N(ye/n'?, 'Z:,/Z(Eml Li/n)p") > e}

., L} " 1/2 r
< Pr{“—nlL—‘ > 2EL'} + Pr{ln N (78/2(1};1;/2)'1 T 8}

—0 as n—> o

(the first term by the law of large numbers, and the second by hypothesis). This
proves (5.15) and the result follows from Theorem 5.1.0

7.2. REMARK. Now we compare this result with the Jain-Marcus theorem
(1975). For this purpose assume, as usual, || X ||~ < % and

| X(t, w) = X(s, w) | = L(w)p(t, s).
Then, for0<r<2
| X(t, w) = X(s, w) | = L"(w)p™(t, 3).

Now assume EL’™ < « and that p"/2 satisfies the metric entropy condition

(7.4) f(ln N, T, p"?)"? de > co.
0

Then E(L,/;)* < o, so by the Jain-Marcus CLT (1975) X € CLT in C(T).
However, notice that (for 0 < r < 1) (7.4) is a stronger condition than (7.2).
If 1 < r < 2, an application of Theorem 5.4 gives the CLT for uniformly
bounded processes satisfying condition (7.3) for L € L.(Q) and p verifying (7.4).
However this is no improvement on the Jain-Marcus CLT.

Next we refine a result of Kolcinskil for processes whose sample paths have
bounded p-variation.
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A function x: [0, 1] — R is of bounded p-variation if
VB(x) := sup Y= | 2(tj+1) — x(8) [P <

where the supremum is taken over all finite partitions 0 =, <, < --- <t =1.
By definition there exist N = N, ,(¢, &) ordered points in [0, 1], t; < --- <
tn, such that d,,(t;, tj) = ¢/2 for i # j. Then for p = 1 and N, :(¢) = 2 we have

1 1
o im0 VE(X) = = o ik | X)) — Xi() 1”
(1.5)

- eP(N — 1) - ePN,,1(¢)
- 2r - gptl

This simple observation (due to KolCinskii, 1981) together with Theorem 5.1
gives the following:

7.3. THEOREM. Let {X(t): t € [0, 1]} be a centered, uniformly bounded process
whose trajectories are right continuous and have left limits at every.t € [0, 1].
Assume that X is a pregaussian process and that for some p = 1

(7.6) lim, o u?Pr{ln,V,(X) > u} = 0.
Then X € CLT in (D[0, 1], || * ||»), and if X is sample continuous then X € CLT
in C[O, 1].

ProoF. By Theorem 5.1 it is enough to verify condition (5.15). For n large
enough we have (using (7.5) and (7.6)):

Pr*{ln N,.(ye/n*?, &) > en'?

2p+lnp/2—1
< Pri—— 3%, VB(X) > exp(en'’?)

,yPeP

J' ) ~PeP e enl/2
<n Pr~l V(X)) > PY=SwyY exp(en'?) r < n Priln,V,(X) > op

—0 as n—o> o 0O

We note, in connection with the previous theorem, that the L.-entropy
condition together with only finiteness of V), are not sufficient for the CLT: see
the last example in Strassen and Dudley (1969).

Theorem 7.3 has a surprising corollary on the CLT under incremental moment
conditions:

7.4. THEOREM. Let {X(t): t € [0, 1]} be a centered stochastically continuous
uniformly bounded process whose trajectories are right continuous and have left
limits at every t € [0, 1). Assume that for some ¢ > 0, some nondecreasing function
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F e D[0, 1] and for dll s, t € [0, 1],

(7.7 E|X(t) — X(s)| = C|F(t) — F(s)|.

Then X € CLT in (D[0, 1], || * || ), and if X is sample continuous, then X € CLT
in C[0, 1].

PrOOF. It is obvious that boundedness and (7.7) implies the L,-metric
entropy condition and hence X is pregaussian. Now if , = {t}},n =1, ..., is a
sequence of nested finite partitions increasing to a dense set, then for any
function x in D(0, 1],

V(x) = tlimp e X | 2(t31) — x(¢7) |
Therefore, by (7.7) and monotone convergence,
EV(X) = limp X E| X(t}) — X(t7) | = C(F(Q1) — F(0)) :=C".
Hence, we can apply Chebyshev’s inequality to get
lim, o u?Pr{ln,V(X) > u} < lim, ,.C’'u’e™ = 0.
This proves (7.6) and the result follows from Theorem 7.3.0

This result should be compared to Theorem 12.3 and 15.6 in Billingsley (1968).
See also Hahn (1978) and Pisier (1980).

7.5. EXAMPLES. Let 6 be a uniform random variable on the circle T (note that
Theorem 7.4 also holds for processes on the circle T). Let 7 = 7, € (0, 1) with
probability p., be independent of 6. Define

X(t) = CI[0—1,0+1'](t)

where ¢ = £1 with probability Y2 and is independent of 6 and 7. Then the variation
V1(X) equals 2 and since

E|X(t) — X(s) | = Zepemin(2 |t — 5|, 47) = 2|t — 5],

the L,-entropy condition holds. Hence Theorem 7.3 applies (alternatively Theo-
rem 7.4 applies with F(t) = t). Next we give an example showing that Theorem
7.3 and 7.4 are not true for general unbounded processes. Let now {C.} be an
unbounded sequence and choose {p.} such that for 1 < r < 2, ¥ p,C} = o, but
> prCr < . Then, for Y = CX, where C = C, when 7 = 7., V1(Y) = 2C and
therefore EV1(Y) < . In fact

E|Y(t) = Y(s) | = 2(ZepxCi) [t = s].

However E || Y ||% = o and therefore Y & CLT (see e.g. Jain; 1976, Theorem 5.7).
With some extra care Y can even be chosen to be pregaussian.

The Jain-Marcus CLT implies (see Remark 7.2) that if a uniformly bounded
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process X(t) satisfies that for some @, 3> 0 and all 5, ¢t € [0, 1]

| X(t) — X(s) | = L(w) |t —s|* ELf<o
then X € CLT in C[0, 1]. Next we show, as another application of Theorem 5.1,
that the integrability requirement on L can be considerably weakerned for a < 1.

7.6. THEOREM. Let {X(t): t € [0, 1]} be a centered stochastically continuous
uniformly bounded stochastic process. Assume there exist r < 1, a nondecreasing
function F € D[0, 1] and a real random variable L > 0 such that

(7.8) wPriln,L>u} -0 as u—x,
and for which
(79) | X(@t, w) — X(s, w)| = L(w)(F(t) — F(s)) w€Q O=s=t=<1.
Then X € CLT in (D[0, 1], || * |») (and X € CLT in C[0, 1] if X is sample
continuous).
PrROOF. We first show that under (7.8) the L,-metric entropy éondition for
ox holds. By (7.8) there exists e < uy < o such that
PriL>u} < (Inu)™? for u=u.
Hence there exists a constant b < o such that
E| X(t) — X(s) |?
2 b -2
=2 J; uPr{L|F(t) — F(s)|"> u} du = b[ln(m)] .

This then yields (In N(e, 0x))/? < Ke™'/? for some K < o, which implies that X
satisfies the L,-entropy condition.
Now we obtain from (7.5) that

¢PN,1(e)/2P7! =< (T LY/n)(F(1) — F(0))

where p = r™! = 1, L; are i.i.d. copies of L and we assume N, ;(¢) = 2. If we let
C = F(1) — F(0), then we have that for n large enough

Pr*{ln N,,(ye/n'?, &) > en'/?3
1 /2 'n
= Pr{2p+ CnP 3. L
n

yPeP

‘> exp(en? 2)}

YPeP . en'/?
<nPr L>Wexp(sn/) <nPriln,L > 5 —0

as n — o by (7.8), and Theorem 5.1 applies. 0

7.7. REMARK. Theorem 7.6 can also be obtained from Theorem 5.3 by using
essentially the same computations.
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8. Remarks on the unbounded case. In this section we are concerned
with the CLT and the law of large numbers in the unbounded case.

(a) The law of large numbers. In this subsection we treat the strong law of
large numbers. Our results extend those in Vapnik and Cervonenkis (1981) for
uniformly bounded %

8.1. DEFINITION. A family of measurable functions & C Z(P) satisfies the
Glivenko-Cantelli theorem for P (and we write & € GC(P)) if

‘ Sty (fX) = Pf) “ 4 0} o
n 5

8.1) Pr*{

8.2. REMARKS. Assume ¥ is NLSM(P). Then: (1) If E| /(X)) | < o, as.
convergence to zero of the random variables (8.1) is equivalent to their conver-
gence in probability (Steele, 1978, Kuelbs and Zinn, 1979, Pollard, 1981). The
same remark applies to

7 }n=1.

8.2) i &f(X)

) n

(2) If the sequence in (8.1) converges a.s., then the Borel-Cantelli lemma
implies that

(8.3) E| f(X)) — Pf| » < o».
Hence, for &4 (P)-bounded families % the condition
(8.4) E|f(X)|» <o

is necessary for & € GC(P).

(3) If (8.4) holds, then one shows by the usual proof of the law of large
numbers in R (i.e., using truncation, recentering and Chebyshev’s inequality)
that

supye Pr { s (AX) — BY) l S °]f o

for all ¢ > 0. Hence Lemma 2.7 applies and we conclude that a NLSM(P)
< 1(P)-bounded class # satisfies the Glivenko—-Cantelli theorem for P if and
only if both (8.4) holds and

(8.5) H Z—%@—Q — 0 in probability.

oif

The following theorem and its corollaries generalize the Vapnik—éewonenkis
(1981) law of large numbers (see Theorem 2.19) to unbounded classes. It also
generalizes Steele’s (1978) strengthening of the VC law of large numbers for sets.
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Here and in what follows we let
F(x) = supge,# If(x) |, x€S.
It is appropriate for the reader at this point to recall Lemma 2.20.
8.3. THEOREM. Let & be a NLSM(P) 4 (P)-bounded class of functions. Then

Z € GC(P) if and only if both:
(i) FeE .AP),and

E*In Nn,z(e, 0Fm)
n

(i) limp .« =0 foral M<» and ¢>0,

where O?M = {fI[psM]Zfe 09’}.

PROOF. As usual we use 7 to denote (F
Sufficiency of (i) and (ii): Let fur = flir<pn and f¥ = f — fu, f € % Then as
in Pollard (1982) page 243, we have that for all ¢ > 0,
/ St (F(X) = P ‘ - ]f
&

limM_mlim,,_mPrl SUpse .+ n

(8.6)
(FMX:) — PF™)

n

< limM_mlim,,_mPr{ Li + 2 PFM > e} =0.

Hence, it is enough to prove that for all 0 < M < ,

| S efulXD) | _
n

(see Remark 8.2 (3), (8.5)). For this we apply Theorem 2.15 (2.24), as follows:
pel ” SthafX) | |
1 n J

(87) Pr - lim,.__,wsup,ef 0

Pt

Y &f(X5)

n1/2

)

oM 1/2
(8.8) =< CE* f <M) de + 8¢ 'CM(In In 4)Y/2n~1/2
0

2M [y 1/2
<C f (E In Neole, 7 M’) de + 8:'CM(In In 4)"?n V2
0

1
< Ex[l A (mm E.

n
—0 as n — o,

where in the last inequality we use the fact that [V is a Riemann integral, and
convergence to zero follows by dominated convergence and hypothesis (ii) (just
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note that Ny 2(e, Fu) < Nnwle, Fu, P) < (M/e)", so that ((In Ny 2(e, Far))/n)"?
< (In(M/¢))*2, which is integrable on [0, M]). So, (8.7) is proved, and by (8.6),
the proof of sufficiency is completed.

Necessity of (i) and (ii). Necessity of (i) follows from Remark 8.2 (1). By
inequality (2.5) we have

‘ Y gif(Xy) ”
n 5

‘ T, :f(X,-) + (D).

< M,max, << E ‘ ‘
7

89 E l

Since EF < », we have E max;<, || f(X:)/n | s+ — 0 as n — . So, by Hoffmann-
Jgrgensen’s inequality (Lemma 2.8), if & € GC(P) and is NLSM(P), then

E Lk sf(X) —0 as n— o,
n F
Therefore, by (8.9)
E Ziz &f(X) —0 as n—o oo,
n F

Then the Sudakov minoration (Theorem 2.16) implies
(8.10) n"2E*sup,soA(In N,o(A, )2 >0 as n— o
Since N, 2(\, &) = N,2(\, Fu) for all M < it follows that

1/2 1/2
(811) E* —IEM < (ln<gM)) E*<ln N(e9 ?M)) N 0

n € n
for all.e > 0.0

The previous proof shows also the following:

8.4. COROLLARY. Let & be a NLSM(P) ¥4 (P)-bounded class of functions. Then
& € GC(P) if and only if both:
i) FE AP) and

1/2
(ii) anE*(l—n——N"'—z'(:’—i’—@) =0 forall ¢>0.

Since N, (e, ) increases with p, and also, on 0 Fu, dn2 < (2M)* P72V
if0<p<2andd,, = (2M)®P72dP2 if 2 < p < o, it follows that in Theorem
8.3, N,.. can be replaced by N, , for any p € (0, ») for necessity and p € (0, ]
for sufficiency of conditions (i) and (ii). Combining this observation with the
necessity part of Theorem 2.19 gives:

8.5. COROLLARY. Let ¥ be a NLSM(P) 4(P)-bounded class of functions. Then
& € GC(P) if and only if both:
(i) Fe %(P)and
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E*In N, (e, 0. Fu)
n

(ii) lim,, e =0 forall e>0, M<oo,

and some (all) p € (0, «].
Another consequence:
8.6. COROLLARY. Let ¥ be a LSM(P) uniformly bounded class of functions.
Then if & satisfies the Glivenko-Cantelli theorem for P, so does
={Hf:-f€ Z} forall HE ZX(P).
PROOF. Let M = sup{|f(s)|: s € S, f € ¥}, and k = M. By considering
M™% U {k}] we may assume supse | f(s) | = 1 for all s € S. Then, for every

0<M<wandf, g € F we have d,o(HfI}\n <My, Hgln1=a) < Md,.5(f, &), so
that Ny o(e, (HF )u) < Npa2(e/M, F). Hence Theorem 8.3 applies. U

The following, which is used below, is easy to see from a close look at the
proof of Theorem 8.3 (see (8.8)):

8.7. COROLLARY. Let &% be a NLSM(P) A (P) bounded class. Then & €
GC(P) if and only if both F € 4 (P) and

2M
(8.12) lim,,_,mE*<1 A n~2 f (In N, (e, 0F))? de) =
0
forall M < oo,

[

Finally we extend Theorem 2.17 ((a) < (c)) (only necessity is interesting).

8.8. COROLLARY. Let & be £-(P)-bounded and assume that it is NLSM(P)
andthat 9 ={|f—g|:f,g € F}is LSM(P). Then & & GC(P) if and only if both
F € Z(P) and there exists a finite function T'(e), ¢ > 0, such that

(8.13) lim, . Pr*{N, (e, o.%) > T(e)} =0, ¢>0.
PROOF. As in Theorem 8.3, in order to prove sufficiency it is enough to show

that (8.7) holds for all M whenever (8.13) does. Now, the usual arguments (see,
e.g., the proof of Theorem 5.1) give

pr{ i af(X) > 28}
oM

n
< Pr*{Nn 1(8, Og-M) > T(e)} + T(e)Exsup,eong [

i sf(X) e,f(X) ’ }

< Pr*{N,.(e, 0.F) > T(e)} + T(e)M%?n™* -0 as n— o,

Necessity follows approximately as in the proof of Corollary 4 in Vapnik and
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Cervonenkis (1981). Assume & satisfies the GC theorem. Then, by Theorem
8.4, so does ¥ that is

Pr{supfyleo.'f l dn,l(f’ g) - " f - g"l l > 8} -0

for all ¢ > 0. Therefore for any ¢ > 0 there exist n(e) and measurable sets Q,,, C
S™, n = n(e), such that Pr(Q,.) — 1 as n — « and

Supf,geof’/ldn,l(w)(f’ g) - " f - g"ll =¢ forall we€E Qe

On the other hand, since (. is d,2(w)-totally bounded for almost every w (also
by Theorem 8.6) and d,; < d,., it follows that there exists a measurable set
Q C SN with Pr(Q) = 1 such that (% is d,(w)-totally bounded for all w € Q.
These two facts imply that

N(2¢, 0 || *I1) < Npp(w)e, o F) <o
for all w € Q,,, N Q. This proves the corollary with T'(e) = N(2¢, 0% | * ||1).0

Note that the sufficiency in the previous corollary does not require any
measurability assumptions on ¥

8.9. REMARK. It is interesting that under appropriate measurability,

In Nn,l(e, 0FM)
n

Pr*-lim, .. =0 forall ¢e>0 and M >0

implies the existence of a finite T(¢) for which (8.13) holds. Compare with
Theorem 2.22.

(b) The central limit theorem. Here is a general CLT for unbounded
families of functions. This theorem combines some of the ideas in Giné and
Marcus (1981) (which in turn originated in Marcus, 1978, and Jain and Marcus,
1975) and Pollard (1982). In what follows & is NLDM(P) and we let F =

supse,# | f 1.

8.10. THEOREM. Let & C %(P) be NLDM(P) and such that F € <(P). Let
<G :={(f—8)°%f g € oF} be NLSM(P). Assume

£
(8.14) lim;olim sup,,_mE*(l A f (In N, (e, 0.F))"2 de> = 0.
0
Then & is a functional P-Donsker class.

PrROOF. We let F =, in this proof as usual. We first show that
(8.15) Y ={(f-g*fg€ F}€GCP).
Note that G = sup,e, | g| < 4F? € L(P) so that the integrability hypothesis in
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Corollary 8.7 holds. Since for f;, 8, € &, i=1, 2,
I(h—8) — (o= &Pl lgam=<|fi—fo+&—&llfi—& +f.— &llesm

S2MY2(|fi — fo| + | &1 — &21),
it follows that
Noale, 0%m) < Nig(e/aAMYV?, F).

To verify (8.12) for & note that for n large enough

- 5 1/2
2 fé (In Npole, )" de < 2Mn‘”2(2 In Nm('m’ 7 ))

5/4M1/2
< f (In N, (e, F))V2 de.
0

Therefore (8.14) implies (8.12) for & and, by Corollary 8.7, that &< is GC(P).
Next we show that Z is totally bounded for ep. Given ¢ > 0, the set

Thi g(Xi(w)
n

Pg

< c} N {w € & N,2(e*?, F)(w) < o}

{w € Q: supge«w

has strictly positive inner probability for n large enough by (8.14) and (8.15). So,
for w in this set we can find N, 2(¢/?, #)(w) <  functions g; € ¥ such that
min; P(f — &) < 2¢, i.e. Z is totally bounded for ep.

Hence by Theorem 2.14 it is enough to prove the symmetrized probable
equicontinuity condition (2.12). Now, fore, ¢ = 0

2 el — B)(X) ' S 8}

n

Pr{squ,gE-’f seplf,g)=s

< PrJlsuphey —%(X') — Ph ’ > 52}

= al(f — 8)(Xi
+ ExPe{Squ,gef;ep(f,gK& 2k f1/2 8 )’ >

(8.16) n
supsee s | eb(f, &) — daa(f, 8) | = 62}
= (I) + (II).
But,
(8.17) , (I) >0 as n— >

for all 8 > 0 by (8.15). And we apply Theorem 2.15 (2.23) to bound (II): for
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0<e<(C(Cisasin (2.23)) we have

Yo, elf — 8)(X) ’ )]

1
Il < Ex[l A (; Esupyee 5epitar<s 12

21/25
(8.18) = % E}[e A C{ J; (In Npo(u, F))% du + @(21/25)}]

C 2% c
<= E}[l A f (In Noo(u, )2 du] + = (27%).
0

&
Then (8.14) and (8.18) give
(8.19) lim;jolim sup,.(II) = 0.
(8.16)-(8.19) prove condition (2.12) in Theorem 2.14.0

8.11. REMARKS. (a) Using Theorem 2.14 ((a) = (e)) and Sudakov’s minoration
(Theorem 2.16), we get that a necessary condition for & C 3(P) and NLDM(P)
to be a funtional P-Donsker class is that .

lim;yplim sup, E*supy>oA(In N2\, 0 F 5, P )2 = 0.

(b) The idea of using the law of large numbers to replace ep by d,; in (8.16)
is due to Pollard (1982).

Theorem 8.10 should be compared with Theorem 5.8; it is not difficult to
check that Theorem 8.10 is weaker than Theorem 5.8 in the uniformly bounded
case.

Next we prove Pollard’s theorem (Pollard, 1982); this theorem is used by
Pollard to prove that if & is a Vapnik-Cervonenkis class and F € %(P),
then & = {Fl.: C € ¥} is a functional P-Donsker class of functions. Let
F C %4(P). For any finite set T C S, define, following Pollard (1982),

Yeer (f = g)%x))”z
-ExET F 2(x) ’

(6:20) 0 =

and foralle>0
(8.21) N®(e, F) = supres,raniteNle, F ).
Then, Pollard’s CLT is as follows:

8.12. COROLLARY. Let & (and ¥) satisfy the measurability hypothesis of 8.10
and let & € “(P). Assume that

(8.22) J; (In N®(e, F))2 de < .

Then & is a functional P-Donsker class.
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ProoOF. We show that condition (8.22) implies (8.14) in Theorem 8.10 and
this will conclude the proof of the theorem. Since

dia(f, 8) = | F 209, 8))% fe€ F
where || F||2; = Y% FA(X)/nand T, = {X,, - - -, X,}, it follows that

Noole, F sN“"’( ° ,5?)
e, 7) 1Fls

so that
0]
f (In Nya(e, F))V? de
0

5/ Fll n,2
= [ Fline J; (In N®(u, #))"? du

é
< [|Fllne J; (In N®(u, F))"? du + 5(In N®(5, F))'2.

Since E| F|,; — (PF?!? < =, condition (8.22) gives immediately that
satisfies condition (8.14) in Theorem 8.10.0
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